Adarichev VA, Vaiskunaite R, Niu J, Balyasnikova IV, Voyno-Yasenetskaya TA. G alpha 13-mediated transformation and apoptosis are permissively dependent on basal ERK activity.
Am J Physiol Cell Physiol 2003;
285:C922-34. [PMID:
12736137 DOI:
10.1152/ajpcell.00115.2003]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that the alpha-subunit of heterotrimeric G13 protein induces either mitogenesis and neoplastic transformation or apoptosis in a cell-dependent manner. Here, we analyzed which signaling pathways are required for G alpha 13-induced mitogenesis or apoptosis using a novel mutant of G alpha 13. We have identified that in human cell line LoVo, the mutation encoding substitution of Arg260 to stop codon in mRNA of G alpha 13 subunit produced a mutant protein (G alpha 13-T) that lacks a COOH terminus and is endogenously expressed in LoVo cells as a polypeptide of 30 kDa. We found that G alpha 13-T lost its ability to promote proliferation and transformation but retained its ability to induce apoptosis. We found that full-length G alpha 13 could stimulate Elk1 transcription factor, whereas truncated G alpha 13 lost this ability. G alpha 13-dependent stimulation of Elk1 was inhibited by dominant-negative extracellular signal-regulated kinase (MEK) but not by dominant-negative MEKK1. Similarly, MEK inhibitor PD-98059 blocked G alpha 13-induced Elk1 stimulation, whereas JNK inhibitor SB-203580 was ineffective. In Rat-1 fibroblasts, G alpha 13-induced cell proliferation and foci formation were also inhibited by dominant-negative MEK and PD-98059 but not by dominant-negative MEKK1 and SB-203580. Whereas G alpha 13-T alone did not induce transformation, coexpression with constitutively active MEK partially restored its ability to transform Rat-1 cells. Importantly, full-length but not G alpha 13-T could stimulate Src kinase activity. Moreover, G alpha 13-dependent stimulation of Elk1, cell proliferation, and foci formation were inhibited by tyrosine kinase inhibitor, genistein, or by dominant-negative Src kinase, suggesting the involvement of a Src-dependent pathway in the G alpha 13-mediated cell proliferation and transformation. Importantly, truncated G alpha 13 retained its ability to stimulate apoptosis signal-regulated kinase ASK1 and c-Jun terminal kinase, JNK. Interestingly, the apoptosis induced by G alpha 13-T was inhibited by dominant-negative ASK1 or by SB-203580.
Collapse