Tanaka T, Yano T, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G. Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells.
Naunyn Schmiedebergs Arch Pharmacol 2008;
377:515-22. [PMID:
18320172 DOI:
10.1007/s00210-007-0250-y]
[Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/12/2007] [Indexed: 02/06/2023]
Abstract
We have recently found that GPR120, which is abundantly expressed in intestine, functions as a receptor for unsaturated long-chain free fatty acids (FFAs) and that GPR120 stimulation promotes the secretion of glucagons-like peptide-1 (GLP-1) in the mouse (Hirasawa et al., Nat Med 11:90-94, 2005). In this study, we cloned and characterized rat GPR120 (rGPR120), and then we examined the in vivo effects of acute and long-term administration of the natural ligand alpha-linolenic acid (alpha-LA). The cloned rat GPR120 complimentary DNA had a seven transmembrane structure, and a homology comparison of human, mouse, and rat GPR120 revealed that the rat GPR120 (rGPR120) shares 85 and 98% sequence identity with the human and mouse GPR120 proteins, respectively. The tissue distribution and ligand properties of rGPR120 were similar to those of mouse GPR120. In addition, alpha-LA provoked a transient increase in [Ca2+]i levels in HEK293 cells expressing rGPR120. Furthermore, administration of alpha-LA to the rat increased plasma GLP-1 levels, and long-term administration of alpha-LA led to proliferation of pancreatic beta cells, probably because of the enhanced GLP-1 secretion. These results show that rat GPR120 is a G-protein-coupled receptor whose ligand is a free fatty acid, and it may play an important role in the FFA-associated physiological responses.
Collapse