1
|
Bernocco S, Fondelli C, Matteoni S, Magnoni L, Gotta S, Terstappen GC, Raggiaschi R. Sequential detergent fractionation of primary neurons for proteomics studies. Proteomics 2008; 8:930-8. [DOI: 10.1002/pmic.200700738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Pohl T, Bauer T, Dörner K, Stolpe S, Sell P, Zocher G, Friedrich T. Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer. Biochemistry 2007; 46:6588-96. [PMID: 17489563 DOI: 10.1021/bi700371c] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli is composed of 13 subunits called NuoA through NuoN. It catalyzes the electron transfer from NADH to ubiquinone by a chain of redox groups consisting of one FMN and seven iron-sulfur clusters. The function of the additional, nonconserved cluster N7 located on NuoG is not known. It has been speculated that it is not involved in electron transfer, due to its distance of more than 20 A from the electron transfer chain. Dithionite-reduced minus NADH-reduced EPR difference spectra of complex I and of a soluble fragment containing NuoG revealed for the first time the EPR spectrum of N7 in the complex. Individual mutation of the cysteines ligating this cluster to alanine led to a decreased amount of complex I in the membrane without affecting the electron transfer activity. Sucrose gradient centrifugation revealed that the complex from the C230A and C233A mutants decayed in detergent solution while the C237A and C265A mutant complex was stable. Cluster N7 was detectable in the latter mutants but with shifted g-values, indicating a different ligation of N7. Thus, N7 is essential for the stability of the complex but is not involved in electron transfer.
Collapse
Affiliation(s)
- Thomas Pohl
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Chemiehochhaus, D-79104 Freiburg i. Br., Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Kervinen M, Pätsi J, Finel M, Hassinen IE. A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry 2004; 43:773-81. [PMID: 14730982 DOI: 10.1021/bi0355903] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ND4L subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) is an integral membrane protein that contains two highly conserved glutamates within putative trans-membrane helices. We employed complex I from Escherichia coli (NDH-1) to study the role of these residues by site-directed mutagenesis. The conserved glutamates of the NuoK subunit, E36 and E72, were replaced by either Asp or Gln residues, and the effects of the mutations on cell growth and catalysis of electron transfer from deamino-NADH to ubiquinone analogues were examined. Additional mutants that carried acidic residues at selected positions within this domain were also prepared and analyzed. The results indicated that two closely located membrane-embedded acidic residues in NuoK are essential for high rates of ubiquinone reduction, a prerequisite for the growth of cytochrome bo-deficient E. coli cells on malate as the main carbon source. The two acidic residues do not have to be on adjacent helices, and mutual location on the same helix, either helix 2 or 3, at an interval of three amino acids (about one turn of the putative helix), resulted in high activity and good growth phenotypes. Nevertheless, shifting only one of them, either E36 or E72, toward the periplasmic side of the membrane by about one turn of the helix severely hampered activity and growth, whereas moving both acidic residues together to that deeper membrane position stimulated the ubiquinone reductase activity of the enzyme but not cell growth on malate, suggesting impaired energy conservation in this mutant.
Collapse
Affiliation(s)
- Marko Kervinen
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
4
|
Zickermann V, Barquera B, Wikström M, Finel M. Analysis of the pathogenic human mitochondrial mutation ND1/3460, and mutations of strictly conserved residues in its vicinity, using the bacterium Paracoccus denitrificans. Biochemistry 1998; 37:11792-6. [PMID: 9718301 DOI: 10.1021/bi9810555] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human mitochondrial ND1/3460 mutation changes Ala52 to Thr in the ND1 subunit of Complex I, and causes Leber's hereditary optic neuropathy (LHON) [Huoponen et al. (1991) Am. J. Hum. Genet. 48, 1147]. We have used a bacterial counterpart of Complex I, NDH-1 from Paracoccus denitrificans, for studying the effect of mutations in the ND1 subunit on the enzymatic activity. The LHON mutation as well as several other mutations in strictly conserved amino acids in its vicinity were introduced into the NQO8 subunit of NDH-1, a bacterial homologue of ND1. The enzymatic activity of the mutants in the presence of hexammineruthenium (rotenone-insensitive) and ubiquinone-1 (rotenone-sensitive) were assayed. In addition, the kinetics of the interaction of selected mutant enzymes with ubiquinone-1, ubiquinone-2, and decylubiquinone was studied. The results suggest that the mutated residues play an important role in ubiquinone reduction by Complex I.
Collapse
Affiliation(s)
- V Zickermann
- Helsinki Bioenergetics Group, Department of Medical Chemistry, University of Helskinki, Finland
| | | | | | | |
Collapse
|
5
|
Lunardi J, Darrouzet E, Dupuis A, Issartel JP. The nuoM arg368his mutation in NADH:ubiquinone oxidoreductase from Rhodobacter capsulatus: a model for the human nd4-11778 mtDNA mutation associated with Leber's hereditary optic neuropathy. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:114-24. [PMID: 9685604 DOI: 10.1016/s0925-4439(98)00036-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutation at position 11778 in the nd4 gene of the human mitochondrial complex I is associated with Leber's hereditary optic neuropathy. Type I NADH:ubiquinone oxidoreductase of Rhodobacter capsulatus displays similar properties to complex I of the mitochondrial respiratory chain. The NUOM subunit of the bacterial enzyme is homologous to the ND4 subunit. Disruption of the nuoM gene led to a bacterial mutant exhibiting a defect in complex I activity and assembly. A nuoM-1103 point mutant reproducing the nd4-11778 mutation has been introduced in the R. capsulatus genome. This mutant showed a reduced ability to grow in a medium containing malate instead of lactate which indicated a clear impairment in oxidative phosphorylation capacity. NADH supported respiration of porous bacterial cells was significantly decreased in the nuoM-1103 mutant while no significant reduction could be observed in isolated bacterial membranes. As it has been observed in the case of the nd4-11778 mitochondrial mutation, proton-pump activity of the bacterial enzyme was not affected by the nuoM-1103 mutation. All these data which reproduce most of the biochemical features observed in patient mitochondria harboring the nd4-11778 mutation show that the R. capsulatus complex I might be used as a useful model to investigate mutations of the mitochondrial DNA which are associated with complex I deficiencies in human pathologies.
Collapse
Affiliation(s)
- J Lunardi
- Laboratoire de BioEnergétique Cellulaire et Pathologique, LRA-EA 2019 UJF, DBMS, CEA, 17 rue des martyrs, 38054 Grenoble, Cedex 9, France.
| | | | | | | |
Collapse
|
6
|
Abstract
Structurally diverse synthetic insecticides and acaricides had been shown to inhibit the proton-translocating NADH:ubiquinone oxidoreductase (complex I) activity. In addition, secondary metabolites from microbial and plant sources known to act on complex I exhibited biological activity against agricultural and environmental insect pests. Mechanistic studies indicated that these compounds interfered with ubiquinone reduction most likely at the same site(s) as the classical complex I inhibitors rotenone and piericidin A. Two approaches to characterize the mechanism of insecticidal/acaricidal complex I inhibitors were followed: enzyme kinetic studies and binding studies with radiolabeled inhibitors. Enzyme kinetic experiments were sometimes controversially interpreted regarding a competitive or non-competitive inhibitor mechanism with respect to the electron acceptor. In general, radioligand binding data with submitochondrial membranes were in line with the enzymological results but due to methodological drawbacks, saturation kinetic analyses were impossible. The main problems underlying many studies of inhibitor interaction with complex I were (i) the use of membrane-bound enzyme preparations and (ii) the physicochemical properties of the amphiphilic inhibitors with their strong tendency to accumulate in the membrane phase. A more recent approach to characterize inhbibitor interaction sites in complex I was the isolation of piericidin-resistant mutants of photosynthetic bacteria which produce a simpler homologue of mitochondrial NADH:Q oxidoreductase.
Collapse
Affiliation(s)
- P Lümmen
- Hoechst Schering AgrEvo, D-65926 Frankfurt/Main, Germany.
| |
Collapse
|
7
|
Abstract
NADH-quinone 1 oxidoreductase (Complex I) isolated from bovine heart mitochondria was, until recently, the major source for the study of this most complicated energy transducing device in the mitochondrial respiratory chain. Complex I has been shown to contain 43 subunits and possesses a molecular mass of about 1 million. Recently, Complex I genes have been cloned and sequenced from several bacterial sources including Escherichia coli, Paracoccus denitrificans, Rhodobacter capsulatus and Thermus thermophilus HB-8. These enzymes are less complicated than the bovine enzyme, containing a core of 13 or 14 subunits homologous to the bovine heart Complex I. From this data, important clues concerning the subunit location of both the substrate binding site and intrinsic redox centers have been gleaned. Powerful molecular genetic approaches used in these bacterial systems can identify structure/function relationships concerning the redox components of Complex I. Site-directed mutants at the level of bacterial chromosomes and over-expression and purification of single subunits have allowed detailed analysis of the amino acid residues involved in ligand binding to several iron-sulfur clusters. Therefore, it has become possible to examine which subunits contain individual iron-sulfur clusters, their location within the enzyme and what their ligand residues are. The discovery of g=2.00 EPR signals arising from two distinct species of semiquinone (SQ) in the activated bovine heart submitochondrial particles (SMP) is another line of recent progress. The intensity of semiquinone signals is sensitive to DeltamicroH+ and is diminished by specific inhibitors of Complex I. To date, semiquinones similar to those reported for the bovine heart mitochondrial Complex I have not yet been discovered in the bacterial systems. This mini-review describes three aspects of the recent progress in the study of the redox components of Complex I: (A) the location of the substrate (NADH) binding site, flavin, and most of the iron-sulfur clusters, which have been identified in the hydrophilic electron entry domain of Complex I; (B) experimental evidence indicating that the cluster N2 is located in the amphipathic domain of Complex I, connecting the promontory and membrane parts. Very recent data is also presented suggesting that the cluster N2 may have a unique ligand structure with an atypical cluster-ligation sequence motif located in the NuoB (NQO6/PSST) subunit rather than in the long advocated NuoI (NQO9/TYKY) subunit. The latter subunit contains the most primordial sequence motif for two tetranuclear clusters; (C) the discovery of spin-spin interactions between cluster N2 and two distinct Complex I-associated species of semiquinone. Based on the splitting of the g1 signal of the cluster N2 and concomitant strong enhancement of the semiquinone spin relaxation, one semiquinone species was localized 8-11 A from the cluster N2 within the inner membrane on the matrix side (N-side). Spin relaxation of the other semiquinone species is much less enhanced, and thus it was proposed to have a longer distance from the cluster N2, perhaps located closer to the other side (P-side) surface of the membrane. A brief introduction of EPR technique was also described in Appendix A of this mini-review.
Collapse
Affiliation(s)
- T Ohnishi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, and the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Abstract
Respiratory chain complex I is a complicated enzyme of mitochondria, that couples electron transfer from NADH to ubiquinone to the proton translocation across the inner membrane of the organelle. The fungus Neurospora crassa has been used as one of the main model organisms to study this enzyme. Complex I is composed of multiple polypeptide subunits of dual genetic origin and contains several prosthetic groups involved in its activity. Most subunits have been cloned and those binding redox centres have been identified. Yet, the functional role of certain complex I proteins remains unknown. Insight into the possible origin and the mechanisms of complex I assembly has been gained. Several mutant strains of N. crassa, in which specific subunits of complex I were disrupted, have been isolated and characterised. This review concerns many aspects of the structure, function and biogenesis of complex I that are being elucidated.
Collapse
Affiliation(s)
- A Videira
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
9
|
Dupuis A, Darrouzet E, Duborjal H, Pierrard B, Chevallet M, van Belzen R, Albracht SP, Lunardi J. Distal genes of the nuo operon of Rhodobacter capsulatus equivalent to the mitochondrial ND subunits are all essential for the biogenesis of the respiratory NADH-ubiquinone oxidoreductase. Mol Microbiol 1998; 28:531-41. [PMID: 9632256 DOI: 10.1046/j.1365-2958.1998.00814.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven out of the 13 proteins encoded by the mitochondrial genome of mammals (peptides ND1 to ND6 plus ND4L) are subunits of the respiratory NADH-ubiquinone oxidoreductase (complex I). The function of these ND subunits is still poorly understood. We have used the NADH-ubiquinone oxidoreductase of Rhodobacter capsulatus as a model for the study of the function of these proteins. In this bacterium, the 14 genes encoding the NADH-ubiquinone oxidoreductase are clustered in the nuo operon. We report here on the biochemical and spectroscopic characterization of mutants individually disrupted in five nuo genes, equivalent to mitochondrial genes nd1, nd2, nd5, nd6 and nd4L. Disruption of any of these genes in R. capsulatus leads to the suppression of NADH dehydrogenase activity at the level of the bacterial membranes and to the disappearance of complex I-associated iron-sulphur clusters. Individual NUO subunits can still be immunodetected in the membranes of these mutants, but they do not form a functional subcomplex. In contrast to these observations, disruption of two ORFs (orf6 and orf7), also present in the distal part of the nuo operon, does not suppress NADH dehydrogenase activity or complex I-associated EPR signals, thus demonstrating that these ORFs are not essential for the biosynthesis of complex I.
Collapse
Affiliation(s)
- A Dupuis
- Laboratoire de BioEnergétique Cellulaire et Pathologique, EA 2019 UJF, DBMS, CEA, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Braun M, Bungert S, Friedrich T. Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry 1998; 37:1861-7. [PMID: 9485311 DOI: 10.1021/bi971176p] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase of Escherichia coli is composed of 14 different subunits and contains one FMN and up to nine iron-sulfur clusters as prosthetic groups. By use of salt treatment, the complex can be split into an NADH dehydrogenase fragment, a connecting fragment and a membrane fragment. The water-soluble NADH dehydrogenase fragment has a molecular mass of approximately 170,000 Da and consists of the subunits NuoE, F, and G. The fragment harbors the FMN and probably six iron-sulfur clusters, four of them being observable by EPR spectroscopy. Here, we report that the fully assembled fragment can be overproduced in E. coli when the genes nuoE, F, and G were simultaneously overexpressed with the genes nuoB, C, and D. Furthermore, riboflavin, sodium sulfide, and ferric ammonium citrate have to be added to the culture medium. The fragment was purified from the cytoplasm by means of ammonium sulfate fractionation and chromatographic steps. The preparation contains one noncovalently bound FMN per molecule. Two binuclear (N1b and N1c) and two tetranuclear (N3 and N4) iron-sulfur clusters were detected by EPR in the NADH reduced preparation with spectral characteristics identical with those of the corresponding clusters in complex I. The preparation fulfills all prerequisites for crystallization of the fragment.
Collapse
Affiliation(s)
- M Braun
- Institut für Biochemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
11
|
Duarte M, Schulte U, Videira A. Identification of the TYKY homologous subunit of complex I from Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1322:237-41. [PMID: 9452770 DOI: 10.1016/s0005-2728(97)00084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A polypeptide subunit of complex I from Neurospora crassa, homologous to bovine TYKY, was expressed in Escherichia coli, purified and used for the production of rabbit antiserum. The mature mitochondrial protein displays a molecular mass of 21280 Da and results from cleavage of a presequence consisting of the first 34 N-terminal amino acids of the precursor. This protein was found closely associated with the peripheral arm of complex I.
Collapse
Affiliation(s)
- M Duarte
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal
| | | | | |
Collapse
|
12
|
Helfenbaum L, Ngo A, Ghelli A, Linnane AW, Degli Esposti M. Proton pumping of mitochondrial complex I: differential activation by analogs of ubiquinone. J Bioenerg Biomembr 1997; 29:71-80. [PMID: 9067804 DOI: 10.1023/a:1022415906999] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As part of the ongoing studies aimed at elucidating the mechanism of the energy conserving function of mitochondrial complex I, NADH: ubiquinone (Q) reductase, we have investigated how short-chain Q analogs activate the proton pumping function of this complex. Using a pH-sensitive fluorescent dye we have monitored both the extent and initial velocity of proton pumping of complex I in submitochondrial particles. The results are consistent with two sites of interaction of Q analogs with complex I, each having different proton pumping capacity. One is the physiological site which leads to a rapid proton pumping and a stoichiometric consumption of NADH associated with the reduction of the most hydrophobic Q analogs. Of these, heptyl-Q appears to be the most efficient substrate in the assay of proton pumping. Q analogs with a short-chain of less than six carbons interact with a second site which drives a slow proton pumping activity associated with NADH oxidation that is overstoichiometric to the reduced quinone acceptor. This activity is also nonphysiological, since hydrophilic Q analogs show little or no respiratory control ratio of their NADH:Q reductase activity, contrary to hydrophobic Q analogs.
Collapse
Affiliation(s)
- L Helfenbaum
- Centre for Molecular Biology and Medicine, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
13
|
Brandt U. Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1318:79-91. [PMID: 9030257 DOI: 10.1016/s0005-2728(96)00141-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
For the catalytic mechanism of proton-translocating NADH-dehydrogenase (complex I, EC 1.6.99.3) a number of hypothetical models have been proposed over the last three decades. These models are discussed in the light of recent substantial progress on the structure and function of this very complicated multiprotein complex. Only the high-potential iron-sulfur center N-2 and ubiquinone seem to contribute to the proton-translocating machinery of complex I: Based on the pH dependent midpoint potential of iron-sulfur cluster N-2 and the physical properties of ubiquinone intermediates a novel mechanism is proposed. The model builds on a series of defined chemical reactions taking place at three different ubiquinone-binding sites. Therefore, some aspects of this redox-gated ligand conduction mechanism are reminiscent to the proton-motive Q-cycle. However, its central feature is the abstraction of a proton from ubihydroquinone by a redox-Bohr group associated with iron-sulfur cluster N-2. Thus, in the proposed mechanism proton translocation is driven by a direct linkage between redox dependent protonation of iron-sulfur cluster N-2 and the redox chemistry of ubiquinone.
Collapse
Affiliation(s)
- U Brandt
- Universitätsklinikum Frankfurt, Zentrum der Biologischen Chemie, Germany.
| |
Collapse
|
14
|
Finel M. Genetic inactivation of the H(+)-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans is facilitated by insertion of the ndh gene from Escherichia coli. FEBS Lett 1996; 393:81-5. [PMID: 8804429 DOI: 10.1016/0014-5793(96)00831-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The H(+)-translocating NADH:ubiquinone oxidoreductase (NDH1) is probably an obligatory enzyme in Paracoccus denitrificans and disruption of its genes may be lethal to this organism. In order to overcome this problem and delete the nqo8 and nqo9 genes of NDH1, it was necessary to render the enzyme non-essential. This was achieved by constructing a deletion plasmid in which most of the coding regions of nqo8 and nqo9 were replaced by the ndh gene of Escherichia coli that encodes an alternative NADH:ubiquinone oxidoreductase (NDH2), and a kanamycin resistance gene. Subsequent homologous recombination gave rise to a mutant the membranes of which catalyzed rotenone-insensitive NADH oxidation, but which did not oxidize deamino-NADH. Hence, this mutant expressed active and membrane-bound NDH2, and lacked NDH1 activity.
Collapse
Affiliation(s)
- M Finel
- Department of Medical Chemistry, University of Helsinki, Finland.
| |
Collapse
|
15
|
Lin TI, Sled VD, Ohnishi T, Brennicke A, Grohmann L. Analysis of the iron-sulfur clusters within the complex I (NADH:ubiquinone oxidoreductase) isolated from potato tuber mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1032-6. [PMID: 7601133 DOI: 10.1111/j.1432-1033.1995.tb20652.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mitochondrial complex I (NADH:ubiquinone oxidoreductase) isolated from potato (Solanum tuberosum) has been investigated for the presence of iron-sulfur clusters. EPR spectroscopic analysis detected signals arising from clusters N1, N2, N3 and N4. Quantitation of the content of iron and sulfur within the isolated complex I showed the preparation to contain 22.6 mol acid-labile sulfide and 30.4 mol iron/mol complex I. The iron-sulfur cluster composition of the plant complex I appears to be similar to the well-known composition found in Neurospora crassa.
Collapse
Affiliation(s)
- T I Lin
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | | | |
Collapse
|
16
|
Gavrikova EV, Grivennikova VG, Sled VD, Ohnishi T, Vinogradov AD. Kinetics of the mitochondrial three-subunit NADH dehydrogenase interaction with hexammineruthenium(III). BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1230:23-30. [PMID: 7612640 DOI: 10.1016/0005-2728(95)00015-b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The steady-state kinetics of the NADH dehydrogenase activity of the three-subunit flavo-iron-sulfur protein (FP, Type II NADH dehydrogenase) in the presence of the one-electron acceptor hexammineruthenium(III) (HAR) were studied. The maximal catalytic activities of FP with HAR as electron acceptor calculated on the basis of FMN content were found to be approximately the same for the submitochondrial particles, Complex I and purified FP. This result shows that the protein structure responsible for the primary NADH oxidation by FP is not altered during the isolation procedure and the lower (compared with Complex I) catalytic capacity of the enzyme previously reported was due to the use of inefficient electron acceptors. Simple assay procedures for NADH dehydrogenase activity with HAR as the electron acceptor are described. The maximal activity at saturating concentrations of HAR was insensitive to added guanidine, whereas at fixed concentration of the electron acceptor, guanidine stimulated oxidation of low concentrations of NADH and inhibited the reaction at saturating NADH. The inhibitory effect of guanidine was competitive with HAR. The double-reciprocal plots 1/v vs. 1/[NADH] at various HAR concentrations gave a series of straight lines intercepting on the ordinate. The plots 1/v vs. 1/[HAR] at various NADH concentrations gave a series of straight lines intercepting in the fourth quadrant. The kinetics support the mechanism of the overall reaction where NADH is oxidized by the protein-Ru(NH3)3+(6) complex in which positively charged electron acceptor is bound at the specific site close to FMN, thus stabilizing the flavosemiquinone intermediate.
Collapse
Affiliation(s)
- E V Gavrikova
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | | | | | |
Collapse
|
17
|
Finel M, Majander AS, Tyynelä J, De Jong AM, Albracht SP, Wikström M. Isolation and characterisation of subcomplexes of the mitochondrial NADH:ubiquinone oxidoreductase (complex I). EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:237-42. [PMID: 7957254 DOI: 10.1111/j.1432-1033.1994.tb20046.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enzymically active subcomplexes were purified from bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I) by sucrose-gradient centrifugation in the presence of detergents. These subcomplexes, named I lambda, IS, and I lambda S, catalyse ferricyanide and ubiquinone-1 (Q-1) reduction by NADH at similar rates to complex I, but do not catalyse the reduction of decylubiquinone. In addition, the Q-1 reductase activity of all the subcomplexes is insensitive to rotenone. Chemical and EPR analyses of the subcomplexes show that FMN and all the Fe-S clusters of complex I are present, but that the line shape of cluster 2 is modified. The smallest subcomplex, I lambda S, contains only approximately 13 subunits, as compared to approximately 22 in the previously described subcomplex I alpha [Finel, M., Skehel, J. M., Albracht, S. J. P., Fearnley, I. M. & Walker, J. E. (1992) Biochemistry 31, 11425-11434], but it retains the 75-, 51-, 49-, 30-, 24-, 23- (TYKY) and 20-kDa (PSST) subunits, which are suggested to form a functional core that comprises the EPR-detectable Fe-S clusters 1-4, and FMN. The structural and functional implications of such an arrangement are discussed.
Collapse
Affiliation(s)
- M Finel
- Helsinki Bioenergetics Group, Department of Medical Chemistry, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Majander A, Finel M, Wikström M. Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oxidoreductase (Complex I). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31926-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|