1
|
Dauda AM, Swift T, Telford R, Abd El-Wahab HAA, Danta CC, Pors K, Ruiz A. Insight into the liposomal encapsulation of mono and bis-naphthalimides. RSC PHARMACEUTICS 2024; 1:272-282. [PMID: 38899150 PMCID: PMC11185046 DOI: 10.1039/d3pm00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/25/2024] [Indexed: 06/21/2024]
Abstract
Mitonafide-loaded liposomes are a promising strategy to overcome the neurotoxicity observed in clinical trials for this drug. This study investigates the influence of loaded mitonafide or a dimer analogue on different liposomal formulations and their therapeutic efficacy in vitro. Physicochemical properties of the liposomes were manipulated using different loading methods (namely bilayer or core loading) and varying the rigidity of the bilayer using distinct phospholipid compositions. Our results demonstrated that the mitonafide dimer analogue had a comparable encapsulation efficiency (EE%) into the liposomes when loaded into rigid or flexible bilayers in contrast to the low mitonafide monomer EE%. A pH gradient core loading method resulted in a more efficient mechanism to load the monomer into the liposomes. DOSY NMR and spectrofluorometric studies revealed key differences in the structure of the vesicles and the arrangement of the monomer or the dimer in the bilayer or the core of the liposomes. The in vitro assessment of the formulations using MDA-MB-231 and RT-112 cells revealed that a flexible lipid bilayer allows a faster drug release, which correlated well with the spectroscopy studies. This study investigated for the first time that the characteristics of the lipid bilayer and the loading method influence the encapsulation efficacy, colloidal properties, photoactivity and stability of mono and bis-naphthalimides loaded in a liposomal carrier, essential factors that will impact the performance of the formulation in a biological scenario.
Collapse
Affiliation(s)
- Abdullahi Magaji Dauda
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford Bradford UK
| | - Thomas Swift
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford Bradford UK
| | - Richard Telford
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford Bradford UK
| | - Hend A A Abd El-Wahab
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford Bradford UK
| | - Chhanda Charan Danta
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford Bradford UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford Bradford UK
| | - Amalia Ruiz
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford Bradford UK
| |
Collapse
|
2
|
Napiórkowska M, Kurpios-Piec D, Kiernozek-Kalińska E, Leśniak A, Klawikowska M, Bujalska-Zadrożny M. New aryl-/heteroarylpiperazine derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.0 2,6]dec-8-ene-3,5,10-trione: Synthesis and preliminary studies of biological activities. Bioorg Med Chem 2023; 96:117518. [PMID: 37951135 DOI: 10.1016/j.bmc.2023.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Compounds containing dicarboximide skeleton such as succinimides, maleimides, glutarimides, and phthalimides possess broad biological properties including anti-fungal, antibacterial, antidepressant, or analgesic activities. The piperazine ring is found in a wide range of molecules that have demonstrated a variety of biological functions such as anticancer action and 5-HT receptors agonist/antagonist activity. In the present study, we combined both structures to develop new antitumor agents, a series of piperazine derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione and evaluated their biological activity. The structures of all tested compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was assessed in vitro against eight human cancer cell lines, namely prostate (PC3), colon (HCT116, SW480, SW620), leukemia (K562), liver (HepG2), lung (A549) and breast (MDA-Mb-231) in contrast to normal HMEC-1 cell line, by using MTT and Trypan blue method. The tested compounds showed significant activity toward cancer cells. The most pronounced cytotoxic effect was observed in K562 and HCT116 with IC50 values below 10 μM for all studied compounds. Importantly, the most promising derivatives for each cancer cell line (IC50 < 10 μM) exerted a weaker cytotoxic effect toward normal HMEC-1 cells than cancer cells. The evaluation of proapoptotic and inhibitory effects on IL-6 release showed that K562 and HCT116 cells were more sensitive to studied compounds than other cancer cell lines. Furthermore, for all piperazine derivatives, the functional activities at the 5-HT1A, D2 receptors as well as their binding affinities at the 5-HT2A, H1 and M receptors, were determined. The current investigation was able to successfully design compounds with both serotoninergic and anticancer properties. It serves as a good starting point for a multimodal approach for the management of cancer and cancer-related symptoms.
Collapse
Affiliation(s)
- Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Ewelina Kiernozek-Kalińska
- Department of Immunology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | - Anna Leśniak
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Małgorzata Klawikowska
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Stukan I, Gryzik M, Hoser G, Want A, Grabowska-Pyrzewicz W, Zdioruk M, Napiórkowska M, Cieślak M, Królewska-Golińska K, Nawrot B, Basak G, Wojda U. Novel Dicarboximide BK124.1 Breaks Multidrug Resistance and Shows Anticancer Efficacy in Chronic Myeloid Leukemia Preclinical Models and Patients' CD34 +/CD38 - Leukemia Stem Cells. Cancers (Basel) 2022; 14:cancers14153641. [PMID: 35892900 PMCID: PMC9332833 DOI: 10.3390/cancers14153641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Chemotherapy is a first line treatment in many cancer types, but the constant exposition to chemotherapeutics often leads to therapy resistance. An example is chronic myeloid leukemia that, due to the use of tyrosine kinase inhibitors such as imatinib, remains manageable, however incurable. Overall, 20–25% of imatinib responders develop secondary resistance, and among them, 20–40% is due to mechanisms such as expression of P-glycoprotein (MDR1) or leukemia stem cells’ mechanisms of survival and cancer regrowth. This study provides the first evidence from animal and cellular models that this resistance can be overcome with the novel dicarboximide BK124.1. The compound causes no visible toxicity in mice, and has proper pharmacokinetics for therapeutic applications. It was efficient against both multidrug resistant CML blasts and CD34+/CD38− leukemia stem cells coming from CML patients. Future development of BK124.1 could offer curative treatment of CML and of other cancers resistant or intolerant to current chemotherapy. Abstract The search is ongoing for new anticancer therapeutics that would overcome resistance to chemotherapy. This includes chronic myeloid leukemia, particularly suitable for the studies of novel anticancer compounds due to its homogenous and well-known genetic background. Here we show anticancer efficacy of novel dicarboximide denoted BK124.1 (C31H37ClN2O4) in a mouse CML xenograft model and in vitro in two types of chemoresistant CML cells: MDR1 blasts and in CD34+ patients’ stem cells (N = 8) using immunoblotting and flow cytometry. Intraperitoneal administration of BK124.1 showed anti-CML efficacy in the xenograft mouse model (N = 6) comparable to the commonly used imatinib and hydroxyurea. In K562 blasts, BK124.1 decreased the protein levels of BCR-ABL1 kinase and its downstream effectors, resulting in G2/M cell cycle arrest and apoptosis associated with FOXO3a/p21waf1/cip1 upregulation in the nucleus. Additionally, BK124.1 evoked massive apoptosis in multidrug resistant K562-MDR1 cells (IC50 = 2.16 μM), in CD34+ cells from CML patients (IC50 = 1.5 µM), and in the CD34+/CD38− subpopulation consisting of rare, drug-resistant cancer initiating stem cells. Given the advantages of BK124.1 as a potential chemotherapeutic and its unique ability to overcome BCR-ABL1 dependent and independent multidrug resistance mechanisms, future development of BK124.1 could offer a cure for CML and other cancers resistant to present drugs.
Collapse
Affiliation(s)
- Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Grażyna Hoser
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
- Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Wioleta Grabowska-Pyrzewicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Mikolaj Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
| | - Mariola Napiórkowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; (M.C.); (K.K.-G.); (B.N.)
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (I.S.); (M.G.); (G.H.); (A.W.); (W.G.-P.); (M.Z.)
- Correspondence: ; Tel.: +48-22-5892-578
| |
Collapse
|
4
|
Photochemical Reactivity of Naphthol-Naphthalimide Conjugates and Their Biological Activity. Molecules 2021; 26:molecules26113355. [PMID: 34199541 PMCID: PMC8199699 DOI: 10.3390/molecules26113355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Quinone methide precursors 1a–e, with different alkyl linkers between the naphthol and the naphthalimide chromophore, were synthesized. Their photophysical properties and photochemical reactivity were investigated and connected with biological activity. Upon excitation of the naphthol, Förster resonance energy transfer (FRET) to the naphthalimide takes place and the quantum yields of fluorescence are low (ΦF ≈ 10−2). Due to FRET, photodehydration of naphthols to QMs takes place inefficiently (ΦR ≈ 10−5). However, the formation of QMs can also be initiated upon excitation of naphthalimide, the lower energy chromophore, in a process that involves photoinduced electron transfer (PET) from the naphthol to the naphthalimide. Fluorescence titrations revealed that 1a and 1e form complexes with ct-DNA with moderate association constants Ka ≈ 105–106 M−1, as well as with bovine serum albumin (BSA) Ka ≈ 105 M−1 (1:1 complex). The irradiation of the complex 1e@BSA resulted in the alkylation of the protein, probably via QM. The antiproliferative activity of 1a–e against two human cancer cell lines (H460 and MCF 7) was investigated with the cells kept in the dark or irradiated at 350 nm, whereupon cytotoxicity increased, particularly for 1e (>100 times). Although the enhancement of this activity upon UV irradiation has no imminent therapeutic application, the results presented have importance in the rational design of new generations of anticancer phototherapeutics that absorb visible light.
Collapse
|
5
|
Daubit IM, Wortmann S, Siegmund D, Hahn S, Nuernberger P, Metzler‐Nolte N. Unveiling Luminescent Ir I and Rh I N-Heterocyclic Carbene Complexes: Structure, Photophysical Specifics, and Cellular Localization in the Endoplasmic Reticulum. Chemistry 2021; 27:6783-6794. [PMID: 33755263 PMCID: PMC8252781 DOI: 10.1002/chem.202100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 01/28/2023]
Abstract
Complexes of RhI and IrI of the [M(COD)(NHC)X] type (where M=Rh or Ir, COD=1,5-cyclooctadiene, NHC=N-heterocyclic carbene, and X=halide) have recently shown promising cytotoxic activities against several cancer cell lines. Initial mechanism of action studies provided some knowledge about their interaction with DNA and proteins. However, information about their cellular localization remains scarce owing to luminescence quenching within this complex type. Herein, the synthesis of two rare examples of luminescent RhI and IrI [M(COD)(NHC)I] complexes with 1,8-naphthalimide-based emitting ligands is reported. All new complexes are comprehensively characterized, including with single-crystal X-ray structures. Steric crowding in one derivative leads to two distinct rotamers in solution, which apparently can be distinguished both by pronounced NMR shifts and by their respective spectral and temporal emission signatures. When the photophysical properties of these new complexes are exploited for cellular imaging in HT-29 and PT-45 cancer cell lines, it is demonstrated that the complexes accumulate predominantly in the endoplasmic reticulum, which is an entirely new finding and provides the first insight into the cellular localization of such IrI (NHC) complexes.
Collapse
Affiliation(s)
- Isabelle Marie Daubit
- Faculty of Chemistry and BiochemistryInorganic Chemistry I—Bioinorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| | - Svenja Wortmann
- Institut für Physikalische und Theoretische ChemieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Daniel Siegmund
- Division EnergyFraunhofer UMSICHTOsterfelder Str. 346047OberhausenGermany
| | - Stephan Hahn
- Molecular GI OncologyRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische ChemieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Nils Metzler‐Nolte
- Faculty of Chemistry and BiochemistryInorganic Chemistry I—Bioinorganic ChemistryRuhr-Universität BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
6
|
New Thalidomide-Resembling Dicarboximides Target ABC50 Protein and Show Antileukemic and Immunomodulatory Activities. Biomolecules 2019; 9:biom9090446. [PMID: 31487824 PMCID: PMC6770581 DOI: 10.3390/biom9090446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
We identified novel dicarboximides that were selectively cytotoxic towards human leukemia cells. Using chemical and biological methods, we characterized the biological activity, identified cellular protein targets and defined the mechanism of action of the test dicarboximides. The reported IC50 values (concentration required to reduce cell survival fraction to 50% of control) of selected dicarboximides were similar or lower than IC50 of registered anticancer drugs, for example cytarabine, sorafenib, irinotecan. Test compounds induced apoptosis in chronic myelogenous (K562) and acute lymphoblastic (MOLT-4) leukemia cells by activation of receptor and mitochondrial apoptotic pathways and increased the expression of proapoptotic genes (BAX, NOXA, HTRA2, TNFRSF10B, ESRRBL1). Selected dicarboximides displayed immunomodulatory activity and downregulated IKZF1 and IKZF3 transcription factors in K562 and MOLT-4 leukemia cells. ATP-binding cassette protein 50 (ABC50) was identified as a target for dicarboximides. Cancer cells with knocked down ABC50 showed increased resistance to dicarboximides. Based on the structure of dicarboximides and thalidomide, novel proteolysis-targeting chimeras (PROTACs) were synthesized and used as tools to downregulate ABC50 in leukemia cells.
Collapse
|
7
|
Leishmanicidal Activity of Isoselenocyanate Derivatives. Antimicrob Agents Chemother 2019; 63:AAC.00904-18. [PMID: 30478164 DOI: 10.1128/aac.00904-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Conventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects against Leishmania In this study, the in vitro leishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested against Leishmania major and Leishmania amazonensis parasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated in L. amazonensis and L. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 than L. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels of Leishmania genes involved in the cell cycle, such as topoisomerase-2 (TOP-2), PCNA, and MCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1 phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.
Collapse
|
8
|
Kopsida M, Barron GA, Bermano G, Kong Thoo Lin P, Goua M. Novel bisnaphthalimidopropyl (BNIPs) derivatives as anticancer compounds targeting DNA in human breast cancer cells. Org Biomol Chem 2018; 14:9780-9789. [PMID: 27722499 DOI: 10.1039/c6ob01850e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bisnaphthalimidopropyl (BNIP) derivatives are a family of compounds that exert anti-cancer activities in vitro and, according to previous studies, variations in the linker sequence have increased their DNA binding and cytotoxic activities. By modifying the linker sequence of bisnaphthalimidopropyl diaminodicyclohexylmethane (BNIPDaCHM), a previously synthesised BNIP derivative with anti-cancer properties, three novel BNIP derivatives were designed. Bisnaphthalimidopropyl-piperidylpropane (BNIPPiProp), a structural isomer of BNIPDaCHM, bisnaphthalimidopropyl ethylenedipiperidine dihydrobromide (BNIPPiEth), an isoform of BNIPDaCHM with a shorter linker chain, and (trans(trans))-bisnaphthalimidopropyl diaminodicyclohexylmethane (trans,trans-BNIPDaCHM), a stereoisomer of BNIPDaCHM, were successfully synthesised (72.3-29.5% yield) and characterised by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Competitive displacement of ethidium bromide (EtBr) and UV binding studies were used to study the interactions of BNIP derivatives with Calf Thymus DNA. The cytotoxicity of these derivatives was assessed against human breast cancer MDA-MB-231 and SKBR-3 cells by MTT assay. Propidium iodide (PI) flow cytometry was conducted in order to evaluate the cellular DNA content in both breast cancer cell lines before and after treatment with BNIPs. The results showed that all novel BNIPs exhibit strong DNA binding properties in vitro, and strong cytotoxicity, with IC50 values in the range of 0.2-3.3 μM after 24 hours drug treatment. Two of the novel BNIP derivatives, BNIPPiEth and trans,trans-BNIPDaCHM, exhibited greater cytotoxicity against the two breast cancer cell lines studied, compared to BNIPDaCHM. By synthesising enantiopures and reducing the length of the linker sequence, the cytotoxicity of the BNIP derivatives was significantly improved compared to BNIPDaCHM, while maintaining DNA binding and bis-intercalating properties. In addition, cell cycle studies indicated that trans,trans-BNIPDaCHM, the most cytotoxic BNIP derivative, induced sub-G1 cell cycle arrest, indicative of apoptotic cell death. Based on these findings, further investigation is under way to assess the potential efficacy of trans,trans-BNIPDaCHM and BNIPPiEth in treating human breast cancer.
Collapse
Affiliation(s)
- Maria Kopsida
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, Scotland, UK.
| | - Gemma A Barron
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, Scotland, UK. and Centre for Obesity Research and Education (CORE), Faculty of Health and Social Care, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, Scotland, UK
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), Faculty of Health and Social Care, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, Scotland, UK
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, Scotland, UK.
| | - Marie Goua
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, Scotland, UK.
| |
Collapse
|
9
|
Design, synthesis, and identification of a novel napthalamide-isoselenocyanate compound NISC-6 as a dual Topoisomerase-IIα and Akt pathway inhibitor, and evaluation of its anti-melanoma activity. Eur J Med Chem 2017; 135:282-295. [DOI: 10.1016/j.ejmech.2017.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 11/22/2022]
|
10
|
Cytotoxicity evaluation of a new set of 2-aminobenzo[de]iso-quinoline-1,3-diones. Int J Mol Sci 2014; 15:22483-91. [PMID: 25486059 PMCID: PMC4284720 DOI: 10.3390/ijms151222483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 11/17/2022] Open
Abstract
A new series of 2-amino-benzo[de]isoquinoline-1,3-diones was synthesized and fully characterized in our previous paper. Here, their cytotoxic effects have been evaluated in vitro in relation to colon HCT-116, hepatocellular Hep-G2 and breast MCF-7 cancer cell lines, using a crystal violet viability assay. The IC50-values of the target compounds are reported in µg/mL, using doxorubicin as a reference drug. The findings revealed that compounds 14, 15, 16, 21 and 22 had significant cytotoxic effects against HCT-116, MCF-7 and Hep-G2 cell lines. Their IC50 values ranged between 1.3 and 8.3 μg/mL in relation to doxorubicin (IC50 ≈ 0.45–0.89 μg/mL). Therefore, these compounds could be used as templates for furthering the development and design of more potent antitumor agents through structural modification.
Collapse
|
11
|
Sk UH, Prakasha Gowda A, Crampsie MA, Yun JK, Spratt TE, Amin S, Sharma AK. Development of novel naphthalimide derivatives and their evaluation as potential melanoma therapeutics. Eur J Med Chem 2011; 46:3331-8. [DOI: 10.1016/j.ejmech.2011.04.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/11/2022]
|
12
|
Mukherjee A, Dutta S, Shanmugavel M, Mondhe DM, Sharma PR, Singh SK, Saxena AK, Sanyal U. 6-Nitro-2-(3-hydroxypropyl)-1H-benz[de]isoquinoline-1,3-dione, a potent antitumor agent, induces cell cycle arrest and apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:175. [PMID: 21194464 PMCID: PMC3023684 DOI: 10.1186/1756-9966-29-175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/31/2010] [Indexed: 11/13/2022]
Abstract
Background Anticancer activities of several substituted naphthalimides (1H-benz[de]isoquinoline-1,3-diones) are well documented. Some of them have undergone Phase I-II clinical trials. Presently a series of ten N-(hydroxyalkyl) naphthalimides (compounds 1a-j) were evaluated as antitumor agents. Methods Compounds 1a-j were initially screened in MOLT-4, HL-60 and U-937 human tumor cell lines and results were compared with established clinical drugs. Cytotoxicities of compounds 1d and 1i were further evaluated in a battery of human tumor cell lines and in normal human peripheral blood mononuclear cells. Cell cycle analysis of compound 1i treated MOLT-4 cells was studied by flow cytometry. Its apoptosis inducing effect was carried out in MOLT-4 and HL-60 cells by flow cytometry using annexin V-FITC/PI double staining method. The activities of caspase-3 and caspase-6 in MOLT-4 cells following incubation with compound 1i were measured at different time intervals. Morphology of the MOLT-4 cells after treatment with 1i was examined under light microscope and transmission electron microscope. 3H-Thymidine and 3H-uridine incorporation in S-180 cells in vitro following treatment with 8 μM concentration of compounds 1d and 1i were studied. Results 6-Nitro-2-(3-hydroxypropyl)-1H-benz[de]isoquinoline-1,3-dione (compound 1i), has exhibited maximum activity as it induced significant cytotoxicity in 8 out of 13 cell lines employed. Interestingly it did not show any cytotoxicity against human PBMC (IC50 value 273 μM). Cell cycle analysis of compound 1i treated MOLT-4 cells demonstrated rise in sub-G1 fraction and concomitant accumulation of cells in S and G2/M phases, indicating up-regulation of apoptosis along with mitotic arrest and/or delay in exit of daughter cells from mitotic cycle respectively. Its apoptosis inducing effect was confirmed in flow cytometric study in MOLT-4 and the action was mediated by activation of both caspase 3 and 6. Light and transmission electron microscopic studies corroborated its apoptosis inducing efficacy at a concentration of 10 μM in MOLT-4 cells. Its apoptosis induction was also observed in HL-60 cells to an extent much greater than well known apoptosis inducing agents as camptothecin and cis-platin at 10 μM concentration each. It significantly inhibited DNA and RNA synthesis in S-180. Conclusions In essence, compound 1i showed potential as an antitumor agent.
Collapse
Affiliation(s)
- Asama Mukherjee
- Department of Anticancer Drug Development, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mukherjee A, Hazra S, Dutta S, Muthiah S, Mondhe DM, Sharma PR, Singh SK, Saxena AK, Qazi GN, Sanyal U. Antitumor efficacy and apoptotic activity of substituted chloroalkyl 1H-benz[de]isoquinoline-1,3-diones: a new class of potential antineoplastic agents. Invest New Drugs 2010; 29:434-42. [PMID: 20066471 DOI: 10.1007/s10637-009-9372-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/08/2009] [Indexed: 11/28/2022]
Abstract
A series of ten chloroalkyl 1H-benz[de]isoquinoline-1,3-diones (naphthalimides) were synthesized and evaluated for antitumor activity. Amongst them, new compounds 2d and 2i carrying a 6-NO(2) substituent in the aromatic portion of the molecule possessed significant antineoplastic activity. The most active compound 2i had elicited significant cytotoxicity in 15 human tumor cell lines namely Leukemia: MOLT-4, HL-60; Lymphoma: U-937; Colon: 502713, HT-29, SW-620, HCT-15, COLO-205; Liver: Hep-2; Prostate DU-145, PC-3; Breast: MCF-7; Neuroblastoma: IMR-32, SK-N-SH and Ovary: OVCAR-5 out of the 17 cell lines screened. Flow cytometric analysis performed to study the effect of compound 2i on the progression of cell cycle of MOLT-4 cells, revealed rise in sub-G(1) fraction and concomitant accumulation of cells in S and G(2)/M phases, indicating apoptosis, mitotic arrest and/or delay in exit of daughter cells from mitotic cycle respectively. It also induced caspase-mediated apoptosis of MOLT-4 cells in a dose dependant manner. Light and electron microscopic studies revealed characteristic morphology of apoptotic MOLT-4 cells after in vitro treatment with 10 μM concentration of the compound. Apoptosis induction was also observed in HL-60 cells by compounds 2d and 2i to an extent much greater than camptothecin and cis-platin at 10 μM concentration. Both the compounds have shown minimal suppressive effect on human PBMC having high IC(50) values of 3,582 and 1,536 μM respectively. These compounds inhibited DNA and RNA synthesis in murine ascites Sarcoma-180 tumor cells in vitro at 8 μM concentration. Above results indicate promising chemotherapeutic potential of the key compound 2i.
Collapse
Affiliation(s)
- Asama Mukherjee
- Department of Anticancer Drug Development, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Maki Y, Mori H, Endo T. Synthesis of Well-Defined Alternating Copolymers by RAFT Copolymerization of N-Vinylnaphthalimide. Macromolecules 2008. [DOI: 10.1021/ma801359y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuya Maki
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan, and Molecular Engineering Institute, Kinki University, Iizuka, Fukuoka 820-8555, Japan
| | - Hideharu Mori
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan, and Molecular Engineering Institute, Kinki University, Iizuka, Fukuoka 820-8555, Japan
| | - Takeshi Endo
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan, and Molecular Engineering Institute, Kinki University, Iizuka, Fukuoka 820-8555, Japan
| |
Collapse
|
15
|
Kamal A, Ramu R, Tekumalla V, Ramesh Khanna G, Barkume MS, Juvekar AS, Zingde SM. Remarkable DNA binding affinity and potential anticancer activity of pyrrolo[2,1-c][1,4]benzodiazepine–naphthalimide conjugates linked through piperazine side-armed alkane spacers. Bioorg Med Chem 2008; 16:7218-24. [DOI: 10.1016/j.bmc.2008.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 11/17/2022]
|
16
|
Yin H, Xu Y, Qian X, Li Y, Liu J. Novel N-oxide of naphthalimides as prodrug leads against hypoxic solid tumor: Synthesis and biological evaluation. Bioorg Med Chem Lett 2007; 17:2166-70. [PMID: 17331719 DOI: 10.1016/j.bmcl.2007.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 12/24/2006] [Accepted: 01/25/2007] [Indexed: 11/20/2022]
Abstract
Novel tertiary amine N-oxides of naphthalimides were designed and synthesized as potential anticancer agents against hypoxic solid tumors. Although their ctDNA-binding affinities and cytotoxic activities against usual tumor cell lines were lower than those of corresponding amines, the N-oxides A1 and A4 showed hypoxia preference activities against A375 cells in vitro and might be used as interesting candidates of prodrug leads in hypoxic tumor cells.
Collapse
Affiliation(s)
- Hong Yin
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
17
|
Villalona-Calero MA, Eder JP, Toppmeyer DL, Allen LF, Fram R, Velagapudi R, Myers M, Amato A, Kagen-Hallet K, Razvillas B, Kufe DW, Von Hoff DD, Rowinsky EK. Phase I and pharmacokinetic study of LU79553, a DNA intercalating bisnaphthalimide, in patients with solid malignancies. J Clin Oncol 2001; 19:857-69. [PMID: 11157040 DOI: 10.1200/jco.2001.19.3.857] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To determine the maximum-tolerated dose and characterize the pharmacokinetic behavior of LU79553, a novel bisnaphthalimide antineoplastic agent, when administered as a daily intravenous infusion for 5 days every 3 weeks. PATIENTS AND METHODS Patients with advanced solid malignancies received escalating doses of LU79553. Plasma sampling and urine collections were performed on both days 1 and 5 of the first course. RESULTS Thirty patients received 105 courses of LU79553 at doses ranging from 2 to 24 mg/m(2)/d. Proximal myopathy, erectile dysfunction, and myelosuppression precluded the administration of multiple courses at doses above 18 mg/m(2)/d. These toxicities were intolerable in two of six patients after receiving three courses at the 24-mg/m(2)/d dose level. At the 18-mg/m(2)/d dose, one of six patients developed febrile neutropenia and grade 2 proximal myopathy after three courses of LU79553. The results of electrophysiologic, histopathologic, and ultrastructural studies supported a drug-induced primary myopathic process. A patient with a platinum- and taxane-resistant papillary serous carcinoma of the peritoneum experienced a partial response lasting 22 months. Pharmacokinetics were dose-independent, optimally described by a three-compartment model, and there was modest drug accumulation over the 5 days of treatment. CONCLUSION Although no dose-limiting events were noted in the first two courses of LU79553, cumulative muscular toxicity precluded repetitive treatment with LU79553 at doses above 18 mg/m(2)/d, which is the recommended dose for subsequent disease-directed evaluations. The preliminary antitumor activity noted is encouraging, but the qualitative and cumulative nature of the principal toxicities, as well as the relatively small number of patients treated repetitively, mandate that rigorous and long-term toxicologic monitoring be performed in subsequent evaluations of this unique agent.
Collapse
Affiliation(s)
- M A Villalona-Calero
- Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lin PK, Pavlov VA. The synthesis and in vitro cytotoxic studies of novel bis-naphthalimidopropyl polyamine derivatives. Bioorg Med Chem Lett 2000; 10:1609-12. [PMID: 10915063 DOI: 10.1016/s0960-894x(00)00293-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bis-naphthalimidopropyl putrescine (BNIPPut), spermidine (BNIPSpd), spermine (BNIPSpm) and oxa-putrescine (BNIPOPut) were synthesised and their growth-inhibitory properties characterised. All these compounds except for BNIPOPut, showed high in vitro cytotoxic activity (with mean GI50 values between 0.5 and 8.45 microM) and selectivity against cancer cells derived from nine different human tumours. The increased content of nitrogen atoms in the linker chain of BNIPSpd and BNIPSpm significantly improved their aqueous dissolution properties with a marginal decrease in their cytotoxic activity.
Collapse
Affiliation(s)
- P K Lin
- The Robert Gordon University, School of Applied Sciences, Aberdeen, Scotland, UK.
| | | |
Collapse
|
19
|
Aveline BM, Matsugo S, Redmond RW. Photochemical Mechanisms Responsible for the Versatile Application of Naphthalimides and Naphthaldiimides in Biological Systems. J Am Chem Soc 1997. [DOI: 10.1021/ja971993c] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Béatrice M. Aveline
- Contribution from the Wellman Laboratories of Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, and Department of Chemical and Biochemical Engineering, Faculty of Engineering, Toyama University, Gofuku 3190, Toyama 930, Japan
| | - Seiichi Matsugo
- Contribution from the Wellman Laboratories of Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, and Department of Chemical and Biochemical Engineering, Faculty of Engineering, Toyama University, Gofuku 3190, Toyama 930, Japan
| | - Robert W. Redmond
- Contribution from the Wellman Laboratories of Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, and Department of Chemical and Biochemical Engineering, Faculty of Engineering, Toyama University, Gofuku 3190, Toyama 930, Japan
| |
Collapse
|
20
|
Braña MF, Castellano JM, Perron D, Maher C, Conlon D, Bousquet PF, George J, Qian XD, Robinson SP. Chromophore-modified bis-naphthalimides: synthesis and antitumor activity of bis-dibenz[de,h]isoquinoline-1,3-diones. J Med Chem 1997; 40:449-54. [PMID: 9046334 DOI: 10.1021/jm960295k] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The bis-dibenz[de,h]isoquinoline-1,3-diones are a new series of antitumor agents that consist of two chromophores bridged by an alkylamino linker. In the present study we have explored the effect produced by the presence of two dibenz[de,h]isoquinoline-1,3-dione moieties with different polyamine chains on cellular cytotoxicity. Bis-dibenz[de,h]isoquinoline-1,3-diones with the bridge (CH2)2-NH-(CH2)n-NH-(CH2)2, where n = 2-5, showed optimum cytotoxicity with IC50's around 10 nM. Compound 16, which has the (CH2)2-NH-(CH2)3-NH-(CH2)2 bridge, altered DNA mobility and topoisomerase I and II activity at approximately 5 microM. When tested in vivo, compound 16 increased the median survival time of mice implanted with M5076 with an optimum %T/C of 154% and produced cures in 50% of mice implanted with Lox melanoma.
Collapse
Affiliation(s)
- M F Braña
- Departamento de Quimica Orgánica y Farmaceútica, Universidad San Pablo CEU, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bear S, Remers WA. Computer simulation of the binding of amonafide and azonafide to DNA. J Comput Aided Mol Des 1996; 10:165-75. [PMID: 8741020 DOI: 10.1007/bf00402824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intercalative binding of the antitumor drugs amonafide and azonafide to the oligonucleotide duplex d(GGCCGGCCGG).d(CCGGCCGGCC) was compared using molecular dynamics in vacuum with the AMBER force field. A number of reasonable possible binding conformations were obtained, with the azonafide complexes favored over the amonafide complexes in net binding enthalpy. In comparison with amonafide, the larger chromophore of azonafide permits greater DNA distortion and wider side-chain swings, without falling out of the intercalation site. The best model obtained was used for further dynamics on amonafide and azonafide with solvent and counterions present, and again the azonafide complex had a more favorable enthalpy. Furthermore, the enthalpy change on going from solvent into the intercalation site was less unfavorable for azonafide. These results are consistent with the stronger DNA binding of azonafide compared to amonafide, as observed in relative melting transition temperature increases and tumor inhibition in cell cultures.
Collapse
Affiliation(s)
- S Bear
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
22
|
Casado A, Rosell R, García-Gómez R, Díaz-Rubio E, Pérez-Manga G, Font A, Benavides A, Martín M. Phase II study of mitonafide in non-small cell lung cancer (NSCLC). Invest New Drugs 1996; 14:415-7. [PMID: 9157079 DOI: 10.1007/bf00180820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The new intercalative agent Mitonafide was shown in early clinical trials to be toxic to the central nervous system when administered as a short intravenous infusion, but not when given as a 120-hour continuous infusion. Thus, clinical development in different tumor types was pursued using only this administration schedule. PATIENTS AND METHODS Forty-nine patients with previously untreated non-small cell lung cancer (NSCLC) and at least one measurable site received Mitonafide as a 120-hour continuous (5 days) infusion every 3 weeks. The starting dose was 170 mg/m2/day x 5 in the first 26 patients and 200 mg/m2/day x 5 in the remainder. Patients were evaluated for toxicity after each course and for response every two courses and remained on treatment until excessive toxicity or disease progression were observed. A special test, the "Mini-mental state", was used to assess patients' cognitive functions. RESULTS Of the 49 patients entered, 42 were evaluable for response and toxicity. Toxicity consisted mainly of myelosuppression and no neurologic side effects were observed. Only one patient presented a partial response. CONCLUSIONS Although definitively safe with this schedule of administration, Mitonafide is not active in NSCLC.
Collapse
Affiliation(s)
- A Casado
- Hospital Universitario San Carlos, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abad A, Grávalos C, Font A, Molina F, Díaz-Puente MT, Fabregat X, Benavides A, Martín M. Phase II study of Mitonafide in advanced and relapsed colorectal cancer. Invest New Drugs 1996; 14:223-5. [PMID: 8913845 DOI: 10.1007/bf00210795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND This study investigated the antitumoral activity in colorectal cancer and toxicity of a 5-day continuous infusion of a new cytostatic agent, Mitonafide, that had previously shown to be neurotoxic when administered as a short daily x 5 days infusion. PATIENTS AND METHODS Seventeen chemotherapy-naive patients with advanced or relapsed colorectal cancer and measurable disease entered the study. All but one received a 120-hour (5-day) continuous infusion of Mitonafide at a starting dose of 200 mg/m2/day every 3 weeks. Toxicity evaluation was performed after each course and response assessment every 2 courses using the standard World Health Organization (WHO) criteria completed by the "Mini-mental state" test for cognitive status examination. RESULTS Sixteen patients received a total of 41 courses of Mitonafide which resulted to be severely myelotoxic. In total, 13/16 patients had WHO grade 3-4 neutropenia, 7 of them with infection, and the treatment had to be stopped in 3 patients after only 1 course due to excessive toxicity. No central nervous system toxicity was observed. No objective responses were evidenced. CONCLUSIONS At the dose and schedule of administration used, Mitonafide is not active in colorectal cancer and induces severe myelotoxicity thus not deserving further studies in this indication.
Collapse
Affiliation(s)
- A Abad
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Díaz-Rubio E, Martín M, López-Vega JM, Casado A, Benavides A. Phase I study of mitonafide with a 3-day administration schedule: early interruption due to severe central nervous system toxicity. Invest New Drugs 1994; 12:277-81. [PMID: 7775127 DOI: 10.1007/bf00873041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eleven patients with solid tumors for whom effective therapy was not available entered a phase I study of mitonafide given as a short intravenous (i.v.) infusion daily for 3 consecutive days. The initial dose level was selected according to the experience from another phase I study using a 5-day administration schedule. Six patients entered the first dose level (180 mg/m2/day x 3 days) and 4 of them had grade 3-4 leukopenia. This level was considered to be the maximum tolerated dose (MTD) and no further dose escalations were attempted. The following 5 patients received a dose approximately 10% inferior to the previous one (160 mg/m2/day x 3 days). Three of them had grade 3-4 neutropenia. Three partial responses were observed in total. After inclusion of 11 patients, an unexpected toxicity, central nervous system (CNS) toxicity, consisting of severe loss of memory, temporospatial disorientation and high integrative function impairment was observed in 5 patients (46%). A median patients' follow-up of 3 months after treatment discontinuation showed that these alterations were progressive and not reversible. This disabling toxicity prompted us to an early study interruption. In conclusion, mitonafide, when administered as a short 3-day i.v. infusion, can induce severe and irreversible CNS toxicity. Nevertheless, since antitumor activity has been observed, further development of the drug is recommended with different schedules of administration that have shown not to produce neurotoxicity, i.e., 5-day continuous infusion.
Collapse
Affiliation(s)
- E Díaz-Rubio
- Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | | | | | | | | |
Collapse
|