1
|
Singh KP, Kumari P, Rai PK. Current Status of the Disease-Resistant Gene(s)/QTLs, and Strategies for Improvement in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2021; 12:617405. [PMID: 33747001 PMCID: PMC7965955 DOI: 10.3389/fpls.2021.617405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/08/2021] [Indexed: 05/15/2023]
Abstract
Brassica juncea is a major oilseed crop in tropical and subtropical countries, especially in south-east Asia like India, China, Bangladesh, and Pakistan. The widespread cultivation of genetically similar varieties tends to attract fungal pathogens which cause heavy yield losses in the absence of resistant sources. The conventional disease management techniques are often expensive, have limited efficacy, and cause additional harm to the environment. A substantial approach is to identify and use of resistance sources within the Brassica hosts and other non-hosts to ensure sustainable oilseed crop production. In the present review, we discuss six major fungal pathogens of B. juncea: Sclerotinia stem rot (Sclerotinia sclerotiorum), Alternaria blight (Alternaria brassicae), White rust (Albugo candida), Downy mildew (Hyaloperonospora parasitica), Powdery mildew (Erysiphe cruciferarum), and Blackleg (Leptoshaeria maculans). From discussing studies on pathogen prevalence in B. juncea, the review then focuses on highlighting the resistance sources and quantitative trait loci/gene identified so far from Brassicaceae and non-filial sources against these fungal pathogens. The problems in the identification of resistance sources for B. juncea concerning genome complexity in host subpopulation and pathotypes were addressed. Emphasis has been laid on more elaborate and coordinated research to identify and deploy R genes, robust techniques, and research materials. Examples of fully characterized genes conferring resistance have been discussed that can be transformed into B. juncea using advanced genomics tools. Lastly, effective strategies for B. juncea improvement through introgression of novel R genes, development of pre-breeding resistant lines, characterization of pathotypes, and defense-related secondary metabolites have been provided suggesting the plan for the development of resistant B. juncea.
Collapse
Affiliation(s)
- Kaushal Pratap Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India
- *Correspondence: Kaushal Pratap Singh,
| | - Preetesh Kumari
- Genetics Division, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
2
|
Wang GX, Lv J, Zhang J, Han S, Zong M, Guo N, Zeng XY, Zhang YY, Wang YP, Liu F. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1258. [PMID: 27625659 PMCID: PMC5003894 DOI: 10.3389/fpls.2016.01258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 05/30/2023]
Abstract
Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.
Collapse
Affiliation(s)
- Gui-xiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Jing Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
- Yangzhou UniversityYangzhou, China
- Zhalute No.1 High SchoolTongliao, China
| | - Jie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Shuo Han
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Mei Zong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Ning Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Xing-ying Zeng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Yue-yun Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | | | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| |
Collapse
|
3
|
Wang GX, Tang Y, Yan H, Sheng XG, Hao WW, Zhang L, Lu K, Liu F. Production and characterization of interspecific somatic hybrids between Brassica oleracea var. botrytis and B. nigra and their progenies for the selection of advanced pre-breeding materials. PLANT CELL REPORTS 2011; 30:1811-21. [PMID: 21603996 DOI: 10.1007/s00299-011-1088-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 05/15/2023]
Abstract
Somatic hybridization is a potential method for gene transfer from wild relatives to cultivated crops that can overcome sexual incompatibilities of two distantly related species. In this study, interspecific asymmetric somatic hybrids of Brassica oleracea var. botrytis (cauliflower) and Brassica nigra (black mustard) were obtained by protoplast fusion and their backcrossed (BC(3)) and selfed (S(3)) offspring were analyzed. Cytological analysis showed that the B. nigra chromosomes were successively eliminated in the backcrosses with cauliflower. The fertility of the hybrid progenies was quite different due to the asynchronous and abnormal chromosome behavior of pollen mother cells (PMC) during meiosis. Analysis of sequence-related amplified polymorphism (SRAP) showed that all of these hybrids mainly had the DNA banding pattern from the two parents with some alterations. Genetically, the selfed generations were closer to B. nigra, while the backcrossed generations were closer to the cauliflower parent. Analysis of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) showed that all somatic hybrids in this study contained chloroplast (cp) DNA of the donor parent black mustard, while mitochondrial (mt) DNA showed evidence of recombination and variations in the regions analyzed. Furthermore, three BC(3) plants (originated from somatic hybrids 3, 4, 10) with 2-8 B. nigra-derived chromosomes shown by genomic in situ hybridization (GISH) displayed a more cauliflower-like morphology and high resistance to black-rot. These plants were obtained as bridge materials for further analysis and breeding.
Collapse
Affiliation(s)
- Gui-xiang Wang
- Beijing Vegetable Research Center, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Yadav P, Bhat SR, Prakash S, Mishra LC, Chopra VL. Resynthesized Brassica juncea lines with novel organellar genome constitution obtained through protoplast fusion. J Genet 2009; 88:109-12. [PMID: 19417553 DOI: 10.1007/s12041-009-0016-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Poonam Yadav
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110 012, India
| | | | | | | | | |
Collapse
|
6
|
Prakash S, Takahata Y, Kirti PB, Chopra VL. 3 Cytogenetics. DEVELOPMENTS IN PLANT GENETICS AND BREEDING 1999. [DOI: 10.1016/s0168-7972(99)80004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|