1
|
Ueda S, Yagi M, Tomoda E, Matsumoto S, Ueyanagi Y, Do Y, Setoyama D, Matsushima Y, Nagao A, Suzuki T, Ide T, Mori Y, Oyama N, Kang D, Uchiumi T. Mitochondrial haplotype mutation alleviates respiratory defect of MELAS by restoring taurine modification in tRNA with 3243A > G mutation. Nucleic Acids Res 2023; 51:7480-7495. [PMID: 37439353 PMCID: PMC10415116 DOI: 10.1093/nar/gkad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.
Collapse
Affiliation(s)
- Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Mori
- Department of Internal Medicine Kitakyushu City Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Noriko Oyama
- Department of Endocrinology and Metabolism, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Pan X, Wang L, Fei G, Dong J, Zhong C, Lu J, Jin L. Acute Respiratory Failure Is the Initial Manifestation in the Adult-Onset A3243G tRNALeu mtDNA Mutation: A Case Report and the Literature Review. Front Neurol 2019; 10:780. [PMID: 31379729 PMCID: PMC6657224 DOI: 10.3389/fneur.2019.00780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
Isolated mitochondrial myopathy refers to the condition of mitochondrial disorders that primarily affect the skeletal muscle system. Here we report on a case of a patient who presented with acute respiratory failure as the initial and predominant clinical manifestation after using anesthetic drugs. The diagnosis of mitochondrial myopathy was made by histochemical findings of ragged red fibers with a modified Gomori trichrome Stain in the skeletal muscle biopsy and the genetic detection of an A3243G point mutation in the tRNALeu (UUR) gene of mitochondrial DNA (mtDNA) in a peripheral blood specimen. The patient revealed a benign clinical outcome with ventilator assistance and a cocktail treatment. Further, we performed a literature review on patients with respiratory failure as the early and predominant manifestation in adult-onset isolated mitochondrial myopathy. Eleven cases in nine studies (including our case) have been reported, and five of whom underwent DNA analysis all harbored the A3243G mutation in the tRNALeu gene of the mtDNA. Use of sedative drugs tends to induce acute respiratory failure in such cases.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijun Wang
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China.,Department of Neurology & Co-innovation Center of Neurodegeneration, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Abstract
The mitochondrial encephalomyopathies are a genetically heterogeneous group of disorders associated with impaired oxidative phosphorylation. Patients may exhibit a wide range of clinical symptoms and experience significant morbidity and mortality. There is currently no curative treatment. At present the majority of genetically defined mitochondrial encephalomyopathies are caused by mutations in mitochondrial DNA. The underlying molecular mechanisms and the complex relationship between genotype and phenotype in these mitochondrial DNA diseases remain only partially understood. We describe the key features of mitochondrial DNA genetics and outline some of the common disease phenotypes associated with mtDNA defects. A classification of pathogenic mitochondrial DNA point mutations which may have therapeutic implications is outlined.
Collapse
Affiliation(s)
- T Pulkes
- Muscle and Neurogenetics Sections, University Department of Clinical Neurology, Institute of Neurology, University College London, Queen Square, WC1N 3BG, London, UK
| | | |
Collapse
|
4
|
Abstract
Mitochondrial diseases are a heterogeneous group of disorders with widely varying clinical features, due to defects in mitochondrial function. Involvement of both muscle and nerve is common in mitochondrial disease. In some cases, this involvement is subclinical or a minor part of a multisystem disorder, but myopathy and neuropathy are a major, often presenting, feature of a number of mitochondrial syndromes. In addition, mitochondrial dysfunction may play a role in a number of classic neuromuscular diseases. This article reviews the role of mitochondrial dysfunction in neuromuscular disease and discusses a rational approach to diagnosis and treatment of patients presenting with a neuromuscular syndrome due to mitochondrial disease.
Collapse
Affiliation(s)
- R A Nardin
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Institute of Medicine, Rm 858, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | |
Collapse
|