1
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593199. [PMID: 38798399 PMCID: PMC11118323 DOI: 10.1101/2024.05.10.593199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development, and promoting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility from the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting MyBP-H may be functionally silent. However, our results suggest an active role. Small angle x-ray diffraction of intact larval tails revealed MyBP-H contributes to the compression of the myofilament lattice accompanying stretch or contraction, while in vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake". These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT 05405
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| |
Collapse
|
2
|
da Silva Lopes K, Pietas A, Radke MH, Gotthardt M. Titin visualization in real time reveals an unexpected level of mobility within and between sarcomeres. ACTA ACUST UNITED AC 2011; 193:785-98. [PMID: 21555460 PMCID: PMC3166869 DOI: 10.1083/jcb.201010099] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Contrary to prior models in which titin serves as a stable scaffold in sarcomeres, sarcomeric and soluble titin exchange dynamically in myofibers when calcium levels are low. The giant muscle protein titin is an essential structural component of the sarcomere. It forms a continuous periodic backbone along the myofiber that provides resistance to mechanical strain. Thus, the titin filament has been regarded as a blueprint for sarcomere assembly and a prerequisite for stability. Here, a novel titin-eGFP knockin mouse provided evidence that sarcomeric titin is more dynamic than previously suggested. To study the mobility of titin in embryonic and neonatal cardiomyocytes, we used fluorescence recovery after photobleaching and investigated the contribution of protein synthesis, contractility, and calcium load to titin motility. Overall, the kinetics of lateral and longitudinal movement of titin-eGFP were similar. Whereas protein synthesis and developmental stage did not alter titin dynamics, there was a strong, inhibitory effect of calcium on titin mobility. Our results suggest a model in which the largely unrestricted movement of titin within and between sarcomeres primarily depends on calcium, suggesting that fortification of the titin filament system is activity dependent.
Collapse
Affiliation(s)
- Katharina da Silva Lopes
- Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine (MDC), D-13122 Berlin-Buch, Germany
| | | | | | | |
Collapse
|
3
|
Will RD, Eden M, Just S, Hansen A, Eder A, Frank D, Kuhn C, Seeger TS, Oehl U, Wiemann S, Korn B, Koegl M, Rottbauer W, Eschenhagen T, Katus HA, Frey N. Myomasp/LRRC39, a heart- and muscle-specific protein, is a novel component of the sarcomeric M-band and is involved in stretch sensing. Circ Res 2010; 107:1253-64. [PMID: 20847312 DOI: 10.1161/circresaha.110.222372] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE AND OBJECTIVE The M-band represents a transverse structure in the center of the sarcomeric A-band and provides an anchor for the myosin-containing thick filaments. In contrast to other sarcomeric structures, eg, the Z-disc, only few M-band-specific proteins have been identified to date, and its exact molecular composition remains unclear. METHODS AND RESULTS Using a bioinformatic approach to identify novel heart- and muscle-specific genes, we found a leucine rich protein, myomasp (Myosin-interacting, M-band-associated stress-responsive protein)/LRRC39. RT-PCR and Northern and Western blot analyses confirmed a cardiac-enriched expression pattern, and immunolocalization of myomasp revealed a strong and specific signal at the sarcomeric M-band. Yeast 2-hybrid screens, as well as coimmunoprecipitation experiments, identified the C terminus of myosin heavy chain (MYH)7 as an interaction partner for myomasp. Knockdown of myomasp in neonatal rat ventricular myocytes (NRVCMs) led to a significant upregulation of the stretch-sensitive genes GDF-15 and BNP. Conversely, the expression of MYH7 and the M-band proteins myomesin-1 and -2 was found to be markedly reduced. Mechanistically, knockdown of myomasp in NRVCM led to a dose-dependent suppression of serum response factor-dependent gene expression, consistent with earlier observations linking the M-band to serum response factor-mediated signaling. Finally, downregulation of myomasp/LRRC39 in spontaneously beating engineered heart tissue constructs resulted in significantly lower force generation and reduced fractional shortening. Likewise, knockdown of the myomasp/LRRC39 ortholog in zebrafish resulted in severely impaired heart function and cardiomyopathy in vivo. CONCLUSIONS These findings reveal myomasp as a previously unrecognized component of an M-band-associated signaling pathway that regulates cardiomyocyte gene expression in response to biomechanical stress.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Northern
- Blotting, Western
- Cardiac Myosins/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/physiopathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- Connectin
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Growth Differentiation Factor 15/metabolism
- Humans
- Immunohistochemistry
- Immunoprecipitation
- Leucine-Rich Repeat Proteins
- Male
- Mechanotransduction, Cellular
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myosin Heavy Chains/metabolism
- Natriuretic Peptide, Brain/metabolism
- Oligonucleotide Array Sequence Analysis
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcomeres/metabolism
- Serum Response Factor/metabolism
- Stress, Mechanical
- Transfection
- Two-Hybrid System Techniques
- Zebrafish
Collapse
Affiliation(s)
- Rainer D Will
- Department of Internal Medicine III, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 2003; 18:637-706. [PMID: 12142273 DOI: 10.1146/annurev.cellbio.18.012502.105840] [Citation(s) in RCA: 423] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated. These investigations have advanced significantly in recent years through the identification of novel sarcomeric and sarcomeric-associated proteins and their subsequent functional analyses in model systems. Mutations in these cytoskeletal components account for a large percentage of human myopathies, and thus insight into the normal functions of these proteins has provided a much needed mechanistic understanding of these disorders. In this review, we highlight the components of striated muscle cytoarchitecture with respect to their interactions, dynamics, links to signaling pathways, and functions. The exciting conclusion is that the striated muscle cytoskeleton, an exquisitely tuned, dynamic molecular machine, is capable of responding to subtle changes in cellular physiology.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Cell Biology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
5
|
Hornemann T, Stolz M, Wallimann T. Isoenzyme-specific interaction of muscle-type creatine kinase with the sarcomeric M-line is mediated by NH(2)-terminal lysine charge-clamps. J Cell Biol 2000; 149:1225-34. [PMID: 10851020 PMCID: PMC2175123 DOI: 10.1083/jcb.149.6.1225] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1999] [Accepted: 05/03/2000] [Indexed: 11/22/2022] Open
Abstract
Creatine kinase (CK) is located in an isoenzyme-specific manner at subcellular sites of energy production and consumption. In muscle cells, the muscle-type CK isoform (MM-CK) specifically interacts with the sarcomeric M-line, while the highly homologous brain-type CK isoform (BB-CK) does not share this property. Sequence comparison revealed two pairs of lysine residues that are highly conserved in M-CK but are not present in B-CK. The role of these lysines in mediating M-line interaction was tested with a set of M-CK and B-CK point mutants and chimeras. We found that all four lysine residues are involved in the isoenzyme-specific M-line interaction, acting pair-wise as strong (K104/K115) and weak interaction sites (K8/K24). An exchange of these lysines in MM-CK led to a loss of M-line binding, whereas the introduction of the very same lysines into BB-CK led to a gain of function by transforming BB-CK into a fully competent M-line-binding protein. The role of the four lysines in MM-CK is discussed within the context of the recently solved x-ray structures of MM-CK and BB-CK.
Collapse
Affiliation(s)
- T Hornemann
- Swiss Federal Institute of Technology, Institute of Cell Biology, Eidenössisch Technische Hochschule Zürich Hönggerberg, 8093 Zürich, Switzerland.
| | | | | |
Collapse
|
6
|
van der Ven PF, Bartsch JW, Gautel M, Jockusch H, Fürst DO. A functional knock-out of titin results in defective myofibril assembly. J Cell Sci 2000; 113 ( Pt 8):1405-14. [PMID: 10725223 DOI: 10.1242/jcs.113.8.1405] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Titin, also called connectin, is a giant muscle protein that spans the distance from the sarcomeric Z-disc to the M-band. Titin is thought to direct the assembly of sarcomeres and to maintain sarcomeric integrity by interacting with numerous sarcomeric proteins and providing a mechanical linkage. Since severe defects of such an important molecule are likely to result in embryonic lethality, a cell culture model should offer the best practicable tool to probe the cellular functions of titin. The myofibroblast cell line BHK-21/C13 was described to assemble myofibrils in culture. We have now characterized the sub-line BHK-21-Bi, which bears a small deletion within the titin gene. RNA analysis revealed that in this mutant cell line only a small internal portion of the titin mRNA is deleted. However, western blots, immunofluorescence microscopy and immunoprecipitation experiments showed that only the N-terminal, approx. 100 kDa central Z-disc portion of the 3 MDa titin protein is expressed, due to the homozygous deletion in the gene. Most importantly, in BHK-21-Bi cells the formation of thick myosin filaments and the assembly of myofibrils are impaired, although sarcomeric proteins are expressed. Lack of thick filament formation and of ordered actin-myosin arrays was confirmed by electron microscopy. Myogenisation induced by transfection with MyoD yielded myofibrils only in myotubes formed from wild type and not from mutant cells, ruling out that a principal failure in myogenic commitment of the BHK-21-Bi cells might cause the observed effects. These experiments provide the first direct evidence for the crucial role of titin in both thick filament formation as a molecular ruler and in the coordination of myofibrillogenesis.
Collapse
Affiliation(s)
- P F van der Ven
- Department of Cell Biology, University of Potsdam, Lennéstr. 7a, D-14471 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
7
|
Fürst DO, Obermann WM, van der Ven PF. Structure and assembly of the sarcomeric M band. Rev Physiol Biochem Pharmacol 1999; 138:163-202. [PMID: 10396141 DOI: 10.1007/bfb0119627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D O Fürst
- Department of Cell Biology, University of Potsdam, Germany
| | | | | |
Collapse
|
8
|
Fürst DO, Obermann WMJ, Ven PFM. Structure and assembly of the sarcomeric M Band. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Obermann WM, van der Ven PF, Steiner F, Weber K, Fürst DO. Mapping of a myosin-binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol Biol Cell 1998; 9:829-40. [PMID: 9529381 PMCID: PMC25310 DOI: 10.1091/mbc.9.4.829] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2-Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9-Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.
Collapse
Affiliation(s)
- W M Obermann
- Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
10
|
Obermann WM, Plessmann U, Weber K, Fürst DO. Purification and biochemical characterization of myomesin, a myosin-binding and titin-binding protein, from bovine skeletal muscle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:110-5. [PMID: 7588733 DOI: 10.1111/j.1432-1033.1995.110_1.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report a method for isolating homogeneous myomesin from mammalian skeletal muscle. The identity of the purified bovine protein was confirmed by its reactivity with myomesin-specific monoclonal antibodies and with polyclonal antibodies raised against peptides derived from the amino-terminal and carboxy-terminal ends of the sequence predicted by the human myomesin cDNA. All partial sequences obtained from bovine myomesin can be aligned along the human sequence predicted by its cloned cDNA. Electron microscopy of myomesin revealed short flexible rods with a molecular length of about 50 nm. Circular dichroism spectra showed a high degree of beta structure as expected for a member of the immunoglobulin superfamily of proteins. Alignment of the sequences of the class I and II domains of myomesin with the sequences of domains of known three-dimensional structure provides a more detailed model of myomesin. In agreement with this view, the cleavage sites observed by limited proteolysis locate primarily between individual domains. In a solid-phase overlay assay myomesin specifically bound to the myosin rod and to light meromyosin (LMM), but not to the carboxy-terminal 30-kDa fragment of LMM. The myosin-binding site seemed to be confined to the amino-terminal 240 residues of the molecule. The cross-reactivity of myomesin with the phosphorylation-dependent monoclonal neurofilament antibody NE14 [Shaw, G.E., Debus, E. & Weber, K. (1984) Eur. J. Cell Biol. 34, 130-136] was analyzed. NE14 reactivity of myomesin was abolished by alkaline phosphatase. Reactivity of the antibody on stable proteolytic fragments of myomesin showed that the phosphorylation site must reside within the carboxy-terminal 60 residues.
Collapse
Affiliation(s)
- W M Obermann
- Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
11
|
Abstract
The muscle cell cytoskeleton is defined for this review as any structure or protein primarily involved in linking or connecting protein filaments to each other or to anchoring sites. In striated muscle, the M line connects thick filaments at their centers to adjacent thick filaments. Titin forms elastic filaments that extend from the M line to the Z line and may contribute to the resting tension properties of striated muscle. Nebulin forms inextensible filaments in skeletal muscle that are closely associated with thin filaments and that may provide a length template for thin filaments. Z lines anchor thin filaments from adjacent sarcomeres via the actin-binding function of alpha-actinin. Other proteins located at the Z line include Cap Z, Z-nin, Z protein, and zeugmatin. Intermediate filaments connect myofibrils to each other at the level of the Z line and to the sarcolemma at the Z- and possibly the M-line levels. Immunolocalization has identified the adhesion plaque proteins spectrin, vinculin, dystrophin, ankyrin, and talin at subsarcolemmal sites where they may be involved with filament attachment. Smooth muscle cell cytoskeletons are believed to include membrane associated dense bodies (MADBs), intermediate filaments, cytoplasmic dense bodies (CDBs), and perhaps a subset of actin filaments. MADBs contain a menu of attachment plaque proteins and anchor both thin filaments and intermediate filaments to the sarcolemma. CDBs are intracellular analogs of striated muscle Z lines and anchor thin filaments and intermediate filaments.
Collapse
Affiliation(s)
- M H Stromer
- Department of Animal Science, Iowa State University, Ames 50011-3260, USA
| |
Collapse
|
12
|
Kensler RW, Woodhead JL. The chicken muscle thick filament: temperature and the relaxed cross-bridge arrangement. J Muscle Res Cell Motil 1995; 16:79-90. [PMID: 7751407 DOI: 10.1007/bf00125312] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although chicken myosin S1 has recently been crystallized and its structure analysed, the relaxed periodic arrangement of myosin heads on the chicken thick filament has not been determined. We report here that the cross-bridge array of chicken filaments is temperature sensitive, and the myosin heads become disordered at temperatures near 4 degrees C. At 25 degrees C, however, thick filaments from chicken pectoralis muscle can be isolated with a well ordered, near-helical, arrangement of cross-bridges as seen in negatively stained preparations. This periodicity is confirmed by optical diffraction and computed transforms of images of the filaments. These show a strong series of layer lines near the orders of a 43 nm near-helical periodicity as expected from X-ray diffraction. Both analysis of phases on the first layer line, and computer filtered images of the filaments, are consistent with a three-stranded arrangement of the myosin heads on the filament.
Collapse
Affiliation(s)
- R W Kensler
- Department of Anatomy, School of Medicine, University of Puerto Rico, San Juan 00036-5067
| | | |
Collapse
|
13
|
Small JV, Fürst DO, Thornell LE. The cytoskeletal lattice of muscle cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:559-72. [PMID: 1396662 DOI: 10.1111/j.1432-1033.1992.tb17220.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J V Small
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg
| | | | | |
Collapse
|
14
|
Wegmann G, Zanolla E, Eppenberger HM, Wallimann T. In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Muscle Res Cell Motil 1992; 13:420-35. [PMID: 1401038 DOI: 10.1007/bf01738037] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Creatine kinase isoenzymes (CK = ATP: creatine N-phosphoryl transferase, EC 2.7.3.2) were localized in situ in cryosections of intact sarcomeric muscle by immunocytochemical staining. Similar to cardiac muscle, spermatozoa and photoreceptor cells, mitochondrial-type CK (Mi-CK) localization in skeletal muscle was also restricted to mitochondria. Besides the well-documented localization of muscle-type (M-CK) at the M-line and at the sarcoplasmic reticulum, surprisingly, most of the sarcoplasmic M-CK was also highly compartmentalized and was mainly confined to the I-band. The localization of M-CK at the I-band coincided with that of adenylate kinase and aldolase. In intact muscle, the diffusion equilibrium decisively favours occupancy by all three enzymes of the I-band, with the acto-myosin overlap region of the A-band acting as a molecular sieve, excluding to a large extent all three enzymes from the acto-myosin overlap region. This indicates that in intact muscle, this region of the A-band may be less accessible in vivo to soluble, sarcoplasmic enzymes than thought before. If muscle were permeabilized by chemical skinning before fixation, I-band CK, as well as aldolase and adenylate kinase, were solubilized and disappeared from the myofibrils, but the fraction of M-CK which was specifically associated with the M-line remained bound to the myofibrils. Implications of these findings are discussed with respect to the functional coupling of I-band-CK with glycolysis, to the formation of large multienzyme complexes of glycolytic enzymes with CK and to the supply of energy for muscle contraction in general.
Collapse
Affiliation(s)
- G Wegmann
- Institute for Cell Biology, Swiss Federal Institute of Technology, Zürich
| | | | | | | |
Collapse
|
15
|
Carlsson E, Grove BK, Wallimann T, Eppenberger HM, Thornell LE. Myofibrillar M-band proteins in rat skeletal muscles during development. HISTOCHEMISTRY 1990; 95:27-35. [PMID: 1704877 DOI: 10.1007/bf00737225] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of three myofibrillar M-band proteins, myomesin, M-protein and the muscle isoform of creatine kinase, was investigated with immunocytochemical techniques in skeletal muscles of embryonic, fetal, newborn and four-week-old rats. Furthermore, muscles of newborn rats were denervated and examined at four weeks of age. In embryos, myomesin was present in all myotome muscle fibres of the somites, whereas M-protein was detected only in a small proportion of the myotome muscle fibres and muscle creatine kinase was not detected at all. In fetal and newborn muscles, all fibres contained all three M-band proteins. At four weeks of age, when fibre types (type 1 or slow twitch fibres and type 2 or fast twitch fibres) were clearly discernable, the pattern was changed. Myomesin and muscle creatine kinase were still observed in all fibres, whereas M-protein was present only in type 2 fibres. On the other hand, in muscle fibres denervated at birth all three M-band proteins were still detected. Our results suggest 1) that during the initial stages of myofibrillogenesis expression and incorporation of myomesin into the M-band precede that of M-protein and muscle creatine kinase; 2) that expression and incorporation of all three M-band proteins during fetal development is nerve independent and non coordinated to the expression of different forms of myosin heavy chains, and 3) that the suppression of M-protein synthesis during postnatal development is nerve dependent and reflects the maturation of slow twitch motor units.
Collapse
Affiliation(s)
- E Carlsson
- Department of Anatomy, University of Umeå, Sweden
| | | | | | | | | |
Collapse
|
16
|
Varriano-Marston E, Franzini-Armstrong C, Haselgrove JC. Structure of the M Band. ACTA ACUST UNITED AC 1987. [DOI: 10.1002/jemt.1060060204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Price MG. Skelemins: cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle. J Cell Biol 1987; 104:1325-36. [PMID: 3553209 PMCID: PMC2114463 DOI: 10.1083/jcb.104.5.1325] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cytoskeletons of mammalian striated and smooth muscles contain a pair of high molecular weight (HMW) polypeptides of 220,000 and 200,000 mol wt, each with isoelectric points of about 5 (Price, M. G., 1984, Am. J. Physiol., 246:H566-572) in a molar ratio of 1:1:20 with desmin. The HMW polypeptides of mammalian muscle have been named "skelemins," because they are in the insoluble cytoskeletons of striated muscle and are at the M-discs. I have used two-dimensional peptide mapping to show that the two skelemin polypeptides are closely related to each another. Polyclonal antibodies directed against skelemins were used to demonstrate that they are immunologically distinct from talin, fodrin, myosin heavy chain, synemin, microtubule-associated proteins, and numerous other proteins of similar molecular weight, and are not oligomers of other muscle proteins. Skelemins appear not to be proteolytic products of larger proteins, as shown by immunoautoradiography on 3% polyacrylamide gels. Skelemins are predominantly cytoskeletal, with little extractable from myofibrils by various salt solutions. Human, bovine, and rat cardiac, skeletal, and smooth muscles, but not chicken muscles, contain proteins cross-reacting with anti-skelemin antibodies. Skelemins are localized by immunofluorescence at the M-lines of cardiac and skeletal muscle, in 0.4-micron-wide smooth striations. Cross sections reveal that skelemins are located at the periphery of the M-discs. Skelemins are seen in threads linking isolated myofibrils at the M-discs. There is sufficient skelemin in striated muscle to wrap around the M-disc about three times, if the skelemin molecules are laid end to end, assuming a length-to-weight ratio similar to M-line protein and other elongated proteins. The results indicate that skelemins form linked rings around the periphery of the myofibrillar M-discs. These cytoskeletal rings may play a role in the maintenance of the structural integrity of striated muscle throughout cycles of contraction and relaxation.
Collapse
|