1
|
Moreno-Cordova EN, Alvarez-Armenta A, Garcia-Orozco KD, Arvizu-Flores AA, Islas-Osuna MA, Robles-Zepeda RE, Lopez-Zavala AA, Laino A, Sotelo-Mundo RR. Binding of green tea epigallocatechin gallate to the arginine kinase active site from the brown recluse spider ( Loxosceles laeta): A potential synergist to chemical pesticides. Heliyon 2024; 10:e34036. [PMID: 39071691 PMCID: PMC11282998 DOI: 10.1016/j.heliyon.2024.e34036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Loxosceles spp. spiders can cause serious public health issues. Chemical control is commonly used, leading to health and environmental problems. Identifying molecular targets and using them with natural compounds can help develop safer and eco-friendlier biopesticides. We studied the kinetics and predicted structural characteristics of arginine kinase (EC 2.7.3.3) from Loxosceles laeta (LlAK), a key enzyme in the energy metabolism of these organisms. Additionally, we explored (-)-epigallocatechin gallate (EGCG), a green tea flavonoid, as a potential lead compound for the LlAK active site through fluorescence and in silico analysis, such as molecular docking and molecular dynamics (MD) simulation and MM/PBSA analyses. The results indicate that LlAK is a highly efficient enzyme (K m Arg 0.14 mM, K m ATP 0.98 mM, k cat 93 s-1, k cat/K m Arg 630 s-1 mM-1, k cat/K m ATP 94 s-1 mM-1), which correlates with its structure similarity to others AKs (such as Litopenaeus vannamei, Polybetes pythagoricus, and Rhipicephalus sanguineus) and might be related to its important function in the spider's energetic metabolism. Furthermore, the MD and MM/PBSA analysis suggests that EGCG interacted with LlAK, specifically at ATP/ADP binding site (RMSD <1 nm) and its interaction is energetically favored for its binding stability (-40 to -15 kcal/mol). Moreover, these results are supported by fluorescence quenching analysis (K d 58.3 μM and K a 1.71 × 104 M-1). In this context, LlAK is a promising target for the chemical control of L. laeta, and EGCG could be used in combination with conventional pesticides to manage the population of Loxosceles species in urban areas.
Collapse
Affiliation(s)
- Elena N. Moreno-Cordova
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| | - Andres Alvarez-Armenta
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Karina D. Garcia-Orozco
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| | - Aldo A. Arvizu-Flores
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Maria A. Islas-Osuna
- Laboratorio de Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| | - Ramon E. Robles-Zepeda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Alonso A. Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner” (INIBIOLP), Centro Científico Tecnológico – La Plata CONICET- Univerdad Nacional de La Plata, La Plata, Argentina
| | - Rogerio R. Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| |
Collapse
|
2
|
Baatrup E, Rasmussen AO, Malte H, Toft S. Exponential distribution of velocities and power distribution of quiescent periods in the spontaneous movement patterns of three hunting spiders. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Here, we investigate the spontaneous locomotor patterns in three spiders with different hunting strategies. The locomotor activity of adult wolf spiders Pardosa amentata, with a sit-and-move hunting strategy, has previously been demonstrated to follow strictly mathematical rules, with most time spent at lower velocities and exponentially decreasing time spent at increasing velocities. Likewise, they have an abundance of short quiescent (resting) periods following a power decay function towards longer quiescent periods. In the present study, we explored whether similar distributions were expressed in juveniles of P. amentata and in two other spider species with different hunting strategies: the sit-and-wait spider Xysticus cristatus and the actively searching sac spider Clubiona phragmitis. We found that all three spider species followed the same two general rules of movement. However, there were differences among the three species. On a logarithmic scale of exponential velocities and a double-logarithmic scale of the rest power decay function, the slopes of the lines for the three species differed. We propose that these differences reflect the behavioural and locomotor differences of the three hunting strategies. Furthermore, we compare our results with similar movement distributions in single cells, fruit flies, mice and even humans.
Collapse
Affiliation(s)
- Erik Baatrup
- Section for Zoophysiology, C. F. Møllersallé 3, Department of Biology, Faculty of Natural Sciences, Aarhus University, Aarhus C, Denmark
| | - Anders O Rasmussen
- Section for Zoophysiology, C. F. Møllersallé 3, Department of Biology, Faculty of Natural Sciences, Aarhus University, Aarhus C, Denmark
| | - Hans Malte
- Section for Zoophysiology, C. F. Møllersallé 3, Department of Biology, Faculty of Natural Sciences, Aarhus University, Aarhus C, Denmark
| | - Søren Toft
- Section for Ecology, Genetics and Evolution, Ny Munkegade, Department of Biology, Faculty of Natural Sciences, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
3
|
Laino A, Lopez-Zavala AA, Garcia-Orozco KD, Carrasco-Miranda JS, Santana M, Stojanoff V, Sotelo-Mundo RR, Garcia CF. Biochemical and structural characterization of a novel arginine kinase from the spider Polybetes pythagoricus. PeerJ 2017; 5:e3787. [PMID: 28924503 PMCID: PMC5598448 DOI: 10.7717/peerj.3787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/18/2017] [Indexed: 01/06/2023] Open
Abstract
Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km) was 1.7 mM with a kcat of 75 s−1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310–320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.
Collapse
Affiliation(s)
- Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Dr. Prof. Rodolfo R. Brenner", Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alonso A Lopez-Zavala
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Karina D Garcia-Orozco
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Jesus S Carrasco-Miranda
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Marianela Santana
- Instituto de Investigaciones Bioquímicas de La Plata "Dr. Prof. Rodolfo R. Brenner", Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Vivian Stojanoff
- Photon Science Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States of America
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Carlos Fernando Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Dr. Prof. Rodolfo R. Brenner", Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Schmitz A. Respiration in spiders (Araneae). J Comp Physiol B 2016; 186:403-15. [PMID: 26820263 DOI: 10.1007/s00360-016-0962-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 11/25/2022]
Abstract
Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.
Collapse
Affiliation(s)
- Anke Schmitz
- Institute for Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.
| |
Collapse
|
5
|
McGinley RH, Prenter J, Taylor PW. Whole-organism performance in a jumping spider,Servaea incana(Araneae: Salticidae): links with morphology and between performance traits. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rowan H. McGinley
- Department of Biological Sciences; Macquarie University; Sydney; New South Wales; Australia
| | | | - Phillip W. Taylor
- Department of Biological Sciences; Macquarie University; Sydney; New South Wales; Australia
| |
Collapse
|
6
|
Crawling at High Speeds: Steady Level Locomotion in the Spider Cupiennius salei-Global Kinematics and Implications for Centre of Mass Dynamics. PLoS One 2013; 8:e65788. [PMID: 23805189 PMCID: PMC3689776 DOI: 10.1371/journal.pone.0065788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/30/2013] [Indexed: 12/05/2022] Open
Abstract
Spiders are an old yet very successful predatory group of arthropods. Their locomotor system differs from those of most other arthropods by the lack of extensor muscles in two major leg joints. Though specific functional characteristics can be expected regarding the locomotion dynamics of spiders, this aspect of movement physiology has been only scarcely examined so far. This study presents extensive analyses of a large dataset concerning global kinematics and the implications for dynamics of adult female specimens of the large Central American spider Cupiennius salei (Keyserling). The experiments covered the entire speed-range of straight runs at constant speeds. The analyses revealed specific characteristics of velocity dependent changes in the movements of the individual legs, as well as in the translational and rotational degrees of freedom of both the centre of mass and the body. In contrast to many other fast moving arthropods, C. salei avoid vertical fluctuations of their centre of mass during fast locomotion. Accordingly, aerial phases were not observed here. This behaviour is most likely a consequence of optimising energy expenditure with regard to the specific requirements of spiders' leg anatomy. A strong synchronisation of two alternating sets of legs appears to play only a minor role in the locomotion of large spiders. Reduced frequency and low centre of mass amplitudes as well as low angular changes of the body axes, in turn, seems to be the result of relatively low leg coordination.
Collapse
|
7
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Baatrup E, Bayley M. Quantitative analysis of spider locomotion employing computer-automated video tracking. Physiol Behav 1993; 54:83-90. [PMID: 8327613 DOI: 10.1016/0031-9384(93)90047-j] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The locomotor activity of adult specimens of the wolf spider Pardosa amentata was measured in an open-field setup, using computer-automated colour object video tracking. The x,y coordinates of the animal in the digitized image of the test arena were recorded three times per second during four consecutive 12-h periods, alternating between white and red (lambda > 600 nm) illumination. Male spiders were significantly more locomotor active than female spiders under both lighting conditions. They walked, on average, twice the distance of females, employed higher velocities, and spent less time in quiescence. Both male and female P. amentata were significantly less active in red light (simulated dark environment) than in white light. The results also revealed that P. amentata administers its walking velocity and periods of quiescence according to consistent distributions, which can be approximated by simple mathematical expressions. It was found that this species spends exponentially decreasing time at increasing velocities. The number of quiescent periods, however, follow a power decay distribution at increasing quiescent period duration.
Collapse
Affiliation(s)
- E Baatrup
- Department of Zoology, University of Aarhus, Denmark
| | | |
Collapse
|
10
|
Grieshaber MK, Hardewig I, Kreutzer U, Pörtner HO. Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 1993; 125:43-147. [PMID: 7984874 DOI: 10.1007/bfb0030909] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M K Grieshaber
- Institut für Zoologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
11
|
Heart and circulatory functions in a spider (Eurypelma californicum): the effects of hydraulic force generation. J Comp Physiol B 1989. [DOI: 10.1007/bf00693005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
Maier L, Root TM, Seyfarth EA. Heterogeneity of spider leg muscle: Histochemistry and electrophysiology of identified fibers in the claw levator. J Comp Physiol B 1987. [DOI: 10.1007/bf00693355] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
|
19
|
Prestwich KN, Ing NH. The activities of enzymes associated with anaerobic pathways, glycolysis and the Krebs cycle in spiders. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1982; 72:295-302. [PMID: 6214370 DOI: 10.1016/0305-0491(82)90049-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The activities of eight enzymes that participate in or are closely linked to anaerobic glycolysis or the krebs cycle were measured in 11 species of spiders representing diverse taxonomic groups (Table 1). 2. The results indicate three anaerobic pathways may operate in spiders. The major pathway leads to the accumulation of D-lactate and one of the minor pathways to alanine and malate as postulated by Linzen & Gallowitz (1975). Another minor pathway ends with the accumulation of glycerol-3-phosphate and pyruvate (Fig 1). 3. There were no consistent correlations between the degree of development of certain pathways or enzyme activities and a spider's habits and respiratory exchange system. 4. Lactate pathways are much more highly developed in the legs and cephalothorax than in the abdomen.
Collapse
|
20
|
Angersbach D. Oxygen transport in the blood of the tarantulaEurypelma californicum:pO2 and pH during rest, activity and recovery. ACTA ACUST UNITED AC 1978. [DOI: 10.1007/bf00687839] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Reiss PM, Pierce SK, Bishop SH. Glutamate dehydrogenases from tissues of the ribbed mussel Modiolus demissus: ADP activation and possible physiological significance. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1977; 202:253-7. [PMID: 21938 DOI: 10.1002/jez.1402020215] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate dehydrogenase (E.C. 14.1.3) was localized in the mitochondria from heart, gill, mantle and hepatopancreas of this euryhaline bivalve mollusc. Activity levels were low (0.1-0.4 mumoles/min/g wet weight) in all tissues when assayed in the glutamate forming direction. Partially purified gill mitochondrial GDH was most active at pH 8.5. The rate in the glutamate deaminating direction was 10-20% of the rate in the glutamate forming direction. ADP at apparent Ka concentrations of micrometer (glutamate formation) and 170 micrometer (glutamate deamination) enhanced GDH activity, 8- and 4-fold respectively. GDH, in vivo, is probably in the activated form and appears to function in glutamate synthesis rather than ammonia formation. However, based on the low activities obtained, the role of GDH in salinity induced amino acid synthesis seems minimal.
Collapse
|
22
|
Oxygen pressures in haemolymph and various tissues of the tarantula,Eurypelma helluo. ACTA ACUST UNITED AC 1975. [DOI: 10.1007/bf00706124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|