Smagghe G, Carton B, Decombel L, Tirry L. Significance of absorption, oxidation, and binding to toxicity of four ecdysone agonists in multi-resistant cotton leafworm.
ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001;
46:127-139. [PMID:
11276070 DOI:
10.1002/arch.1023]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Treatment of last-instar larvae of multi-resistant cotton leafworm Spodoptera littoralis with four dibenzoylhydrazines, methoxyfenozide (RH-2485), tebufenozide (RH-5992), halofenozide (RH-0345), and RH-5849, resulted in premature molting leading to death. Methoxyfenozide was the most toxic followed by tebufenozide, halofenozide, and RH-5849. To explain differences in toxicity, especially between multi-resistant and laboratory strains, absorption in the body tissues and oxidative metabolism were tested with 14C-labeled ecdysone agonist and a Lineweaver-Burk assay, respectively. Then to address different compound potencies in multi-resistant strains, the potency of the four ecdysone agonists was measured based on their ability to mimic the natural insect molting hormone, 20-hydroxyecdysone (20E) by inducing evagination in isolated imaginal wing discs. Using monoclonal antibody 9B9, the presence of ecdysteroid receptors in imaginal discs in vitro was confirmed. In parallel, Scatchard plot analysis with whole imaginal wing discs cultured with different concentrations of 3H-labeled ponasterone A indicated no significant difference in affinity and in number of target sites for binding between multi-resistant and susceptible laboratory strains. The four compounds tested caused the effect as agonists of 20E in vitro, and typically the order of their toxicities (LC50s) corresponded with that for evagination-induction with whole imaginal discs.
Collapse