1
|
Zorov DB, Abramicheva PA, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT. Mitocentricity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:223-240. [PMID: 38622092 DOI: 10.1134/s0006297924020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Polina A Abramicheva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Vasily A Popkov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry S Semenovich
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elmira I Yakupova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis N Silachev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
2
|
Zorova LD, Pevzner IB, Khailova LS, Korshunova GA, Kovaleva MA, Kovalev LI, Serebryakova MV, Silachev DN, Sudakov RV, Zorov SD, Rokitskaya TI, Popkov VA, Plotnikov EY, Antonenko YN, Zorov DB. Mitochondrial ATP Synthase and Mild Uncoupling by Butyl Ester of Rhodamine 19, C4R1. Antioxidants (Basel) 2023; 12:antiox12030646. [PMID: 36978894 PMCID: PMC10044837 DOI: 10.3390/antiox12030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The homeostasis of the transmembrane potential of hydrogen ions in mitochondria is a prerequisite for the normal mitochondrial functioning. However, in different pathological conditions it is advisable to slightly reduce the membrane potential, while maintaining it at levels sufficient to produce ATP that will ensure the normal functioning of the cell. A number of chemical agents have been found to provide mild uncoupling; however, natural proteins residing in mitochondrial membrane can carry this mission, such as proteins from the UCP family, an adenine nucleotide translocator and a dicarboxylate carrier. In this study, we demonstrated that the butyl ester of rhodamine 19, C4R1, binds to the components of the mitochondrial ATP synthase complex due to electrostatic interaction and has a good uncoupling effect. The more hydrophobic derivative C12R1 binds poorly to mitochondria with less uncoupling activity. Mass spectrometry confirmed that C4R1 binds to the β-subunit of mitochondrial ATP synthase and based on molecular docking, a C4R1 binding model was constructed suggesting the binding site on the interface between the α- and β-subunits, close to the anionic amino acid residues of the β-subunit. The association of the uncoupling effect with binding suggests that the ATP synthase complex can provide induced uncoupling.
Collapse
Affiliation(s)
- Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Ljudmila S. Khailova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Galina A. Korshunova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina A. Kovaleva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Leonid I. Kovalev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina V. Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman V. Sudakov
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Savva D. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Tatyana I. Rokitskaya
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (Y.N.A.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Yuri N. Antonenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (E.Y.P.); (Y.N.A.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (Y.N.A.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
3
|
Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sci 2021; 11:brainsci11081050. [PMID: 34439669 PMCID: PMC8392724 DOI: 10.3390/brainsci11081050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
There has been an explosion of interest in the use of uncouplers of oxidative phosphorylation in mitochondria in the treatment of several pathologies, including neurological ones. In this review, we analyzed all the mechanisms associated with mitochondrial uncoupling and the metabolic and signaling cascades triggered by uncouplers. We provide a full set of positive and negative effects that should be taken into account when using uncouplers in experiments and clinical practice.
Collapse
|
4
|
Zorov DB, Andrianova NV, Babenko VA, Bakeeva LE, Zorov SD, Zorova LD, Pevsner IB, Popkov VA, Plotnikov EY, Silachev DN. Nonphosphorylating Oxidation in Mitochondria and Related Processes. BIOCHEMISTRY (MOSCOW) 2021; 85:1570-1577. [PMID: 33705295 DOI: 10.1134/s0006297920120093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism of oxidative phosphorylation and its regulation remain one of the main problems of bioenergetics. Efficiency of the mitochondrial energization is determined by the relationship between the rate of generation of electrochemical potential of hydrogen ions and the rate of its expenditure on the synthesis of ATP and the use of ATP in endergonic reactions. Uncoupling (partial or complete), which occurs in the process of uncontrolled and controlled leakage of ions through the inner mitochondrial membrane, on the one hand leads to the decrease in the relative synthesis of ATP, and on the other, being consistent with the law of conservation of energy, leads to the formation of heat, generation of which is an essential function of the organism. In addition to increased thermogenesis, the increase of non-phosphorylating oxidation of various substrates is accompanied by the decrease in transmembrane potential, production of reactive oxygen species, and activation of oxygen consumption, water and carbon dioxide production, increase in the level of intracellular ADP and acidification of the cytosol. In this analysis, each of these factors will be considered separately for its role in regulating metabolism.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - N V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - L E Bakeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - L D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - I B Pevsner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - V A Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - E Yu Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - D N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
5
|
Khailova LS, Vygodina TV, Lomakina GY, Kotova EA, Antonenko YN. Bicarbonate suppresses mitochondrial membrane depolarization induced by conventional uncouplers. Biochem Biophys Res Commun 2020; 530:29-34. [PMID: 32828301 DOI: 10.1016/j.bbrc.2020.06.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Bicarbonate has been known to modulate activities of various mitochondrial enzymes such as ATPase and soluble adenylyl cyclase. Here, we found that the ability of conventional protonophoric uncouplers, such as 2,4-dinitrophenol (DNP), carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), but not that of the new popular uncoupler BAM15, to decrease mitochondrial membrane potential was significantly diminished in the presence of millimolar concentrations of bicarbonate. Thus, the depolarizing activity of DNP and FCCP in mitochondria could be sensitive to the local concentration of bicarbonate in cells and tissues. However, bicarbonate could not restore the ATP synthesis suppressed by DNP or CCCP in mitochondria. Bicarbonate neither altered the depolarizing action of DNP and FCCP on proteoliposomes with reconstituted cytochrome c oxidase, nor affected the protonophoric activity of DNP and FCCP in artificial lipid membranes as measured with pyranine-loaded liposomes, thereby showing that the bicarbonate-induced reversal of the depolarizing action of DNP and FCCP on mitochondria did not result from direct interaction of bicarbonate with the uncouplers.
Collapse
Affiliation(s)
- Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia
| | - Tatyana V Vygodina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia
| | - Galina Y Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia; Bauman Moscow State Technical University, Baumanskaya 2-ya, 5/1, Moscow, 105005, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Flachner B, Varga A, Szabó J, Barna L, Hajdú I, Gyimesi G, Závodszky P, Vas M. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase. Biochemistry 2006; 44:16853-65. [PMID: 16363799 DOI: 10.1021/bi051726g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Phosphoglycerate kinase (PGK) is a two-domain hinge-bending enzyme. It is still unclear how the geometry of the active site is formed during domain closure and how the catalytic residues are brought into the optimal position for the reaction. Comparison of the three-dimensional structures in various open and closed conformations suggests a large (10 A) movement of Lys 215 during domain closure. This change would be required for direct participation of this side chain in both the catalyzed phospho transfer and the special anion-caused activation. To test the multiple roles of Lys 215, two mutants (K215A and K215R) were constructed from human PGK and characterized in enzyme kinetic and substrate binding studies. For comparison, mutants (R38A and R38K) of the known essential residue, Arg 38, were also produced. Drastic decreases (1500- and 500-fold, respectively), as in the case of R38A, were observed in the kcat values of mutants K215A and K215R, approving the essential catalytic role of Lys 215. In contrast, the R38K mutation caused an only 1.5-fold decrease in activity. This emphasizes the importance of a very precise positioning of Lys 215 in the active site, in addition to its positive charge. The side chain of Lys 215 is also responsible for the substrate and anion-dependent activation, since these properties are abolished upon mutation. Among the kinetic constants mainly the Km values of MgATP and 1,3-BPG are increased (approximately 20- and approximately 8-fold, respectively) in the case of the neutral K215A mutant, evidence of the interaction of Lys 215 with the transferring phospho group in the functioning complex. Weakening of MgATP binding (a moderate increase in Kd), but not of MgADP binding, upon mutation indicates an initial weak interaction of Lys 215 with the gamma-phosphate already in the nonfunctioning open conformation. Thus, during domain closure, Lys 215 possibly moves together with the transferring phosphate; meanwhile, this group is being positioned properly for catalysis.
Collapse
Affiliation(s)
- Beáta Flachner
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, P.O. Box 7, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lodeyro AF, Calcaterra NB, Roveri OA. Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:236-43. [PMID: 11779557 DOI: 10.1016/s0005-2728(01)00221-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.
Collapse
Affiliation(s)
- A F Lodeyro
- Departamento de Química Biológica, Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | | | | |
Collapse
|
8
|
|
9
|
Hartog AF, Edel CM, Braham J, Muijsers AO, Berden JA. FSBA modifies both alpha- and beta-subunits of F1 specifically and can be bound together with AXP at the same alpha-subunit. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1318:107-22. [PMID: 9030259 DOI: 10.1016/s0005-2728(96)00110-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Binding of 1 mole 5'-fluorosulfonylbenzoyladenosine (FSBA) per mol F1 induces about 50% inhibition of ATPase activity and 80% inhibition of ITPase activity. The binding of additional ligand results in a further inhibition of both activities. Maximally 5 mol/mol F1, causing complete inhibition of activity, can be bound. Using radioactive FSBA more label is found on alpha-subunits than on beta-subunits under the usual buffer conditions. The modified amino acids are alpha-Tyr300, alpha-Tyr244 and beta-Tyr368. Binding of FSBA, at least up to 3 mol/mol F1, does not result in loss of bound ADP, whether the starting enzyme contains 2, 3 or 4 bound nucleotides. Added adenine nucleotides compete with FSBA only for binding that results in modification of beta-subunits, shifting the alpha/beta ratio of bound label to higher values. It is concluded that the alpha-subunits contain two hydrophobic pockets for the binding of nucleoside moieties, with a different orientation relative to the P-loop. One pocket contains alpha-Tyr244 and alpha-Tyr300, the other beta-Tyr368. Since, however, in the binding of adenine nucleotide di- or triphosphates the P-loop is involved, only one of these ligands can bind per subunit. The previously not understood binding characteristics of several substrate analogues have now become interpretable on the assumption that also the structurally homologous beta-subunits contain 2 pockets where nucleoside moieties can bind. The kinetic effects of FSBA binding indicate that the first FSBA binds at the regulatory site that has a high affinity for ADP and pyrophosphate. Binding of pyrophosphate at this high-affinity regulatory site increases the Vmax of the enzyme, while binding at a second regulatory site, a low-affinity site, increases the rate of binding of FSBA with a factor of about 3. Binding of bicarbonate at this latter site is responsible for the disappearance of the apparent negative cooperativity of the ATPase activity.
Collapse
Affiliation(s)
- A F Hartog
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Jault JM, Dou C, Grodsky NB, Matsui T, Yoshida M, Allison WS. The alpha3beta3gamma subcomplex of the F1-ATPase from the thermophilic bacillus PS3 with the betaT165S substitution does not entrap inhibitory MgADP in a catalytic site during turnover. J Biol Chem 1996; 271:28818-24. [PMID: 8910526 DOI: 10.1074/jbc.271.46.28818] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hydrolytic properties of the mutant alpha3(betaT165S)3gamma and wild-type alpha3beta3gamma subcomplexes of TF1 have been compared. Whereas the wild-type complex hydrolyzes 50 microM ATP in three kinetic phases, the mutant complex hydrolyzes 50 microM ATP with a linear rate. After incubation with a slight excess of ADP in the presence of Mg2+, the wild-type complex hydrolyzes 2 mM ATP with a long lag. In contrast, prior incubation of the mutant complex under these conditions does not affect the kinetics of ATP hydrolysis. The ATPase activity of the wild-type complex is stimulated 4-fold by 0. 1% lauryl dimethylamine oxide, whereas this concentration of lauryl dimethylamine oxide inhibits the mutant complex by 25%. Compared with the wild-type complex, the activity of the mutant complex is much less sensitive to turnover-dependent inhibition by azide. This comparison suggests that the mutant complex does not entrap substantial inhibitory MgADP in a catalytic site during turnover, which is supported by the following observations. ATP hydrolysis catalyzed by the wild-type complex is progressively inhibited by increasing concentrations of Mg2+ in the assay medium, whereas the mutant complex is insensitive to increasing concentrations of Mg2+. A Lineweaver-Burk plot constructed from rates of hydrolysis of 20-2000 microM ATP by the wild-type complex is biphasic, exhibiting apparent Km values of 30 microM and 470 microM with corresponding kcat values of 26 and 77 s-1. In contrast, a Lineweaver-Burk plot for the mutant complex is linear in this range of ATP concentration, displaying a Km of 133 microM and a kcat of 360 s-1.
Collapse
Affiliation(s)
- J M Jault
- Department of Chemistry and Biochemistry, School of Medicine, University of California at San Diego, La Jolla, California 92093-0601, USA.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Catalytic cooperativity in the Ca2+-dependent ATPase activity of spinach chloroplast coupling factor (CF1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90153-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Jault J, Divita G, Allison W, Di Pietro A. Glutamine 170 to tyrosine substitution in yeast mitochondrial F1 beta-subunit increases catalytic site interaction with GDP and IDP and produces negative cooperativity of GTP and ITP hydrolysis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36848-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Uyemura SA, Curti C. Steady-state kinetic properties of FoF1-ATPase: the pH effect. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1743-8. [PMID: 1451910 DOI: 10.1016/0020-711x(92)90123-i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The kinetic properties of FoF1-ATPase from submitochondrial particles isolated from rat heart were studied, with emphasis to the pH effect. The velocity data were treated according to the Hill equation, and the results were discussed on the basis of the knowledge on the soluble F1-ATPase properties. 2. Three kinetic phases were observed in the range of pH 6.0-8.5, with apparent dissociation constant values (K0.5) of 0.001, 0.04 and 1.5 mM (respectively sites I, II and III) at pH 7.0. Their contribution to the total activity of the enzyme were pH-dependent on the range of 6.0-7.0, but not from 7.0 to 8.5, where the maximal velocity (V) for site III was some 4-fold larger than for site II, and the total V of sites II and III was some 40-fold larger than V assumed for site I. Therefore, two catalytic sites seem to participate significantly in the catalysis at steady-state condition. 3. Azide increased the sites II and III K0.5 values as well as decreased the site III V. In the presence of bicarbonate these two sites were not distinguishable, and the kinetic parameters at pH 7.0 were similar to those for sites II and III combined. Both azide and bicarbonate did not have a significant effect on site I, and this behavior was not pH-dependent. 4. The studies on the effect of pH on the kinetic parameters showed the following results: (1) the optimum pH for V was around 8.5; (2) decrease in the K0.5 values at pH below 7.0 for site II, and increase at pH over 7.0 for sites II and III; (3) in the pH range of 6.0-8.5 the Hill coefficient increased for site II, decreased for site III, and an intermediary effect was observed for the sites II and III combined, with a Michaelis-Menten behavior in the highest affinity pH, which was found in the physiological range.
Collapse
Affiliation(s)
- S A Uyemura
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas-USP, Ribeirão Preto, Brazil
| | | |
Collapse
|
15
|
Cross RL. Chapter 13 The reaction mechanism of F0F1ATP synthases. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
16
|
Bullough DA, Zhuo SQ, Allison WS. Separate beta subunits are derivatized with 14C and 3H when the bovine heart mitochondrial F1-ATPase is doubly labeled with 7-chloro-4-nitro[14C]benzofurazan and 5'-p-fluorosulfonylbenzoyl[3H]inosine. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1057:208-14. [PMID: 1826610 DOI: 10.1016/s0005-2728(05)80103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine residues 311 and 345 of the beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) are present on the same peptide when the enzyme is fragmented with cyanogen bromide. Maximal inactivation of MF1 with 7-chloro-4-nitro[14C]benzofurazan [( 14C]Nbf-Cl) derivatizes tyrosine-311 in a single beta subunit. Cyanogen bromide digests of MF1 containing the [14C]Nbf-O-derivative of tyrosine-beta 311 were submitted to reversed-phase HPLC, with and without prior reduction of the nitro group on the incorporated reagent with dithionite. The retention time of the radioactive cyanogen bromide peptide was shifted substantially by reduction. When a cyanogen bromide digest of MF1 inactivated with 5'-p-fluorosulfonylbenzoyl[3H]inosine [( 3H]FSBI), which proceeds with derivatization of tyrosine-345 in a single beta subunit, was submitted to HPLC under the same conditions, the fragment labeled with 3H eluted with the same retention time as the [14C]Nbf-O-derivative before reduction. Doubly labeled enzyme was prepared by first derivatizing Tyr-beta 311 with [14C]Nbf-Cl and then derivatizing tyrosine-beta 345 with [3H]FSBI with and without reducing the [14C]Nbf-O-derivative of tyrosine-beta 311 with dithionite before modification with [3H]FSBI. The doubly labeled enzyme preparations were digested with cyanogen bromide and submitted to HPLC. The 14C and 3H in the cyanogen bromide digest prepared from doubly labeled enzyme not submitted to reduction eluted together. In contrast, the 14C and 3H in the digest prepared from doubly labeled enzyme which had been reduced eluted separately. From these results it is concluded that different beta subunits are derivatized when MF1 is doubly labeled with [14C]Nbf-Cl and [3H]FSBI.
Collapse
Affiliation(s)
- D A Bullough
- Department of Chemistry, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
17
|
Studies on the mechanism of oxidative phosphorylation. ADP promotion of GDP phosphorylation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30505-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Bizouarn T, Phung-Nhu-Hung S, Haraux F, de Kouchkovsky Y. Ionic composition of the medium, surface potential and affinity of the membrane-bound chloroplast ATPase for its charged substrate ADP. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0302-4598(90)85023-b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ionic composition of the medium, surface potential and affinity of the membrane-bound chloroplast ATPase for its charged substrate ADP. J Electroanal Chem (Lausanne) 1990. [DOI: 10.1016/0022-0728(90)87521-k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Guerrero KJ, Xue ZX, Boyer PD. Active/Inactive state transitions of the chloroplast F1 ATPase are induced by a slow binding and release of Mg2+. Relationship to catalysis and control of F1 ATPases. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46219-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Harris DA. Azide as a probe of co-operative interactions in the mitochondrial F1-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:156-62. [PMID: 2523739 DOI: 10.1016/s0005-2728(89)80368-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
(1) The hydrolytic activity of the isolated mitochondrial ATPase (F1) is strongly inhibited by azide. However, at very low ATP concentration (1 microM or less), no inhibition by azide is observed. (2) The azide-insensitive ATPase activity represents a high-affinity, low-capacity mode of turnover of F1. This is identified with the low Km, low Vmax component seen in steady-state kinetic studies in the absence of azide. (3) The azide-insensitive ATPase activity shows simple Michaelis-Menten kinetics, with Km = 3.2 microM, and Vmax = 1.1 mumol/min per mg (6 s-1). It is unaffected by anions such as sulphite, or by increasing pH in the range 7 to 8, both of which stimulate the maximal activity of F1. (4) Both the azide-insensitive and azide-sensitive components of F1-ATPase activity are equally inhibited by labelling the enzyme with 7-chloro-4-nitrobenzofurazan, by binding the natural inhibitor protein, or by cold denaturation of the enzyme. (5) It is concluded that azide-insensitive ATP hydrolysis represents catalysis by F1 involving a single catalytic site, and that azide acts by abolishing intersubunit cooperativity between the three catalytic sites of F1. Azide-sensitivity is thus a useful probe for events which affect the active site of F1 directly.
Collapse
Affiliation(s)
- D A Harris
- Department of Biochemistry, University of Oxford, U.K
| |
Collapse
|
22
|
Photophosphorylation at variable ADP concentration but constant ΔpH in lettuce thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80170-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Bullough DA, Brown EL, Saario JD, Allison WS. On the location and function of the noncatalytic sites on the bovine heart mitochondrial F1-ATPase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68183-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Smith RG. Inorganic carbon transport in biological systems. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1988; 90:639-54. [PMID: 2854763 DOI: 10.1016/0305-0491(88)90319-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The flux of inorganic carbon (Ci) is an important biological process. 2. CO2 crosses membranes through passive diffusion and, perhaps active transport while HCO3- crosses membranes via facilitated diffusion and active transport mechanisms. 3. Carbonic anhydrase is ubiquitous and enhances the flux of Ci. 4. Generally, Ci crosses membranes through passive and facilitated diffusion when the flux of Ci, per se, is important and crosses membranes via active transport when cells are regulating their intracellular pH and/or ion levels.
Collapse
Affiliation(s)
- R G Smith
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
25
|
Abstract
This review is focused on some functional characteristics of the chloroplast coupling factor. The structure of the enzyme and the putative role of its subunits are recalled. An attempt is made to discriminate the driving force and the activator effects of the electrochemical proton gradient. Respective roles of delta pH, delta phi, external and internal pH are discussed with regard to mechanistic implications. The hypothesis of a functional switch of the enzyme between two states with better efficiency either in ATP synthesis or in ATP hydrolysis is also examined. A brief survey is made on some problems complicating quantitative studies of energy coupling, such as localized chemiosmosis, delta pH and delta phi computations, and scalar ATPases. The main data on the enzyme activation and the energy-dependent release of tightly bound nucleotides are summarized. The arguments for and against the catalytic competence of theses nucleotides are reviewed. Lastly, some prevailing models of the catalytic mechanism are presented. The relevance of nucleotides binding change events in this process is discussed.
Collapse
|
26
|
Abstract
The kinetic behaviour of the ATPase activity of beef heart F1 depends largely on the exposure of the enzyme to some anionic ligands such as sulphate and/or EDTA. F1 prepared in the presence of such anions exhibited a triphasic kinetic pattern whereas F1 from which those anions were removed by dialysis exhibited only two Km values for ATP. Conversely to what has been previously reported, bicarbonate did not linearize F1-ATPase kinetics. Moreover, anion activation cannot be simply explained by promotion of ADP release but mainly by an increase in affinity of the third catalytic site for ATP.
Collapse
|