1
|
Schimchowitsch S, Cassel JC. Polyamine and aminoguanidine treatments to promote structural and functional recovery in the adult mammalian brain after injury: a brief literature review and preliminary data about their combined administration. ACTA ACUST UNITED AC 2006; 99:221-31. [PMID: 16646157 DOI: 10.1016/j.jphysparis.2005.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regeneration potential of the adult mammalian central nervous system (CNS) is very modest, due to, among other factors, the presence of either a glial scar, or myelin-associated regeneration inhibitors such as Nogo-A, MAG and OMgp, which all interact with the same receptor (NgR). After a brief review of the key proteins (Rho and PKC) implicated in NgR-mediated signalling cascades, we will tackle the implications of cAMP and Arginase I in overcoming myelin growth-inhibitory influence, and then will focus on the effects of polyamines and aminoguanidine to propose (and to briefly support this proposal by our own preliminary data) that their association might be a potent way to enable functionally-relevant regeneration in the adult mammalian CNS.
Collapse
Affiliation(s)
- Sarah Schimchowitsch
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 CNRS--Université Louis Pasteur, IFR 37 Neurosciences, Strasbourg, France
| | | |
Collapse
|
2
|
Schreiber RC, Boeshore KL, Laube G, Veh RW, Zigmond RE. Polyamines increase in sympathetic neurons and non-neuronal cells after axotomy and enhance neurite outgrowth in nerve growth factor-primed PC12 cells. Neuroscience 2005; 128:741-9. [PMID: 15464282 DOI: 10.1016/j.neuroscience.2004.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2004] [Indexed: 11/22/2022]
Abstract
Following axonal damage, sympathetic neurons are capable of regenerating and reinnervating their target tissues. Some years ago exogenous administration of polyamines was shown to enhance this regeneration. Recently, it was found that axonal injury leads to a dramatic up-regulation of the expression of arginase I in sympathetic neurons. This enzyme catalyzes the conversion of arginine to ornithine, which can subsequently be converted to the diamine putrescine and, ultimately, to the polyamines spermidine and spermine. In the present study, using an antiserum that reacts with both spermidine and spermine, we have found an increase in polyamine levels in both neurons and non-neuronal cells in the superior cervical ganglion 2 and 5 days following transection of the ganglion's postganglionic trunks. Using PC12 cells primed with nerve growth factor and then stripped off the culture dish and replated as a model system for axotomized sympathetic neurons, we found that spermidine treatment, with or without nerve growth factor, resulted in an increased percentage of cells with a neurite whose length was at least twice the diameter of the neuron's cell body. These increases could be seen within 48 h and were still evident after 8 days. Together, these data support the possibility that endogenous polyamines are involved in the normal regeneration which occurs following sympathetic axonal damage.
Collapse
Affiliation(s)
- R C Schreiber
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | | | | | | | | |
Collapse
|
3
|
González Deniselle MC, González S, Piroli G, Ferrini M, Lima AE, De Nicola AF. Glucocorticoid receptors and actions in the spinal cord of the Wobbler mouse, a model for neurodegenerative diseases. J Steroid Biochem Mol Biol 1997; 60:205-13. [PMID: 9191978 DOI: 10.1016/s0960-0760(96)00193-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have studied glucocorticoid receptors (GR) and actions in the spinal cord of the Wobbler mouse, a model for amyotrophic lateral sclerosis and infantile spinal muscular atrophy. Basal and stress levels of circulating corticosterone (CORT) were increased in Wobbler mice. Single point binding assays showed that cytosolic type II GR in the spinal cord of Wobbler mice of both sexes were slightly reduced compared with normal littermates. Saturation analysis further demonstrated a non-significant reduction in Bmax with increased Kd. In the hippocampus, however, we found down-regulation of GR, a probable response to increased CORT levels. We also found that the basal activity of ornithine decarboxylase (ODC), a rate-limiting enzyme of polyamine biosynthesis, was higher in Wobbler mice than in control animals. Both groups showed a two-fold stimulation of ODC activity after treatment with dexamethasone (DEX). Additionally, Wobbler mice presented with an intense proliferation of astrocytes immunoreactive (ir) for glial fibrillary acidic protein (GFAP) in grey and white matter of the spinal cord. The enhanced GFAP-ir was attenuated after four days of treatment with a corticosterone (CORT) pellet implant, producing a pharmacological increase in peripheral circulating CORT. Taking into consideration the content of GR and the changes in ODC activity and GFAP-ir brought about by glucocorticoids, we suggest that Wobbler mice are hormone responsive. Further elucidation of glucocorticoid effects in this model may be relevant for understanding the possible use of hormones in human neurodegenerative diseases.
Collapse
Affiliation(s)
- M C González Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
4
|
LaMotte RH, Zhang JM, Petersen M. Alterations in the functional properties of dorsal root ganglion cells with unmyelinated axons after a chronic nerve constriction in the rat. PROGRESS IN BRAIN RESEARCH 1996; 110:105-11. [PMID: 9000719 DOI: 10.1016/s0079-6123(08)62568-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R H LaMotte
- Department of Anesthesiology, Yale University, School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
5
|
Gonzalez S, Coirini H, Gonzalez Deniselle MC, Gonzalez S, Calandra R, De Nicola AF. Time-dependent effects of dexamethasone on glutamate binding, ornithine decarboxylase activity and polyamine levels in the transected spinal cord. J Steroid Biochem Mol Biol 1995; 55:85-92. [PMID: 7577724 DOI: 10.1016/0960-0760(95)00160-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Evidence exists that the spinal cord is a glucocorticoid-responsive tissue, and glucocorticoids have beneficial effects in cases of spinal cord injury. Using sham-operated rats, spinal cord transected (TRX) rats, and TRX animals receiving dexamethasone (DEX) 5 min or 24 h post-lesion, we have examined the following GC-sensitive parameters 6 h after DEX treatment: (1) binding of glutamate to NMDA-sensitive receptors; (2) the activity of ornithine decarboxylase (ODC); and (3) levels of polyamines. We found that glutamate binding in the dorsal horn (Laminae 1-2) and central canal were upregulated in TRX rats, whereas DEX had an additional stimulatory effect. 24 h post-lesion, glutamate binding was unmodified in TRX or TRX+DEX rats. ODC activity was increased 10-fold in rats killed on the day of transection but only 2-fold 24 h post-lesion. DEX reduced ODC activity on transection day but highly increased it when given 24 h after surgery. The content of the polyamines spermidine and spermine were unchanged after TRX or DEX treatment, in contrast to putrescine which increased in TRX rats and further increased in TRX+DEX rats when measured the day post-lesion. Thus, parallel increases in ODC and putrescine 1 day after the lesion, suggest that glucocorticoid effects on growth responses due to polyamines may develop at a late period. The changes of glutamate binding in the dorsal horn and central canal due to early glucocorticoid treatment, further suggest hormonal modulation of neurotransmission in sensitive areas of the deafferented spinal cord.
Collapse
Affiliation(s)
- S Gonzalez
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
6
|
Walters ET, Ambron RT. Long-term alterations induced by injury and by 5-HT in Aplysia sensory neurons: convergent pathways and common signals? Trends Neurosci 1995; 18:137-42. [PMID: 7754525 DOI: 10.1016/0166-2236(95)93891-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bodily injury in Aplysia, as in mammals, produces long-lasting memory traces at various neural loci. One consequence of injury, damage to peripheral axons, produces long-term hyperexcitability, synaptic facilitation, and growth in Aplysia sensory neurons. Similar effects are induced in these cells by repeated exposure to 5-HT that is released during aversive learning. An interesting question is to what extent cellular pathways that mediate the effects of axonal injury and 5-HT overlap. One current focus is on identifying cytoplasmic signals that initiate persistent sensory alterations that contribute to both long-term sensitization and memory of injury.
Collapse
Affiliation(s)
- E T Walters
- Dept of Physiology and Cell Biology, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
7
|
Tein I, Donner EJ, Hale DE, Murphy EG. Clinical and neurophysiologic response of myopathy and neuropathy in long-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency to oral prednisone. Pediatr Neurol 1995; 12:68-76. [PMID: 7748366 DOI: 10.1016/0887-8994(94)00109-f] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to evaluate the clinical and neurophysiologic responses to oral prednisone therapy in a boy with enzymatically confirmed long-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency in biopsied muscle and cultured skin fibroblasts. This boy presented with progressive limb girdle myopathy, recurrent myoglobinuria, peripheral sensorimotor axonopathy, and intraventricular conduction delays. Prior to prednisone therapy, at age 8 years, he exhibited marked distal weakness greater than proximal weakness with a waddling and high-steppage gait, Gowers' maneuver (10 s to rise from the floor), fatigue after 3-20 yards of walking and the ability to climb only 2 stairs. Serum levels of creatine kinase rose from 34 to 4,124 U/L following mild exertion. Nerve conduction studies revealed progressive axonopathy with secondary demyelination. Four weeks after initiation of oral prednisone (0.75 mg/kg/day) therapy, there was approximately a 100% increase in power and endurance. He was able to walk at least 100 yards before tiring, could rise from sitting on the floor in 3-4 s, and was able to climb 20 steps in 30 s. There was concurrent improvement in nerve conduction studies. Prednisone was gradually withdrawn over the next 4 months to 0.19 mg/kg/day; lower doses of 0.08 mg/kg/day resulted in a marked deterioration in power to the prior state. Although 0.19 mg/kg/day did not maintain the peak power achieved at 0.75 mg/kg/day, it provided adequate baseline power and endurance. It is concluded that there was a significant clinical and neurophysiologic response to prednisone at a dosage > or = 0.16 mg/kg/day. Prednisone may stabilize muscle and neuronal plasma membranes, as well as the fatty acid oxidation enzyme complex in the mitochondrial membrane.
Collapse
Affiliation(s)
- I Tein
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Walters ET. Injury-related behavior and neuronal plasticity: an evolutionary perspective on sensitization, hyperalgesia, and analgesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:325-427. [PMID: 7822120 DOI: 10.1016/s0074-7742(08)60307-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E T Walters
- Department of Physiology and Cell Biology, University of Texas Medical School at Houston 77030
| |
Collapse
|
9
|
Ferrini M, González S, De Nicola AF. Estradiol increases glucocorticoid binding and glucocorticoid induction of ornithine decarboxylase in the rat spinal cord. Life Sci 1993; 52:677-85. [PMID: 8429760 DOI: 10.1016/0024-3205(93)90460-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previous results demonstrated that estradiol (E2) treatment of ovariectomized-adrenalectomized (OVX-ADX) rats increased glucocorticoid (GC) binding in brain regions. The experimental protocol was extended to the spinal cord, a GC target tissue in which ornithine decarboxylase (ODC) is markedly induced by GC treatment. First, we measured GC binding to type I and type II receptors in ventral horn, dorsal horn and lateral funiculus of OVX-ADX rats treated during 4 days with E2 or vehicle. In E2-treated rats, type II receptors increased solely in dorsal horn, whereas type I sites remained unchanged. Second, in a group of OVX-ADX rats receiving dexamethasone (DEX), pretreatment with E2 superinduced ODC in ventral horn and lateral funiculus, but not in dorsal horn. Third, we found that the dorsal horn was relatively enriched in E2 receptors compared to other areas. Therefore, E2 stimulation of GC binding to type II sites may be mediated through E2 receptors localized in the dorsal horn. We suggest that combined treatment with E2 and DEX employs a transsynaptic mechanism for ODC induction at the ventral horn and lateral funiculus, with hormonal interaction taking place at the dorsal horn level.
Collapse
Affiliation(s)
- M Ferrini
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Myall OT, Allen SL, McLean WG. The effect of acrylamide on the induction of ornithine decarboxylase in the dorsal root ganglion of the rat. Brain Res 1990; 523:295-7. [PMID: 2400913 DOI: 10.1016/0006-8993(90)91500-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Injury of the rat sciatic nerve is accompanied by an increased activity of the enzyme ornithine decarboxylase (ODC) in dorsal root ganglia. This increase is impaired in streptozotocin-induced diabetes, in which retrograde axonal transport of proteins is reduced. In order to confirm the relationship between altered axonal transport and ODC induction we treated rats with acrylamide i.p. to cumulative doses of 150 and 350 mg/kg. One sciatic nerve was crushed under anaesthesia and 24 h later dorsal root ganglia were removed and assayed for ODC activity by a dual-label radioenzymatic method. The ratio of activity of 2.41 +/- 0.57 (crushed side over control side) was reduced to 1.66 +/- 0.9 and 1.7 +/- 0.65 after acrylamide treatment at 150 and 350 mg/kg, respectively. The results are consistent with the postulated role of retrograde axonal transport in the cell body responses to nerve injury and may explain the effect of acrylamide on nerve regeneration.
Collapse
Affiliation(s)
- O T Myall
- Department of Pharmacology and Therapeutics, University of Liverpool, U.K
| | | | | |
Collapse
|
11
|
The effect of 2,5-hexanedione on the induction of ornithine decarboxylase in the dorsal root ganglion of the rat. Neurosci Lett 1990; 114:305-8. [PMID: 2402339 DOI: 10.1016/0304-3940(90)90581-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rat dorsal root ganglia respond to sciatic nerve injury with an increase in the activity of the enzyme ornithine decarboxylase (ODC). The increase is impaired under certain conditions (e.g. diabetes, Vinca alkaloid treatment) where retrograde axonal transport is reduced. The purpose of the experiments was to determine if the neurotoxin 2,5-hexanedione, also known to interfere with retrograde axonal transport, similarly affected ODC induction. Rats were treated with 2,5-hexanedione i.p. to a cumulative dose of 6 and 8 g/kg. One sciatic nerve was crushed under anaesthesia and 24 h later the dorsal root ganglia were removed and assayed for ODC activity by a radioenzymatic method. The ratio of ODC activity of 1.57 +/- 0.58 (crushed side over control side) was reduced to 1.02 +/- 0.41 1.08 +/- 0.39 after 2,5-hexanedione at 6 g and 8 g/kg, respectively. The enzyme was not inhibited by addition of 2,5-hexanedione in vitro. The results confirm the role of retrograde axonal transport in nerve cell responses to injury and are consistent with the effects of 2,5-hexanedione on nerve regeneration.
Collapse
|
12
|
Sabri MI, Soiefer AI, Kisby GE, Spencer PS. Determination of polyamines by precolumn derivatization with 9-fluorenylmethyl chloroformate and reverse-phase high-performance liquid chromatography. J Neurosci Methods 1989; 29:27-31. [PMID: 2761296 DOI: 10.1016/0165-0270(89)90105-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A high-performance liquid chromatography (HPLC) method for the determination of picomole levels of polyamines (putrescine, spermidine, and spermine) is described. Amino groups in polyamines react with 9-fluorenylmethyl chloroformate (FMOC) to form stable and highly fluorescent derivatives which can be separated and quantitatively estimated by HPLC in about 12 min. The mean relative elution times (n = 14) for putrescine, spermidine and spermine are 4.21 +/- 0.02, 10.09 +/- 0.02 and 11.19 +/- 0.04 min, respectively. The method has been applied to determine polyamine concentration in rat dorsal root ganglia (DRG) without interference with endogenous amino acids. Polyamine content of individual rat DRG has been calculated and the values are as follows: putrescine, 36.8 +/- 2.01, spermidine, 1652 +/- 131.0 and spermine 388.5 +/- 38.4 pmol/DRG. Information on polyamine concentrations in DRG may be useful in understanding the mechanism of action of toxic chemicals on nervous system.
Collapse
Affiliation(s)
- M I Sabri
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201
| | | | | | | |
Collapse
|