1
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
2
|
Desai DA, Rao VJ, Jegga AG, Dhandapany PS, Sadayappan S. Heterogeneous Distribution of Genetic Mutations in Myosin Binding Protein-C Paralogs. Front Genet 2022; 13:896117. [PMID: 35832193 PMCID: PMC9272480 DOI: 10.3389/fgene.2022.896117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) is a sarcomeric protein which regulates the force of contraction in striated muscles. Mutations in the MYBPC family of genes, including slow skeletal (MYBPC1), fast skeletal (MYBPC2) and cardiac (MYBPC3), can result in cardiac and skeletal myopathies. Nonetheless, their evolutionary pattern, pathogenicity and impact on MyBP-C protein structure remain to be elucidated. Therefore, the present study aimed to systematically assess the evolutionarily conserved and epigenetic patterns of MYBPC family mutations. Leveraging a machine learning (ML) approach, the Genome Aggregation Database (gnomAD) provided variants in MYBPC1, MYBPC2, and MYBPC3 genes. This was followed by an analysis with Ensembl’s variant effect predictor (VEP), resulting in the identification of 8,618, 3,871, and 3,071 variants in MYBPC1, MYBPC2, and MYBPC3, respectively. Missense variants comprised 61%–66% of total variants in which the third nucleotide positions in the codons were highly altered. Arginine was the most mutated amino acid, important because most disease-causing mutations in MyBP-C proteins are arginine in origin. Domains C5 and C6 of MyBP-C were found to be hotspots for most mutations in the MyBP-C family of proteins. A high percentage of truncated mutations in cMyBP-C cause cardiomyopathies. Arginine and glutamate were the top hits in fMyBP-C and cMyBP-C, respectively, and tryptophan and tyrosine were the most common among the three paralogs changing to premature stop codons and causing protein truncations at the carboxyl terminus. A heterogeneous epigenetic pattern was identified among the three MYBP-C paralogs. Overall, it was shown that databases using computational approaches can facilitate diagnosis and drug discovery to treat muscle disorders caused by MYBPC mutations.
Collapse
Affiliation(s)
- Darshini A. Desai
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Vinay J. Rao
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Perundurai S. Dhandapany
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Sakthivel Sadayappan,
| |
Collapse
|
3
|
Bengtsen M, Winje IM, Eftestøl E, Landskron J, Sun C, Nygård K, Domanska D, Millay DP, Meza-Zepeda LA, Gundersen K. Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genet 2021; 17:e1009907. [PMID: 34752468 PMCID: PMC8604348 DOI: 10.1371/journal.pgen.1009907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/19/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023] Open
Abstract
Muscle cells have different phenotypes adapted to different usage, and can be grossly divided into fast/glycolytic and slow/oxidative types. While most muscles contain a mixture of such fiber types, we aimed at providing a genome-wide analysis of the epigenetic landscape by ChIP-Seq in two muscle extremes, the fast/glycolytic extensor digitorum longus (EDL) and slow/oxidative soleus muscles. Muscle is a heterogeneous tissue where up to 60% of the nuclei can be of a different origin. Since cellular homogeneity is critical in epigenome-wide association studies we developed a new method for purifying skeletal muscle nuclei from whole tissue, based on the nuclear envelope protein Pericentriolar material 1 (PCM1) being a specific marker for myonuclei. Using antibody labelling and a magnetic-assisted sorting approach, we were able to sort out myonuclei with 95% purity in muscles from mice, rats and humans. The sorting eliminated influence from the other cell types in the tissue and improved the myo-specific signal. A genome-wide comparison of the epigenetic landscape in EDL and soleus reflected the differences in the functional properties of the two muscles, and revealed distinct regulatory programs involving distal enhancers, including a glycolytic super-enhancer in the EDL. The two muscles were also regulated by different sets of transcription factors; e.g. in soleus, binding sites for MEF2C, NFATC2 and PPARA were enriched, while in EDL MYOD1 and SIX1 binding sites were found to be overrepresented. In addition, more novel transcription factors for muscle regulation such as members of the MAF family, ZFX and ZBTB14 were identified. Complex tissues like skeletal muscle contain a variety of cells which confound the analysis of each cell type when based on homogenates, thus only about half of the cell nuclei in muscles reside inside the muscle cells. We here describe a labelling and sorting technique that allowed us to study the epigenetic landscape in purified muscle cell nuclei leaving the other cell types out. Differences between a fast/glycolytic and a slow/oxidative muscle were studied. While all skeletal muscle fibers have a similar make up and basic function, they differ in their physiology and the way they are used. Thus, some fibers are fast contracting but fatigable, and are used for short lasting explosive tasks such as sprinting. Other fibers are slow and are used for more prolonged tasks such as standing or long distance running. Since fiber type correlate with metabolic profile these features can also be related to metabolic diseases. We here show that the epigenetic landscape differed in gene loci corresponding to the differences in functional properties, and revealed that the two types are enriched in different gene regulatory networks. Exercise can alter muscle phenotype, and the epigenetic landscape might be related to how plastic different properties are.
Collapse
Affiliation(s)
- Mads Bengtsen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kamilla Nygård
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Diana Domanska
- Department of Pathology, University of Oslo, Oslo, Norway
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Leonardo A. Meza-Zepeda
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
4
|
Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Biomolecules 2020; 10:biom10030442. [PMID: 32178433 PMCID: PMC7175236 DOI: 10.3390/biom10030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
: Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.
Collapse
|
5
|
Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal muscle systems. Proc Natl Acad Sci U S A 2019; 116:21882-21892. [PMID: 31591218 DOI: 10.1073/pnas.1910549116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle myosin-binding protein C (MyBP-C) is a myosin thick filament-associated protein, localized through its C terminus to distinct regions (C-zones) of the sarcomere. MyBP-C modulates muscle contractility, presumably through its N terminus extending from the thick filament and interacting with either the myosin head region and/or the actin thin filament. Two isoforms of MyBP-C (fast- and slow-type) are expressed in a muscle type-specific manner. Are the expression, localization, and Ca2+-dependent modulatory capacities of these isoforms different in fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles derived from Sprague-Dawley rats? By mass spectrometry, 4 MyBP-C isoforms (1 fast-type MyBP-C and 3 N-terminally spliced slow-type MyBP-C) were expressed in EDL, but only the 3 slow-type MyBP-C isoforms in SOL. Using EDL and SOL native thick filaments in which the MyBP-C stoichiometry and localization are preserved, native thin filament sliding over these thick filaments showed that, only in the C-zone, MyBP-C Ca2+ sensitizes the thin filament and slows thin filament velocity. These modulatory properties depended on MyBP-C's N terminus as N-terminal proteolysis attenuated MyBP-C's functional capacities. To determine each MyBP-C isoform's contribution to thin filament Ca2+ sensitization and slowing in the C-zone, we used a combination of in vitro motility assays using expressed recombinant N-terminal fragments and in silico mechanistic modeling. Our results suggest that each skeletal MyBP-C isoform's N terminus is functionally distinct and has modulatory capacities that depend on the muscle type in which they are expressed, providing the potential for molecular tuning of skeletal muscle performance through differential MyBP-C expression.
Collapse
|
6
|
Guo W, Zhu C, Yin Z, Wang Q, Sun M, Cao H, Greaser ML. Splicing Factor RBM20 Regulates Transcriptional Network of Titin Associated and Calcium Handling Genes in The Heart. Int J Biol Sci 2018; 14:369-380. [PMID: 29725258 PMCID: PMC5930469 DOI: 10.7150/ijbs.24117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/27/2018] [Indexed: 01/28/2023] Open
Abstract
RNA binding motif 20 (RBM20) regulates pre-mRNA splicing of over thirty genes, among which titin is a major target. With RBM20 expression, titin expresses a larger isoform at fetal stage to a smaller isoform at adult resulting from alternative splicing, while, without RBM20, titin expresses exclusively a larger isoform throughout all ages. In addition to splicing regulation, it is unknown whether RBM20 also regulates gene expression. In this study, we employed Rbm20 knockout rats to investigate gene expression profile using Affymetrix expression array. We compared wild type to Rbm20 knockout at day1, 20 and 49. Bioinformatics analysis showed RBM20 regulates fewer genes expression at younger age and more at older age and commonly expressed genes have the same trends. GSEA indicated up-regulated genes are associated with heart failure. We examined titin binding partners. All titin direct binding partners are up-regulated and their increased expression is associated with dilated cardiomyopathy. Particularly, we found that genes involving calcium handling and muscle contraction are changed by RBM20. Intracellular calcium level measurement with individual cardiomyocytes further confirmed that changes of these proteins impact calcium handling. Selected genes from titin binding partners and calcium handling were validated with QPCR and western blotting. These data demonstrate that RBM20 regulates gene splicing as well as gene expression. Altered gene expression by RBM20 influences protein-protein interaction, calcium releasing and thus muscle contraction. Our results first reported gene expression impacted by RBM20 with heart maturation, and provided new insights into the role of RBM20 in the progression of heart failure.
Collapse
Affiliation(s)
- Wei Guo
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Chaoqun Zhu
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Zhiyong Yin
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Department of Cardiology, Xi Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiurong Wang
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry.,Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Marion L Greaser
- Animal Science, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Abstract
Striated cardiac and skeletal muscles play very different roles in the body, but they are similar at the molecular level. In particular, contraction, regardless of the type of muscle, is a precise and complex process involving the integral protein myofilaments and their associated regulatory components. The smallest functional unit of muscle contraction is the sarcomere. Within the sarcomere can be found a sophisticated ensemble of proteins associated with the thick filaments (myosin, myosin binding protein-C, titin, and obscurin) and thin myofilaments (actin, troponin, tropomyosin, nebulin, and nebulette). These parallel thick and thin filaments slide across one another, pulling the two ends of the sarcomere together to regulate contraction. More specifically, the regulation of both timing and force of contraction is accomplished through an intricate network of intra- and interfilament interactions belonging to each myofilament. This review introduces the sarcomere proteins involved in striated muscle contraction and places greater emphasis on the more recently identified and less well-characterized myofilaments: cardiac myosin binding protein-C, titin, nebulin, and obscurin. © 2017 American Physiological Society. Compr Physiol 7:675-692, 2017.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Taejeong Song
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Yin Z, Ren J, Guo W. Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta Mol Basis Dis 2014; 1852:47-52. [PMID: 25446994 DOI: 10.1016/j.bbadis.2014.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2023]
Abstract
Sarcomeric protein isoforms are mainly governed by alternative promoter-driven expression, distinct gene expression, gene mutation and alternative mRNA splicing. The transitions of sarcomeric proteins have been implicated to play a role in the onset and development of human heart failure. In this mini-review, we summarized isoform transitions of several most widely examined sarcomeric proteins including myosin, actin, troponin, tropomyosin, titin and myosin binding protein-C, and the consequence of these abnormal isoform transitions. Even though the isoform transitions of sarcomeric proteins have been described in individual sarcomeric protein reviews, no concise summary of these results has been presented previously. This review is intended to fill this gap and discuss possible future perspectives.
Collapse
Affiliation(s)
- Zhiyong Yin
- Animal Science, College of Agriculture and Natural Resources, University of WY, Laramie WY82071, USA; Department of Cardiology, Xi Jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, College of Health Science, University of WY, Laramie WY82071, USA
| | - Wei Guo
- Animal Science, College of Agriculture and Natural Resources, University of WY, Laramie WY82071, USA; Center for Cardiovascular Research and Alternative Medicine, College of Health Science, University of WY, Laramie WY82071, USA.
| |
Collapse
|
9
|
Lin B, Govindan S, Lee K, Zhao P, Han R, Runte KE, Craig R, Palmer BM, Sadayappan S. Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function. PLoS One 2013; 8:e69671. [PMID: 23936073 PMCID: PMC3729691 DOI: 10.1371/journal.pone.0069671] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) exists in three major isoforms: slow skeletal, fast skeletal, and cardiac. While cardiac MyBP-C (cMyBP-C) expression is restricted to the heart in the adult, it is transiently expressed in neonatal stages of some skeletal muscles. However, it is unclear whether this expression is necessary for the proper development and function of skeletal muscle. Our aim was to determine whether the absence of cMyBP-C alters the structure, function, or MyBP-C isoform expression in adult skeletal muscle using a cMyBP-C null mouse model (cMyBP-C((t/t))). Slow MyBP-C was expressed in both slow and fast skeletal muscles, whereas fast MyBP-C was mostly restricted to fast skeletal muscles. Expression of these isoforms was unaffected in skeletal muscle from cMyBP-C((t/t)) mice. Slow and fast skeletal muscles in cMyBP-C((t/t)) mice showed no histological or ultrastructural changes in comparison to the wild-type control. In addition, slow muscle twitch, tetanus tension, and susceptibility to injury were all similar to the wild-type controls. Interestingly, fMyBP-C expression was significantly increased in the cMyBP-C((t/t)) hearts undergoing severe dilated cardiomyopathy, though this does not seem to prevent dysfunction. Additionally, expression of both slow and fast isoforms was increased in myopathic skeletal muscles. Our data demonstrate that i) MyBP-C isoforms are differentially regulated in both cardiac and skeletal muscles, ii) cMyBP-C is dispensable for the development of skeletal muscle with no functional or structural consequences in the adult myocyte, and iii) skeletal isoforms can transcomplement in the heart in the absence of cMyBP-C.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Microscopy, Electron
- Muscle Contraction
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Myocardium/metabolism
- Promoter Regions, Genetic/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Sarcomeres/metabolism
- Sarcomeres/physiology
- Sarcomeres/ultrastructure
Collapse
Affiliation(s)
- Brian Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Suresh Govindan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Kyounghwan Lee
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Piming Zhao
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Renzhi Han
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - K. Elisabeth Runte
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Roger Craig
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
10
|
Abstract
Myosin-binding protein C (MyBP-C) is a thick filament protein consisting of 1274 amino acid residues (149 kDa) that was identified by Starr and Offer over 30 years ago as a contaminant present in a preparation of purified myosin. Since then, numerous studies have defined the muscle-specific isoforms, the structure, and the importance of the proteins in normal striated muscle structure and function. Underlying the critical role the protein plays, it is now apparent that mutations in the cardiac isoform (cMyBP-C) are responsible for a substantial proportion (30-40%) of genotyped cases of familial hypertrophic cardiomyopathy. Although generally accepted that MyBP-C can interact with all three filament systems within the sarcomere (the thick, thin, and titin filaments), the exact nature of these interactions and the functional consequences of modified binding remain obscure. In addition to these structural considerations, cMyBP-C can serve as a point of convergence for signaling processes in the cardiomyocyte via post-translational modifications mediated by kinases that phosphorylate residues in the cardiac-specific isoform sequence. Thus, cMyBP-C is a critical nodal point that has both important structural and signaling roles and whose modifications are known to cause significant human cardiac disease.
Collapse
Affiliation(s)
- Jeanne James
- From the Department of Pediatrics and the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Jeffrey Robbins
- From the Department of Pediatrics and the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
11
|
Kang LHD, Hoh JFY. Regulation of jaw-specific isoforms of myosin-binding protein-C and tropomyosin in regenerating cat temporalis muscle innervated by limb fast and slow motor nerves. J Histochem Cytochem 2010; 58:989-1004. [PMID: 20679518 DOI: 10.1369/jhc.2010.956847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cat jaw-closing muscles are a distinct muscle allotype characterized by the expression of masticatory-specific myofibrillar proteins. Transplantation studies showed that expression of masticatory myosin heavy chain (m-MyHC) is promoted by fast motor nerves, but suppressed by slow motor nerves. We investigated whether masticatory myosin-binding protein-C (m-MBP-C) and masticatory tropomyosin (m-Tm) are similarly regulated. Temporalis muscle strips were transplanted into limb muscle beds to allow innervation by fast or slow muscle nerve during regeneration. Regenerated muscles were examined postoperatively up to 168 days by peroxidase IHC using monoclonal antibodies to m-MyHC, m-MBP-C, and m-Tm. Regenerates in both muscle beds expressed fetal and slow MyHCs, m-MyHC, m-MBP-C, and m-Tm during the first 4 weeks. Longer-term regenerates innervated by fast nerve suppressed fetal and slow MyHCs, retaining m-MyHC, m-MBP-C, and m-Tm, whereas fibers innervated by slow nerve suppressed fetal MyHCs and the three masticatory-specific proteins, induced slow MyHC, and showed immunohistochemical characteristics of jaw-slow fibers. We concluded that expression of m-MBP-C and m-Tm is coregulated by m-MyHC and that neural impulses to limb slow muscle are capable of suppressing masticatory-specific proteins and to channel gene expression along the jaw-slow phenotype unique to jaw-closing muscle.
Collapse
Affiliation(s)
- Lucia H D Kang
- Discipline of Physiology, Building F13, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
12
|
Kang LHD, Rughani A, Walker ML, Bestak R, Hoh JFY. Expression of masticatory-specific isoforms of myosin heavy-chain, myosin-binding protein-C and tropomyosin in muscle fibers and satellite cell cultures of cat masticatory muscle. J Histochem Cytochem 2010; 58:623-34. [PMID: 20354144 DOI: 10.1369/jhc.2010.955419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We test the hypothesis that cat jaw satellite cells belong to a distinct lineage preprogrammed to express masticatory-specific isoforms of myosin heavy-chain (m-MyHC), myosin-binding protein-C (m-MBP-C), and tropomyosin (m-Tm) during myogenesis in vitro. A monoclonal antibody (MAb) against m-MyHC and MAbs raised here against cat m-MBP-C and m-Tm were used to stain cryostat sections of cat masseter muscle and cultured myotubes derived from satellite cells of cat temporalis and limb muscles, using peroxidase immunohistochemistry. MAbs against m-MBP-C bound purified m-MBP-C in Western blots. MAbs against m-Tm failed to react with m-Tm in Western blots, but reacted with native m-Tm in gel electrophoresis-derived ELISA. In cat masseter sections, MAbs against m-MyHC, m-MBP-C, and m-Tm stained all masticatory fibers, but not the jaw-slow fibers. Cat jaw and limb muscle cultures mature significantly more slowly relative to rodent cultures. However, at 3 weeks, all three MAbs extensively stained temporalis myotubes, whereas they apparently stained isolated myotubes weakly in cat limb and rat jaw cultures. We conclude that satellite cells of masticatory fibers are preprogrammed to express these isoforms during myogenesis in vitro. These results consolidate the notion that masticatory and limb muscle allotypes are distinct.
Collapse
|
13
|
Dhoot GK, Perry SV. Expression of slow skeletal myosin binding C-protein in normal adult mammalian heart. J Muscle Res Cell Motil 2005; 26:143-8. [PMID: 16003462 DOI: 10.1007/s10974-005-3089-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 03/02/2005] [Indexed: 11/29/2022]
Abstract
Myosin binding C-protein exists in three main isoforms in striated muscle. While expression of cardiac muscle type C-protein is detected in skeletal muscle during early fetal development, there have not so far been any reports of the expression of the skeletal muscle isoforms of this protein in either developing or adult vertebrate heart. The present study demonstrates slow skeletal muscle type C-protein in moderate amount in right atrium and interatrial septum of adult human, rabbit, rat and bovine hearts using both immunocytochemical and immunoblotting procedures.
Collapse
Affiliation(s)
- Gurtej K Dhoot
- Department of Basic Sciences, The Royal Veterinary College, London, NW1 OTU, UK.
| | | |
Collapse
|
14
|
Abstract
Myosin binding protein-C (MyBP-C) is a thick filament–associated protein localized to the crossbridge-containing C zones of striated muscle sarcomeres. The cardiac isoform is composed of eight immunoglobulin I–like domains and three fibronectin 3–like domains and is known to be a physiological substrate of cAMP-dependent protein kinase. MyBP-C contributes to thick filament structure via interactions at its C-terminus with the light meromyosin section of the myosin rod and with titin. The protein also has a role in the regulation of contraction, due to the binding of its N-terminus to the subfragment-2 portion of myosin, which reduces actomyosin ATPase activity; phosphorylation abolishes this interaction, resulting in release of the “brake” on crossbridge cycling. Several structural models of the interaction of MyBP-C with myosin have been proposed, although its precise arrangement on the thick filament remains to be elucidated. Mutations in the gene encoding cardiac MyBP-C are a common cause of hypertrophic cardiomyopathy, and this has led to increased interest in the protein’s function. Investigation of disease-causing mutations in domains with unknown function has led to further insights into the mechanism of cMyBP-C action. This Review aims to collate the published data on those aspects of MyBP-C that are well characterized and to consider new and emerging data that further define its structural and regulatory roles and its arrangement in the sarcomere. We also speculate on the mechanisms by which hypertrophic cardiomyopathy–causing truncation and missense mutations affect the normal functioning of the sarcomere.
Collapse
Affiliation(s)
- Emily Flashman
- Department of Cardiovascular Medicine, University of Oxford, UK
| | | | | | | |
Collapse
|
15
|
Hoh JFY. `Superfast' or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. J Exp Biol 2002; 205:2203-10. [PMID: 12110654 DOI: 10.1242/jeb.205.15.2203] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
There are four fibre types in mammalian limb muscles, each expressing a different myosin isoform that finely tunes fibre mechanics and energetics for locomotion. Functional demands on jaw-closer muscles are complex and varied,and jaw muscles show considerable phylogenetic plasticity, with a repertoire for myosin expression that includes limb, developmental, α-cardiac and masticatory myosins. Masticatory myosin is a phylogenetically ancient motor with distinct light chains and heavy chains. It confers high maximal muscle force and power. It is highly jaw-specific in expression and is found in several orders of eutherian and marsupial mammals including carnivores,chiropterans, primates, dasyurids and diprotodonts. In exceptional species among these orders, masticatory myosin is replaced by some other isoform. Masticatory myosin is also found in reptiles and fish. It is postulated that masticatory myosin diverged early during gnathostome evolution and is expressed in primitive mammals. During mammalian evolution, mastication of food became important, and in some taxa jaw closers replaced masticatory myosin with α-cardiac, developmental, slow or fast limb myosins to adapt to the variety of diets and eating habits. This occurred early in some taxa(rodents, ungulates) and later in others (macropods, lesser panda, humans). The cellular basis for the uniqueness of jaw-closing muscles lies in their developmental origin.
Collapse
Affiliation(s)
- Joseph F Y Hoh
- Department of Physiology and Institute for Biomedical Research, F13, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
16
|
Bennett PM, Fürst DO, Gautel M. The C-protein (myosin binding protein C) family: regulators of contraction and sarcomere formation? Rev Physiol Biochem Pharmacol 1999; 138:203-34. [PMID: 10396142 DOI: 10.1007/bfb0119628] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- P M Bennett
- Randall Institute, King's College London, UK
| | | | | |
Collapse
|
17
|
Kurasawa M, Sato N, Matsuda A, Koshida S, Totsuka T, Obinata T. Differential expression of C-protein isoforms in developing and degenerating mouse striated muscles. Muscle Nerve 1999; 22:196-207. [PMID: 10024132 DOI: 10.1002/(sici)1097-4598(199902)22:2<196::aid-mus7>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the aim of clarifying the roles of C-protein isoforms in developing mammalian skeletal muscle, we cloned the complementary DNA (cDNAs) encoding mouse fast (F) and slow (S) skeletal muscle C-proteins and determined their entire sequences. Northern blotting with these cDNAs together with mouse cardiac (C) C-protein cDNA was performed. It revealed that in adult mice, C, F, and S isoforms are expressed in a tissue-specific fashion, although the messages for both F and S isoforms are transcribed in extensor digitorum longus muscle, which has been categorized as a fast muscle. In addition, although C isoform is expressed first and transiently during development of chicken skeletal muscles, C isoform is not expressed in mouse skeletal muscles at all through the developmental stages; S isoform is first expressed, followed by the appearance of F isoform. Finally, in dystrophic mouse skeletal muscles, the expression of S isoform is increased as it is in dystrophic chicken muscle. These observations suggest that mutations in C isoform (MyBP-C) do not lead to any disturbance in skeletal muscle, although they may lead to familial hypertrophic cardiomyopathy. We also suggest that the expression of S isoform may be stimulated in degenerating human dystrophic muscles.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins
- Cloning, Molecular
- DNA, Complementary/analysis
- Gene Expression Regulation, Developmental
- Humans
- Laminin/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Molecular Sequence Data
- Muscle Development
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins/genetics
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Myocardium/metabolism
- Protein Isoforms/genetics
- RNA, Messenger/biosynthesis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Kurasawa
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Bennett PM, Fürst DO, Gautel M. The C-protein (myosin binding protein C) family: Regulators of contraction and sarcomere formation? Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Alyonycheva TN, Mikawa T, Reinach FC, Fischman DA. Isoform-specific interaction of the myosin-binding proteins (MyBPs) with skeletal and cardiac myosin is a property of the C-terminal immunoglobulin domain. J Biol Chem 1997; 272:20866-72. [PMID: 9252413 DOI: 10.1074/jbc.272.33.20866] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Full-length cDNAs encoding chicken and human skeletal MyBP-H and MyBP-C have been isolated and sequenced (1-5). All are members of a protein family with repetitive immunoglobulin C2 and fibronectin type III motifs. The myosin binding domain was mapped to a single immunoglobulin motif in cardiac MyBP-C and skeletal MyBP-H. Limited alpha-chymotryptic digestion of cardiac MyBP-C generated three peptides, similar in relative mobility to those of skeletal MyBP-C: approximately 100, 40, and 15 kDa. Tryptic digestion of MyBP-H yielded two peptides: approximately 50 and 14 kDa. Partial amino acid sequences proved that the 15- and 14-kDa fragments are located at the C termini of cardiac MyBP-C and skeletal MyBP-H, respectively. Only the 14- and 15-kDa peptides bound to myosin. Thus, the myosin binding site in all three proteins resides within an homologous, C-terminal immunoglobulin domain. Binding reactions (2) between the skeletal and cardiac MyBPs and corresponding myosin isoforms demonstrated saturable binding of the MyBP proteins and their C-terminal peptides to myosin, but there are higher limiting stoichiometries with the homologous isoform partners. Evidence is presented indicating that MyBP-H and -C compete for binding to a discrete number of sites in myosin filaments.
Collapse
Affiliation(s)
- T N Alyonycheva
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
20
|
Alyonycheva T, Cohen-Gould L, Siewert C, Fischman DA, Mikawa T. Skeletal muscle-specific myosin binding protein-H is expressed in Purkinje fibers of the cardiac conduction system. Circ Res 1997; 80:665-72. [PMID: 9130447 DOI: 10.1161/01.res.80.5.665] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heart contraction is coordinated by conduction of electrical excitation through specialized tissues of the cardiac conduction system. By retroviral single-cell tagging and lineage analyses in the embryonic chicken heart, we have recently demonstrated that a subset of cardiac muscle cells terminally differentiates as cells of the peripheral conduction system (Purkinje fibers) and that this occurs invariably in perivascular regions of developing coronary arteries. Cis regulatory elements that function in transcriptional regulation of cells in the conducting system have been distinguished from those in contractile cardiac muscle cells; eg, 5' regulatory sequences of the desmin gene act as enhancer elements in skeletal muscle and in the conduction system but not in cardiac muscle. We hypothesize that Purkinje fiber differentiation involves a switch of the gene expression program from that characteristic of cardiac muscle to one typical of skeletal muscle. To test this hypothesis, we examined the expression of myosin binding protein-H (MyBP-H) in Purkinje fibers of chicken hearts. This unique myosin binding protein is present in skeletal but not cardiac myocytes. A site-directed polyclonal antibody (AB105) was generated against MyBP-H. Immunohistological analysis of the myocardium mapped the AB105 antigen predominantly to A bands of myofibrils within Purkinje fibers. Western blot analysis of whole extracts from the ventricular wall of adult chicken hearts revealed that the AB105 epitope was restricted to a single protein of approximately 86 kD, the same size as MyBP-H in skeletal muscle. Biochemical properties of the Purkinje fiber 86-kD protein and RNase protection analyses of its mRNA indicate that Purkinje fiber 86-kD protein is indistinguishable from skeletal muscle MyBP-H. The results provide evidence that skeletal muscle MyBP-H is expressed in a subset of cardiac muscle cells that differentiate into Purkinje fibers of the heart.
Collapse
Affiliation(s)
- T Alyonycheva
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
21
|
Yasuda M, Koshida S, Sato N, Obinata T. Complete primary structure of chicken cardiac C-protein (MyBP-C) and its expression in developing striated muscles. J Mol Cell Cardiol 1995; 27:2275-86. [PMID: 8576942 DOI: 10.1016/s0022-2828(95)91731-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
C-protein (MyBP-C) is a myosin binding protein of about 140 kDa which is known to modulate myosin assembly in striated muscles. A cardiac-type isoform of C-protein appears not only in cardiac muscle but also in skeletal muscle before skeletal muscle-type isoforms become detectable during myogenesis, suggesting that the cardiac isoform is involved in the early phase of myofibrillogenesis (Bähler et al., 1985; Kawashima et al., 1986). In this study, in order to understand the structure and functional domains of the cardiac-type C-protein, we cloned and sequenced full-length cDNAs encoding chicken cardiac C-protein from lambda gt11 cDNA libraries which were prepared with poly (A)+ RNA from embryonic chicken cardiac muscle as well as embryonic chicken skeletal muscle by using antibodies specific for cardiac C-protein. Two cDNA variants, probably generated by alternative RNA splicing and encoding different C-protein isoforms, were detected. As judged by the cDNA sequences determined, overall homology of the peptide sequence between cardiac and skeletal muscle C-proteins (Einheber et al., 1990; Fürst et al., 1992, Weber et al., 1994) was about 50-55%. Like other myosin binding proteins, skeletal C-proteins, 86 kDa protein and M-protein, cardiac C-protein contains several copies of fibronectin type III motifs and immunoglobulin C2 motifs in the molecule, but their number and arrangements differed somewhat from those in the other proteins. Northern blot analysis with the cloned cDNA as a probe demonstrated that mRNA of 5.0 kb is transcribed in both cardiac and embryonic skeletal muscle, and that it is specifically expressed in cardiac muscle among adult tissues.
Collapse
Affiliation(s)
- M Yasuda
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | |
Collapse
|
22
|
Weber FE, Vaughan KT, Reinach FC, Fischman DA. Complete sequence of human fast-type and slow-type muscle myosin-binding-protein C (MyBP-C). Differential expression, conserved domain structure and chromosome assignment. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:661-9. [PMID: 8375400 DOI: 10.1111/j.1432-1033.1993.tb18186.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myosin-binding-protein C (MyBP-C) is a myosin-associated protein of unknown function found in the cross-bridge-bearing zone (C region) of A bands in striated muscle. Using a cDNA clone encoding the fast-type isoform of chicken MyBP-C, we screened a human fetal muscle cDNA library and isolated clones encoding the full-length human fast-type isoform of MyBP-C. cDNA clones encoding the slow-type isoform of human MyBP-C, were also isolated and fully sequenced. Northern-blot analysis demonstrated skeletal muscle-specific expression of these gene products. Using human/hamster somatic-cell hybrids, we were able to map the slow-type MyBP-C to human chromosome 12, and the fast-type MyBP-C to chromosome 19. The cDNA for human fast-type MyBP-C encodes a polypeptide of 1142 amino acids with an expected molecular mass of 128.1 kDa. Comparison of this cDNA with other members of the MyBP family reveals extensive primary-sequence conservation. Each MyBP-C contains seven immunoglobulin C2 motifs and three fibronectin type-III repeats in the arrangement C2-C2-C2-C2-C2-III-III-C2-III-C2. Regions of high identity shared by the chicken and the two human proteins are not restricted to the immunoglobulin and fibronectin motifs. Sequence comparison of all three proteins has allowed us to map a highly conserved region between the first and second C2 motifs, the only large spacer sequence present between motifs in these proteins.
Collapse
Affiliation(s)
- F E Weber
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | | | | | |
Collapse
|
23
|
Abstract
The contractile proteins of skeletal muscle are often represented by families of very similar isoforms. Protein isoforms can result from the differential expression of multigene families or from multiple transcripts from a single gene via alternative splicing. In many cases the regulatory mechanisms that determine the accumulation of specific isoforms via alternative splicing or differential gene expression are being unraveled. However, the functional significance of expressing different proteins during muscle development remains a key issue that has not been resolved. It is widely believed that distinct isoforms within a family are uniquely adapted to muscles with different physiological properties, since separate isoform families are often coordinately regulated within functionally distinct muscle fiber types. It is also possible that different isoforms are functionally indistinguishable and represent an inherent genetic redundancy among critically important muscle proteins. The goal of this review is to assess the evidence that muscle proteins which exist as different isoforms in developing and mature skeletal and cardiac muscles are functionally unique. Since regulation of both transcription and alternative splicing within multigene families may also be an important factor determining the accumulation of specific protein isoforms, evidence that genetic regulation rather than protein coding information provides the functional basis of isoform diversity is also examined.
Collapse
Affiliation(s)
- E Bandman
- Department of Food Science and Technology, University of California, Davis 95616
| |
Collapse
|
24
|
Stromer MH. Immunocytochemical localization of proteins in striated muscle. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 142:61-144. [PMID: 1487396 DOI: 10.1016/s0074-7696(08)62075-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M H Stromer
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
25
|
Goldfine SM, Einheber S, Fischman DA. Cell-free incorporation of newly synthesized myosin subunits into thick myofilaments. J Muscle Res Cell Motil 1991; 12:161-70. [PMID: 2061410 DOI: 10.1007/bf01774035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although a substantial literature exists on the in vitro polymerization of purified myosin, little is known about native thick filament assembly, remodeling or turnover. We have recently described a cell-free system (Bouche et al., 1988) to examine the interactions between thick filaments and soluble, newly synthesized myofibrillar proteins. In the present manuscript we describe our studies on myosin heavy (MHC) and light chain (LC) incorporation into myofibrils or native and synthetic thick filaments. 35S-labeled myofibrillar proteins or myosin subunits were synthesized in a reticulocyte lysate translation system after which myofibrils or myofilaments were added and incubated with these proteins in the lysate. The added filaments were then sedimented and analyzed by SDS-PAGE and fluorography to establish which of the labeled protein subunits were co-pelleted. Operationally, this co-sedimentation of labeled proteins with myofilaments has been termed 'protein incorporation'. We observed that newly synthesized MHC, LCs 1, 2 and 3 all incorporated into the thick filaments. However, the quantity and specificity of LC incorporation depended upon the structure or composition of the filaments. LCs 1 and 3 were preferentially incorporated into myofibrils and native thick filaments, whereas LC2 was selectively taken up by synthetic filaments prepared from purified myosin. These results suggest that soluble MHCs and LCs interact independently with myofilaments. This hypothesis is supported by the observation that selective removal of soluble MHCs, or of a single LC, did not alter the incorporation of the remaining myosin subunits. Similarly, MHCs synthesized in the absence of LCs also incorporated into myofilaments or myofibrils. We propose that myosin subunits are capable of independent incorporation into and exchange from myofilaments.
Collapse
Affiliation(s)
- S M Goldfine
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | | | |
Collapse
|
26
|
Yamaguchi M, Ishiura S, Takano-Ohmuro H, Tsukahara T, Arahata K, Obinata T, Tamiya T, Tsuchiya T, Sugita H. Detection of a fast isoform of C-protein with an antiserum directed against the N-terminal portion of dystrophin. Biochem Biophys Res Commun 1990; 169:57-63. [PMID: 1693503 DOI: 10.1016/0006-291x(90)91432-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An antiserum raised against the N-terminal actin-binding portion of dystrophin cross-reacted with a 130-kDa protein in fast skeletal muscle. The results of purification and two-dimensional gel electrophoresis and its immunological properties demonstrated that this protein is identical to a 130-kDa basic isoform of fast-C-protein. These results suggest that the actin-binding domain of dystrophin shares one or more antigenic determinants with those of C-protein.
Collapse
Affiliation(s)
- M Yamaguchi
- Division of Neuromuscular Research, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 1990; 116:1-76. [PMID: 2149884 DOI: 10.1007/3540528806_3] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D Pette
- Fakultät für Biologie, Universität Konstanz, FRG
| | | |
Collapse
|
28
|
Takano-Ohmuro H, Goldfine SM, Kojima T, Obinata T, Fischman DA. Size and charge heterogeneity of C-protein isoforms in avian skeletal muscle. Expression of six different isoforms in chicken muscle. J Muscle Res Cell Motil 1989; 10:369-78. [PMID: 2592555 DOI: 10.1007/bf01758433] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C-protein is an abundant protein, of unknown function, found in the striated muscles of all vertebrates (Offer et al., 1973). Based on differences in size, charge, antigenicity and sarcomere distribution, at least three different isoforms of this protein have been identified (Callaway & Bechtel, 1981; Yamamoto & Moos, 1983; Reinach et al., 1982; Dhoot et al., 1985). These have been termed fast-, slow- and cardiac-type isoforms, relative to their distribution in adult striated muscles. Each of these isoforms appears to be expressed sequentially during the development of the chicken pectoralis muscle (Obinata et al., 1984; Obinata, 1985). To better characterize the various isoforms of C-protein, we have reexamined its in vivo expression during avian myogenesis using a combination of 1- and 2-dimensional gel electrophoresis, cell-free translation and immunoblotting procedures. In this manuscript we demonstrate for the first time that at least four major C-protein isoforms can be distinguished in adult chicken muscles. These include a fast-type isoform in the pectoralis (PECT) muscle (Cf), a slow-type isoform in the anterior latissimus dorsi (ALD) muscle (Cs3), a second slow-type isoform in the posterior latissimus dorsi (PLD) muscle (Cs4) and a cardiac-type in the ventricle (Cc). During embryonic development of the PECT muscle two additional isoforms can be resolved. These are both slow-type isoforms based on their reactivities with ALD66, a monoclonal antibody specific for adult slow-type C-protein. These latter isoforms have been termed Cs1 and Cs2. Several of the isoforms, particularly Cs1 ands Cs3, exhibit two or more spots of different charge but identical molecular weight on 2-D gels. This observation suggests the possibility that these isoforms are post-translationally modified and possibly phosphorylated. Our data show the C-protein family in avian striated muscles to be highly complex. Additional genetic analyses and primary sequence studies will be required to distinguish transcriptional from post-transcriptional variants.
Collapse
Affiliation(s)
- H Takano-Ohmuro
- Department of Cell Biology and Anatomy, Cornell University Medical College, N.Y. 10021
| | | | | | | | | |
Collapse
|
29
|
Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lømo T. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 1989; 10:197-205. [PMID: 2547831 DOI: 10.1007/bf01739810] [Citation(s) in RCA: 721] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian skeletal muscles consist of three main fibre types, type 1,2A and 2B fibres, with different myosin heavy chain (MHC) composition. We have now identified another fibre type, called type 2X fibre, characterized by a specific MHC isoform. Type 2X fibres, which are widely distributed in rat skeletal muscles, can be distinguished from 2A and 2B fibres by histochemical ATPase activity and by their unique staining pattern with seven anti-MHC monoclonal antibodies. The existence of the 2X-MHC isoform was confirmed by immunoblotting analysis using muscles containing 2X fibres as a major component, such as the normal and hyperthyroid diaphragm, and the soleus muscle after high frequency chronic stimulation. 2X-MHC contains one determinant common to 2B-MHC and another common to all type 2-MHCs, but lacks epitopes specific for 2A- and 2B-MHCs, as well as an epitope present on all other MHCs. By SDS-polyacrylamide gel electrophoresis 2X-MHC shows a lower mobility compared to 2B-MHC and appears to comigrate with 2A-MHC. Muscles containing predominantly 2X-MHC display a velocity of shortening intermediate between that of slow muscles and that of fast muscles composed predominantly of 2B fibres.
Collapse
Affiliation(s)
- S Schiaffino
- Institute of General Pathology, University of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dhoot GK. Identification and distribution of the fast class of troponin T in the adult and developing avian skeletal muscle. J Muscle Res Cell Motil 1988; 9:446-55. [PMID: 3063724 DOI: 10.1007/bf01774070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the adult chicken, two groups of fast troponin T, the higher molecular weight (B1 and B2) present only in the pectoral muscle and the lower molecular weight (L1-L5) the only group present in the leg muscle, were identified by the immunoblotting procedure using monoclonal antibodies against fast skeletal troponin T. The presence of significant amounts of three major variants of leg muscle type troponin T (L3-L5), however, could also be detected in the adult chicken pectoral muscle. Although none of the antibodies cross-reacted with slow troponin T itself, the proportions of both leg and pectoral type troponin T variants belonging to the fast class varied in fast muscles that contained slow muscle fibres or fast muscles devoid of slow muscle cells. The troponin T present in the early embryonic skeletal muscles did not react with any of the antibodies raised against adult fast isoforms. The gradual expression of some of the adult isoforms of troponin T was detected at about day 13 in ovo. However, the adult isoforms did not all appear simultaneously and their full complement was not achieved until after hatching. In addition to the increased number of bands in the leg type troponin T region, the presence of two other protein bands (neonatal forms) with slower electrophoretic mobility than the other fast isoforms of troponin T, was detected in post-hatch pectoral muscle tested at 1-12 weeks of age. These neonatal forms (N1 and N2) in the pectoral muscle were undetectable at eight months of age. The presence of breast type troponin T in the leg muscle was not detected with these antibodies at any stage of development.
Collapse
Affiliation(s)
- G K Dhoot
- Department of Immunology, Medical School, University of Birmingham, U.K
| |
Collapse
|
31
|
Schachat F, Williams RS, Schnurr CA. Coordinate changes in fast thin filament and Z-line protein expression in the early response to chronic stimulation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68170-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Schantz PG, Dhoot GK. Coexistence of slow and fast isoforms of contractile and regulatory proteins in human skeletal muscle fibres induced by endurance training. ACTA PHYSIOLOGICA SCANDINAVICA 1987; 131:147-54. [PMID: 2960127 DOI: 10.1111/j.1748-1716.1987.tb08216.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The distribution of fast and slow isoforms of troponin C, I, and T components and myosin heavy chains was investigated in histochemically typed myofibrillar ATPase intermediate (IM) fibres, that is, fibres that stain after both acid and alkaline preincubation in stainings for myofibrillar ATPase. In addition to the previously described IM fibres of types IIC and IB, fibres that displayed staining characteristics between types IIC and IB were observed and termed type IIC-IB. The IM fibres constitute less than 1% of the fibres in normal human limb and abdominal muscles. The IM fibres studied here resulted from extensive endurance training of human triceps brachii muscle (n = 6) and were induced by conversion of a proportion (13%) of type II fibres. The immunohistochemical stains of serial sections with antibodies to slow isoforms of troponin I, T, C and myosin heavy chain showed no staining of type II fibres but intense staining of types I and IB fibres, whereas type IIC fibres stained with intermediate intensity. The antibodies to fast isoforms of the troponin components and myosin heavy chain did not give rise to staining of type I fibres but dark staining of type II fibres. Type IB fibres stained with intermediate intensity and type IIC was either as dark as type II or slightly lighter. Type IIC-IB fibres showed staining intensities intermediate between those observed for types IB and IIC in the immunohistochemical stains. It is therefore concluded that training-induced myofibrillar ATPase intermediate human skeletal muscle fibres are characterized by the coexistence of slow and fast isoforms of contractile and regulatory proteins.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P G Schantz
- Department of Physiology III, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
33
|
Moore GE, Briggs MM, Schachat FH. Patterns of troponin T expression in mammalian fast, slow and promiscuous muscle fibres. J Muscle Res Cell Motil 1987; 8:13-22. [PMID: 3597761 DOI: 10.1007/bf01767260] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The distribution of troponin T (TnT) species in typed single muscle fibres was analysed using one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) and a monoclonal antibody specific for fast TnT. Fibres taken from erector spinae (Es), plantaris (Plt), diaphragm (Dia) and soleus (Sol) muscles of adult rabbits were pretyped as fast-twitch-glycolytic (FG), fast-twitch-oxidative-glycolytic (FOG), slow-twitch-oxidative (SO) or promiscuous (P) using a combination of histochemical staining and PAGE. Although none of the four size classes of TnT was either muscle or fibre type specific, their pattern of expression differed in each muscle and between the fibre types. FG fibres expressed TnT1f or TnT2f as predominant species, depending on the muscle; TnT3f and TnT4f were minor components. In contrast, all size classes of TnT were expressed in varying proportions in FOG fibres from Es and Plt, while those from Dia resembled FG fibres, expressing TnT1f as their major species. P fibres from Es, Plt, and Sol exhibited a distinctive pattern of fast TnT expression, TnT3f being the predominant species. Dia differed from the other muscles as TnT1f was the dominant fast TnT species in its P fibres as it is in the Dia fast fibres. Quantitative analysis of one- and two-dimensional gels revealed that the P fibres could be divided into two classes, those that exhibited discoordinate expression of fast and slow TnTs, myosin light chains and myosin heavy chains and those in which their expression was coordinate. In addition low levels of TnT4f were detected in SO fibres and of slow TnT in fast fibres.
Collapse
|
34
|
Chen WY, Dhoot GK, Perry SV. Characterization and fibre type distribution of a new myofibrillar protein of molecular weight 32 kDa. J Muscle Res Cell Motil 1986; 7:517-26. [PMID: 3805257 DOI: 10.1007/bf01753568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new basic protein of molecular weight 32 kDa has been isolated and purified to homogeneity from skeletal muscles rich in type I fibres. By the use of a specific monoclonal antibody, the protein has been shown to be present in all type I fibres and some type II fibres, the number of which varies with the muscle and the region of the muscle sectioned. A protein of similar properties could not be isolated from rabbit muscles consisting predominantly of type II fibres. By fluorescence microscopy, the protein has been shown to be located in the Z-disc from which the presence of divalent cations, probably calcium, facilitates its extraction at low ionic strength. The protein is unusual in that its distribution does not correlate completely with the known muscle fibre types and in that as yet there is no evidence for the presence of an isoform in those cells that do not stain with the specific antibody for the 32 kDa protein isolated from slow muscles.
Collapse
|
35
|
Dhoot GK, Dransfield I, Grand RJ, Perry SV. Distribution of isoforms of the myofibrillar proteins in myoid cells of thymus. J Muscle Res Cell Motil 1986; 7:351-60. [PMID: 2876006 DOI: 10.1007/bf01753656] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myoid cells of calf and rat thymus have been identified by staining with a monoclonal antibody to the heavy chain of myosin that is not isoform specific. Heterogeneity in the protein composition of myoid cells has been demonstrated by staining with antibodies to the skeletal muscle isoforms of the myosin heavy chain, C-protein and components of the troponin complex. The immunochemical studies suggest that the myoid cells contain proteins closely resembling if not identical with those present in the myofibrils of skeletal muscle. The slow and fast skeletal muscle isoforms of the myofibrillar proteins are present in a large proportion of the myoid cells. A fraction of the myoid cells contains only the fast isoforms of the myofibrillar proteins but there is no sharp compartmentalization of the isoforms as occurs in type 1 and type 2 fibres of skeletal muscle. In general the pattern of gene expression is similar to that of developing skeletal muscle.
Collapse
|
36
|
Dhoot GK. Selective synthesis and degradation of slow skeletal myosin heavy chains in developing muscle fibers. Muscle Nerve 1986; 9:155-64. [PMID: 3513007 DOI: 10.1002/mus.880090209] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During fetal development of fast skeletal muscles in the rat, three types of cells could be identified using a monoclonal antibody to slow skeletal muscle myosin heavy chain. Presumptive type I cells stained positive for slow forms of skeletal myosin heavy chain and a previously described protein of an apparent molecular weight of 100 KD, whereas presumptive type 2B cells did not stain for either of these peptides. Presumptive type 2A cells, on the other hand, did not stain for slow isoform of 100-K protein, but did stain positive for slow skeletal myosin heavy chain. There was a progressive suppression or degradation of slow skeletal myosin heavy chain in presumptive type 2A cells during subsequent fetal development, so that it was almost undetectable in most animals at birth. Soleus, a slow muscle, however, did not show clear differentiation into presumptive type I and type 2 cells until 4 days after birth.
Collapse
|