1
|
Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Ronowska A, Pawełczyk T. Retinoic acid as a therapeutic option in Alzheimer's disease: a focus on cholinergic restoration. Expert Rev Neurother 2015; 15:239-49. [PMID: 25683350 DOI: 10.1586/14737175.2015.1008456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Retinoic acid is a potent cell differentiating factor, which through its nuclear receptors affects a vast range of promoter sites in brain neuronal and glial cells in every step of embryonic and postnatal life. Its capacities, facilitating maturation of neurotransmitter phenotype in different groups of neurons, pave the way for its application as a potential therapeutic agent in neurodegenerative diseases including Alzheimer's disease. Retinoic acid was found to exert particularly strong enhancing effects on acetylcholine transmitter functions in brain cholinergic neurons, loss of which is tightly linked to the development of cognitive and memory deficits in course of different cholinergic encephalopathies. Here, we review cholinotrophic properties of retinoic acid and its derivatives, which may justify their application in the management of Alzheimer's disease and the related neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
2
|
Vijayaraghavan S, Karami A, Aeinehband S, Behbahani H, Grandien A, Nilsson B, Ekdahl KN, Lindblom RPF, Piehl F, Darreh-Shori T. Regulated Extracellular Choline Acetyltransferase Activity- The Plausible Missing Link of the Distant Action of Acetylcholine in the Cholinergic Anti-Inflammatory Pathway. PLoS One 2013; 8:e65936. [PMID: 23840379 PMCID: PMC3686815 DOI: 10.1371/journal.pone.0065936] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer's disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer's disease and multiple sclerosis in particular.
Collapse
Affiliation(s)
- Swetha Vijayaraghavan
- Division of Alzheimer Neurobiology Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
| | - Azadeh Karami
- Division of Alzheimer Neurobiology Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
| | - Shahin Aeinehband
- Department of Clinical Neuroscience, Unit for Neuroimmunology, Solna, Stockholm, Sweden
| | - Homira Behbahani
- Division of Alzheimer Disease Research Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
| | - Alf Grandien
- Department of Medicine, Center for Hematology and Regenerative Medicine, Huddinge, Stockholm, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Division of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Division of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | | | - Fredrik Piehl
- Department of Clinical Neuroscience, Unit for Neuroimmunology, Solna, Stockholm, Sweden
| | - Taher Darreh-Shori
- Division of Alzheimer Neurobiology Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
3
|
Shah N, Khurana S, Cheng K, Raufman JP. Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol 2008; 296:C221-32. [PMID: 19036940 DOI: 10.1152/ajpcell.00514.2008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Emerging evidence indicates that muscarinic receptors and ligands play key roles in regulating cellular proliferation and cancer progression. Both neuronal and nonneuronal acetylcholine production results in neurocrine, paracrine, and autocrine promotion of cell proliferation, apoptosis, migration, and other features critical for cancer cell survival and spread. The present review comprises a focused critical analysis of evidence supporting the role of muscarinic receptors and ligands in cancer. Criteria are proposed to validate the biological importance of muscarinic receptor expression, activation, and postreceptor signaling. Likewise, criteria are proposed to validate the role of nonneuronal acetylcholine production in cancer. Dissecting cellular mechanisms necessary for muscarinic receptor activation as well as those needed for acetylcholine production and release will identify multiple novel targets for cancer therapy.
Collapse
Affiliation(s)
- Nirish Shah
- Division of Gastroenterology and Hepatology, Univ. of Maryland School of Medicine, 22 South Greene St., N3W62, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
4
|
Abstract
This article reviews the significance of changes in the level of cerebrospinal fluid acetylcholinesterase or cholinesterase in patients with Alzheimer's disease or other dementias. Evidence has shown that the methodology of assaying cerebrospinal fluid acetylcholinesterase or cholinesterase is reliable and the activity of the enzyme is stable. Low acetylcholinesterase or cholinesterase levels presenting in cerebrospinal fluid of a demented individual may confirm the clinical diagnosis of Alzheimer's disease or other organic dementia. A low activity of acetylcholinesterase or cholinesterase existing in cerebrospinal fluid of a non-demented individual may indicate a brain at risk, or that the person is in the preclinical stage of dementia. Recognition of the presence of the preclinical stage may be very beneficial for explaining the real meaning of the 'overlap' in the biochemistry and pathology between dementia and non-dementia, and also very important for prevention and treatment. Therefore, the strategy of prevention and of treatment should no longer be designed to inhibit acetylcholinesterase activity. In contrast, it should be designed to enhance the neuronal acetylcholinesterase activity or to delay the degeneration of brain acetylcholinesterase system.
Collapse
Affiliation(s)
- Z X Shen
- Department of Neurology, Xuan-Wu Hospital, Beijing, China
| |
Collapse
|
5
|
Yamada H, Otsuka M, Fujimoto K, Kawashima K, Yoshida M. Determination of acetylcholine concentration in cerebrospinal fluid of patients with neurologic diseases. Acta Neurol Scand 1996; 93:76-8. [PMID: 8825278 DOI: 10.1111/j.1600-0404.1996.tb00175.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Acetylcholine (ACh) is a well known neurotransmitter in the central nervous system, but determining its level in cerebrospinal fluid (CSF) is very difficult and the origin of CSF ACh is still unknown. In this study, we attempted to measure CSF ACh by a specific and sensitive radioimmunoassay (RIA) from patients with neurologic diseases. MATERIAL AND METHODS Patients with cerebral infarction (n = 7), Parkinson's disease (n = 6), spinocerebellar degeneration (n = 6), Alzheimer's disease (n = 3), amyotrophic lateral sclerosis (n = 3) and disc herniation with no central nervous involvement (n = 8) participated to determine the CSF ACh levels. RESULTS Of these 33 patients, the mean ACh level in CSF was 282.2 +/- 61.7 fmol/ml (mean +/- SE, range 20-1505.8 fmol/ml). The mean ACh level of spinocerebellar degeneration group was lower than others, but not statistically significant. CONCLUSION We conclude that an amount of ACh detectable by RIA is certainly present in CSF.
Collapse
Affiliation(s)
- H Yamada
- Department of Neurology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | |
Collapse
|
6
|
Abstract
This article reviews the considerable evidence which rejects the cholinergic hypothesis of Alzheimer's disease (AD) and proposes that it is the AChE system of which the lightly stained neurons are located in the entorhinal cortex, the CA1/subiculum of the hippocampus and the amygdala which are the most vulnerable and are the earliest affected in the pathological processes of AD. Changes then spread out to the intermediately stained neurons of the association cortex, until they affect the heavily stained cells of the motor cortex. In general, senile plaque, a hallmark of AD, may be formed from the terminals of AChE-containing neurons. Neurofibrillary tangle, another hallmark of AD, may be formed in the perikarya of AChE-containing cells and bring about the demise of the neuron, thus leading to dementia.
Collapse
Affiliation(s)
- Z X Shen
- Department of Neurology, University of Minnesota, Minneapolis 55455-0323
| |
Collapse
|