1
|
Ambrin G, Kumar R, Singh BR. Differential endopeptidase activity of different forms of type A botulinum neurotoxin: A unique relationship between the size of the substrate and activity of the enzyme. Toxicon 2018; 144:34-41. [PMID: 29309744 DOI: 10.1016/j.toxicon.2017.12.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
Botulinum neurotoxins (BoNTs; serotypes A-G) are metalloproteases, which cleave and inactivate cellular proteins essential for neurotransmitter release. In bacterial cultures, BoNTs are secreted as a complex of the neurotoxin and a group of neurotoxin associated proteins (NAPs). Under physiological condition (pH 7.4), this complex is believed to be dissociated to separate the neurotoxin from NAPs. BoNT consists of a 50 kDa light (L) chain (LC or catalytic domain) and a 100 kDa heavy (H) chain (or HC) linked through a disulfide bond and other non-covalent interactions. The cell intoxication involves three major steps; binding, membrane translocation and inhibition of neurotransmitter release. The last step of intoxication, endopeptidase activity, is very unique and specific that can be used for detection of the complex and isolated forms of the toxin. A fluorescent tag-labeled synthetic peptide (SNAPtide) derived from a segment of SNAP-25, an intracellular substrate of BoNT/A, is used to detect and assay the endopeptidase activity of BoNT/A. The detection of the signal is based on the change in the fluorescence energy transfer after selective cleavage of the peptide by the BoNT/A. In this report, we demonstrate that SNAPtide as a commonly used substrate widely differ in reaction with BoNT/A complex, BoNT/A, and BoNT/A light chain. These findings have implications for assays used in detection, and in screening potential inhibitors.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- Department of Chemistry and Biochemistry, University of Massachusetts, North Dartmouth, MA, 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA
| | - Bal Ram Singh
- Department of Chemistry and Biochemistry, University of Massachusetts, North Dartmouth, MA, 02747, USA; Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| |
Collapse
|
2
|
Lam KH, Jin R. Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery. Curr Opin Struct Biol 2015; 31:89-95. [PMID: 25889616 DOI: 10.1016/j.sbi.2015.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Abstract
Botulinum neurotoxins (BoNTs) are extremely poisonous protein toxins that cause the fatal paralytic disease botulism. They are naturally produced in bacteria with several nontoxic neurotoxin-associated proteins (NAPs) and together they form a progenitor toxin complex (PTC), the largest bacterial toxin complex known. In foodborne botulism, the PTC functions as a molecular machine that helps BoNT breach the host defense in the gut. Here, we discuss the substantial recent advance in elucidating the atomic structures and assembly of the 14-subunit PTC, including structures of BoNT and four NAPs. These structural studies shed light on the molecular mechanisms by which BoNT is protected against the acidic environment and proteolytic destruction in the gastrointestinal tract, and how it is delivered across the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
Scotcher MC, Cheng LW, Ching K, McGarvey J, Hnasko R, Stanker L. Development and characterization of six monoclonal antibodies to hemagglutinin-70 of Clostridium botulinum and their application in a sandwich ELISA. Monoclon Antib Immunodiagn Immunother 2013; 32:6-15. [PMID: 23600499 DOI: 10.1089/mab.2012.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are produced by Clostridium botulinum and cause severe neuroparalytic disease that if not treated quickly is often fatal. The toxin is produced as a 150 kDa precursor protein (holotoxin) that is enzymatically cleaved to form two subunits, heavy and light chains, linked by a single disulfide bond. Seven toxin serotypes are known. BoNT serotypes A1 and B1 are secreted as precursor toxic complexes (PTC) containing of the toxin and non-toxic associated proteins (NAPs) consisting of non-toxic hemagglutinin proteins (HA), designated HA17, HA34, and HA70, and a 120 kDa non-toxin non-hemagglutinin (NTNH) protein. The exact contribution of the NAPs in disease is not known, but it is thought that they protect the toxin as it passes through the harsh environment of the stomach. The structure of the complex is also poorly understood, although recent models suggest that for each molecule of toxin the PTC contains one molecule of the NTNH and multiple copies of each HA. In this paper we describe six monoclonal antibodies that specifically bind the HA70 protein found in the PTC of BoNT/A1 and /B1. Based on these antibodies, we demonstrate a rapid sandwich ELISA assay for detecting HA70.
Collapse
|
4
|
Lee K, Gu S, Jin L, Le TTN, Cheng LW, Strotmeier J, Kruel AM, Yao G, Perry K, Rummel A, Jin R. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 2013; 9:e1003690. [PMID: 24130488 PMCID: PMC3795040 DOI: 10.1371/journal.ppat.1003690] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/11/2013] [Indexed: 11/24/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry. Food-borne botulinum neurotoxin (BoNT) poisoning results in fatal muscle paralysis. But how can BoNT–a large protein released by the bacteria clostridia–survive the hostile gastrointestinal (GI) tract to gain access to neurons that control muscle contraction? Here, we report the complete structure of a bimodular ∼760 kDa BoNT/A large progenitor toxin complex (L-PTC), which is composed of BoNT and four non-toxic bacterial proteins. The architecture of this bacterial machinery mimics an Apollo lunar module, whereby the “ascent stage” (a ∼290 kDa module) protects BoNT from destruction in the GI tract and the 3-arm “descent stage” (a ∼470 kDa module) mediates absorption of BoNT by binding to host carbohydrate receptors in the small intestine. This new finding has helped us identify the carbohydrate-binding sites and the monosaccharide IPTG as a prototypical oral inhibitor, which extends survival following lethal BoNT/A intoxication of mice. Hence, pre-treatment with small molecule inhibitors based on carbohydrate receptor mimicry can provide temporary protection against BoNT entry into the circulation.
Collapse
Affiliation(s)
- Kwangkook Lee
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Shenyan Gu
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Lei Jin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Thi Tuc Nghi Le
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Luisa W. Cheng
- Foodborne Contaminants Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Jasmin Strotmeier
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail: (AR); (RJ)
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
- Neuroscience, Aging and Stem Cell Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AR); (RJ)
| |
Collapse
|
5
|
Sayadmanesh A, Ebrahimi F, Hajizade A, Rostamian M, Keshavarz H. Expression and purification of neurotoxin-associated protein HA-33/A from Clostridium botulinum and evaluation of its antigenicity. IRANIAN BIOMEDICAL JOURNAL 2013; 17:165-70. [PMID: 23999711 DOI: 10.6091/ibj.1216.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expressed and purified, and subsequently its antigenicity in mice was studied. METHODS Initially, ha-33 gene sequence of Clostridium botulinum serotype A was adopted from GenBank. The gene sequence was optimized and synthesized in pET28a (+) vector. E. coli BL21 (DE3) strain was transformed by the recombinant vector and the expression of HA-33 was optimized at 37°C and 5 h induction time. RESULTS The recombinant protein was purified by nickel nitrilotriacetic acid agarose affinity chromatography and confirmed by immunoblotting. Enzyme Linked Immunoassay showed a high titer antibody production in mice. CONCLUSION The results indicated a highly expressed and purified recombinant protein, which is able to evoke high antibody titers in mice.
Collapse
Affiliation(s)
- Ali Sayadmanesh
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Firouz Ebrahimi
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Abbas Hajizade
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Mosayeb Rostamian
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Hani Keshavarz
- Dept. of Biology, Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| |
Collapse
|
6
|
Oguma K, Inoue K, Fujinaga Y, Yokota K, Watanabe T, Ohyama T, Takeshi K, Inoue K. Structure and Function ofClostridium BotulinumProgenitor Toxin. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/15569549909036015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Abstract
Botulinum neurotoxin (BoNT) has been used clinically since 1980, with an ever-increasing range of clinical applications. This has coincided with a period of massively expanded interest in the underlying biology of the neurotoxin. Tremendous advances have taken place in the scientific understanding of neurotoxin structure and function since the description of their endopeptidase activity in 1992. These developments have led to an increased understanding of the mechanisms underpinning the clinical use of the neurotoxins and also in the technologies available to support their clinical use. The expanding range of clinical applications, and use in increasing doses, has also generated challenges for the clinicians and manufacturers of BoNT preparations to ensure continuing efficacy and safety margins for these new clinical settings. To date the increased clinical use of BoNTs has occurred largely empirically, and not by application of the recent insights into neurotoxin structure and function. With the increased knowledge regarding the biology of the neurotoxins, however, there is the opportunity to select preferred forms of the toxin for particular clinical applications and even to consider engineering the neurotoxins to produce modified products more suited to specific clinical applications. These developments and opportunities that have arisen, particularly over the last decade, emphasise the increasing need to maintain an active two way dialogue between clinicians and basic scientists to ensure that the advances in the laboratory are translated into clinical benefit and that the clinical developments in use of neurotoxin are supported by the scientific research activity. This article is based upon presentations given in a workshop at the 5th International Conference on Basic and Therapeutic Aspects of Botulinum and Tetanus Toxin in Denver in June, 2005 seeking to address issues relating to the laboratory/clinic interface.
Collapse
Affiliation(s)
- K A Foster
- Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, UK.
| | | | | |
Collapse
|
8
|
Characterization of new formalin-detoxified botulinum neurotoxin toxoids. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1374-9. [PMID: 18667637 DOI: 10.1128/cvi.00117-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antigenicities of several formalin-detoxified botulinum neurotoxin preparations were measured by inhibition and sandwich enzyme-linked immunosorbent assay (ELISA), and immunogenicity was studied in mice. The toxoids were derived primarily from the serotype A 150-kDa neurotoxin protein, while one toxoid was derived from the naturally occurring 900-kDa toxin-hemagglutinin complex. Antigenicity was severely compromised in two commercially available toxoids. A variety of new toxoids were synthesized in-house by optimizing formaldehyde reaction conditions. Three of the resulting toxoids were found to be antigenically identical to the native toxin, as measured by inhibition ELISA, in spite of showing a reduction of toxicity by more than 100,000-fold. Sandwich ELISAs indicated that the in-house toxoids were two- to threefold less antigenic than the neurotoxin compared to commercial toxoids, which were about 100-fold less antigenic. Mice were immunized twice, on day 0 and day 14. By day 28, relatively high toxin-specific immunoglobulin G (IgG) titers were detected in animals that had received any of the in-house toxoids, with greater than 99% being IgG1 and the remainder being IgG2. These immunized mice remained asymptomatic after being challenged with 50 to 1,000,000 50% lethal dose (LD(50)) units of the 900-kDa neurotoxin. In contrast, animals immunized with several different batches of commercially available toxoids did not develop measurable toxin-specific antibody titers. However, these mice survived neurotoxin challenges with 2 LD(50) units but died when challenged with 6 LD(50) units. Neutralizing titers measured from pools of sera generated with the in-house toxoid preparations ranged from 2.5 to 5 U/ml. In terms of predicting immunogenicity, inhibition ELISAs comparing each formalin toxoid to the parent toxin provided good insight for screening the new toxoids as well as for estimating their relative in vivo potencies. Inhibition ELISA data indicate that those toxoids that most closely resemble the native toxin are highly immunogenic and protective. The superior quality of these new toxoids makes them useful tools for continued use in ELISA development and for antitoxin production.
Collapse
|
9
|
Hines HB, Lebeda F, Hale M, Brueggemann EE. Characterization of botulinum progenitor toxins by mass spectrometry. Appl Environ Microbiol 2005; 71:4478-86. [PMID: 16085839 PMCID: PMC1183299 DOI: 10.1128/aem.71.8.4478-4486.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum toxin analysis has renewed importance. This study included the use of nanochromatography-nanoelectrospray-mass spectrometry/mass spectrometry to characterize the protein composition of botulinum progenitor toxins and to assign botulinum progenitor toxins to their proper serotype and strain by using currently available sequence information. Clostridium botulinum progenitor toxins from strains Hall, Okra, Stockholm, MDPH, Alaska, and Langeland and 89 representing serotypes A through G, respectively, were reduced, alkylated, digested with trypsin, and identified by matching the processed product ion spectra of the tryptic peptides to proteins in accessible databases. All proteins known to be present in progenitor toxins from each serotype were identified. Additional proteins, including flagellins, ORF-X1, and neurotoxin binding protein, not previously reported to be associated with progenitor toxins, were present also in samples from several serotypes. Protein identification was used to assign toxins to a serotype and strain. Serotype assignments were accurate, and strain assignments were best when either sufficient nucleotide or amino acid sequence data were available. Minor difficulties were encountered using neurotoxin-associated protein identification for assigning serotype and strain. This study found that combined nanoscale chromatographic and mass spectrometric techniques can characterize C. botulinum progenitor toxin protein composition and that serotype/strain assignments based upon these proteins can provide accurate serotype and, in most instances, strain assignments using currently available information. Assignment accuracy will continue to improve as more nucleotide/amino acid sequence information becomes available for different botulinum strains.
Collapse
Affiliation(s)
- Harry B Hines
- Dept. of Cell Biology and Biochemistry, Toxinology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Frederick, MD 21702-5011, USA.
| | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
Purified toxin complexes have found a niche in the treatment of clinical disorders involving muscle hyperactivity. This report describes the fundamental biochemical properties of the commercially available form of Botulinum Toxin Type B and compares these attributes to the Type A form of the Toxin. Both neurotoxins act to inhibit the release of acetylcholine at the neuromuscular junction, causing muscle paralysis. The different serotypes are structurally and functionally similar; however, specific differences in neuronal acceptor binding sites, intracellular enzymatic sites, and species sensitivities suggest that each serotype is its own unique pharmacologic entity. Data are provided on the biochemical properties and long-term stability of the Type B product, which is uniquely formulated as a liquid product.
Collapse
Affiliation(s)
- James E Callaway
- Pharmaceutical Development, Elan Pharmaceuticals, South San Francisco, California 94080, USA.
| |
Collapse
|
12
|
Abstract
This article discusses complications with the use of botulinum toxin. The following topics are explored: conditions caused by muscle spasms, resistance to botulinum toxin, cosmetic use of botulinum toxin, complications in treating hyperhidrosis, treatment of migraine headaches, and informed consent.
Collapse
Affiliation(s)
- Arnold W Klein
- Department of Dermatology, David Geffen School of Medicine at UCLA, 435 Roxbury Drive, Suite 204, Beverly Hills, CA 90210, USA.
| |
Collapse
|
13
|
Abstract
OBJECTIVE To evaluate the clinical safety and efficacy of botulinum toxin type B (MYOBLOC) in reducing myofascial pain associated with piriformis syndrome. DESIGN This was a single-center, outpatient, open-label study of patients with piriformis syndrome. Subjects were treated unilaterally or bilaterally, depending on their symptoms. Evaluations and procedures were performed by a single examiner who was not blinded, and there were no control subjects in this case series. Each piriformis muscle was infiltrated from one injection site under electromyographic guidance with 5000 units of botulinum toxin type B. RESULTS A total of 20 patients were enrolled in this study. Significant reductions in mean visual analog scale scores for buttock and hip pain were noted at weeks 4, 12, and 16 and for low back pain at weeks 2, 12, and 16. Visual analog scale scores for general and low back pain, pain radiating into lower limbs, and tingling were significantly lower at week 2 after injection, suggesting early onset. A total of 95% of patients reported fair to excellent improvement in pain. Botulinum toxin type B was considered to have fair to excellent efficacy in 90% of patients, as evaluated by the investigator rating of overall efficacy. Botulinum toxin treatment was well tolerated. Dry mouth was the most common treatment emergent adverse event, reported in 6 of 20 patients. CONCLUSIONS Findings suggest the possibility that botulinum toxin type B may be of potential benefit in the treatment of pain attributed to piriformis syndrome.
Collapse
Affiliation(s)
- Amy M Lang
- Department of Rehabilitation Medicine, Emory University School of Medicine and Hospitals, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Abstract
Cosmetic use of BTX has skyrocketed in recent years, especially since the approval of BTX-A for treatment of glabellar lines. Complications and adverse reactions can easily arise, particularly for the novice injector. This paper provides insights from an experienced physician on how to avoid these complications, and how to treat them when and if they occur. The main cosmetic uses for BTX are analyzed for possible complications and adverse events. Injection techniques are discussed. Comparisons between BTX-A and BTX-B are given to point out the need for different injection techniques based on the product being used. Treatment recommendations for the Glabella, Brow, Crow's Feet, Upper Lip Wrinkling/Lines, Depressor Anguli Oris, Nasolabial Folds, Mentalis, Neck and Hyperhidrosis are discussed, as well as systemic complications. It is important for the injecting physician to be familiar with these potential complications, even though the use of BTX has been safe and generally well tolerated, because it will lead to even greater success with the use of BTX.
Collapse
Affiliation(s)
- Arnold William Klein
- Division of Dermatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90210, USA.
| |
Collapse
|
15
|
Complications, Adverse Reactions, and Insights With the Use of Botulinum Toxin. Dermatol Surg 2003. [DOI: 10.1097/00042728-200305000-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Klein AW. Complications, adverse reactions, and insights with the use of botulinum toxin. Dermatol Surg 2003; 29:549-56; discussion 556. [PMID: 12752527 DOI: 10.1046/j.1524-4725.2003.29129.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Sharma SK, Ramzan MA, Singh BR. Separation of the components of type A botulinum neurotoxin complex by electrophoresis. Toxicon 2003; 41:321-31. [PMID: 12565755 DOI: 10.1016/s0041-0101(02)00309-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clostridium botulinum neurotoxins (BoNTs) are the most toxic substances known. They exert potent neuroparalysis on vertebrates. C. botulinum produces seven serotypes of neurotoxin (A-G). BoNT/A, found in bacterial cultures of C. botulinum type A, is produced as a complex with a group of neurotoxin associated proteins (NAPs). Botulinum neurotoxin complex is the only known example of a protein complex where a group of proteins (NAPs) protect another protein (BoNT) against the acidity and proteases of the stomach. Here, we used sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for separation and identification of the constituent proteins of BoNT/A complex. A range of homogenous and gradient SDS-PAGE gels was used to resolve the BoNT/A complex. These gels were run under constant voltage and constant current conditions. The molecular weight and relative amount of each protein band were determined. On a 12.5% homogenous SDS-PAGE under reducing conditions, seven protein bands were identified with average molecular weights of 118, 106, 90, 56, 36, 23 and 17 kDa. The relative amounts of these seven proteins were determined densitometrically as 10, 6, 13, 27, 22, 13 and 8%, respectively. The separation and identification of BoNT/A complex will help in understanding the molecular structure and function of BoNT/A NAPs and their interaction with the toxin, in the toxico-infection process of the botulism diseased state. In particular, the stoichiometry of the individual components is established for a typical preparation of BoNT/A complex. Furthermore, the studies reported here identify the most favorable conditions for the baseline resolution of BoNT/A NAPs proteins for other workers in this field.
Collapse
Affiliation(s)
- S K Sharma
- Department of Chemistry and Biochemistry, Center for Marine Science and Technology, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | | | | |
Collapse
|
18
|
van Baar BLM, Hulst AG, de Jong AL, Wils ERJ. Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J Chromatogr A 2002; 970:95-115. [PMID: 12350104 DOI: 10.1016/s0021-9673(02)00508-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A method earlier developed for the mass spectrometric (MS) identification of tetanus toxin (TTx) was applied to botulinum toxins type A and B (BTxA and BTxB). Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxA and BTxB are comprised of a protein complex of the respective neurotoxins with specific haemagglutinins (HAs) and non-toxic non-haemagglutinins (NTNHs). These protein complexes are also observed in mass spectrometric identification. The particular BTxA complex, from Clostridium botulinum strain 62A, almost completely matched database data derived from genetic sequences known for this strain. Although no such database information was available for BTxB, from C. botulinum strain okra, all protein sequences from the complex except that of HA-70 were found to match proteins known from other type B strains. It was found that matrix-assisted laser desorption ionisation MS provides provisional identification from trypsin digest peptide maps and that liquid chromatography electrospray (tandem) mass spectrometry affords unequivocal identification from amino acid sequence information of digest peptides obtained in trypsin or pepsin digestion.
Collapse
Affiliation(s)
- Ben L M van Baar
- TNO Prins Maurits Laboratory, Division Chemical and Biological Protection, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Abstract
Botulinum toxins are the causative agents of the severe food-borne illness botulism. With lethal doses approximating 10(-9) g/kg body weight, these neurotoxins represent some of the most toxic naturally occurring substances. Regardless, botulinum toxin is considered a safe therapy for inappropriate muscle spasms with adverse effects being typically self-limited. This article deals with some of the complications that have occurred with these treatments. The greatest concern with the use of BOTOX is probably the formation of blocking antibodies leading to nonresponse of subsequent treatment. Prevalence of resistance is less than 5%. Most complications associated with its aesthetic use are few and anecdotal. Nevertheless, the common problems and pitfalls associated with aesthetic treatment of the various areas of the face and neck with botulinum toxin are discussed. Also included are recommendations as to how to avoid these very undesirable, yet common, problems.
Collapse
|
20
|
Callaway JE, Arezzo JC, Grethlein AJ. Botulinum toxin type B: an overview of its biochemistry and preclinical pharmacology. Dis Mon 2002; 48:367-83. [PMID: 12195266 DOI: 10.1053/mda.2001.24421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Produced by Clostridium botulinum, botulinum toxins are high molecular weight protein complexes consisting of the neurotoxin and additional nontoxic proteins that function to protect the toxin molecule. The neurotoxin acts to inhibit the release of acetylcholine at the neuromuscular junction, causing muscle paralysis. Purified toxin complexes have found a niche in the treatment of clinical disorders involving muscle hyperactivity. The different serotypes are structurally and functionally similar; however, specific differences in neuronal acceptor binding sites, intracellular enzymatic sites, and species sensitivities suggest that each serotype is its own unique pharmacologic entity. Recently, botulinum toxin type B has been developed as a liquid formulation to avoid the lyophilization (vacuum-drying) and reconstitution processes associated with decreasing the potency and stability of current type A toxin preparations. Biochemical tests were conducted to evaluate the quality of toxin in this formulation. In 3 consecutive manufacturing lots, the botulinum toxin type B complex was found to be highly purified, intact, uniform, and consistent from lot to lot. Also, it showed long-term stability at refrigerator and room temperatures (2 to 25 degrees C). Electrophysiologic studies in cynomolgus monkeys showed that botulinum toxin type B is effective in paralyzing injected muscle groups, with minimal spread to relatively distant noninjected muscles.
Collapse
|
21
|
Kouguchi H, Watanabe T, Sagane Y, Sunagawa H, Ohyama T. In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. J Biol Chem 2002; 277:2650-6. [PMID: 11713244 DOI: 10.1074/jbc.m106762200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). The HA-70 subcomponent and the HA-33/17 complex were isolated from the L toxin to near homogeneity by chromatography in the presence of denaturing agents. We were able to demonstrate, for the first time, in vitro reconstitution of the L toxin formed by mixing purified M toxin, HA-70, and HA-33/17. The properties of reconstituted and native L toxins are indistinguishable with respect to their gel filtration profiles, native-PAGE profiles, hemagglutination activity, binding activity to erythrocytes, and oral toxicity to mice. M toxin, which contained nicked NTNHA prepared by treatment with trypsin, could no longer be reconstituted to the L toxin with HA subcomponents, whereas the L toxin treated with proteases was not degraded into M toxin and HA subcomponents. We conclude that the M toxin forms first by assembly of NT with NTNHA and is subsequently converted to the L toxin by assembly with HA-70 and HA-33/17.
Collapse
Affiliation(s)
- Hirokazu Kouguchi
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | | | | | | | | |
Collapse
|
22
|
Prabakaran S, Tepp W, DasGupta BR. Botulinum neurotoxin types B and E: purification, limited proteolysis by endoproteinase Glu-C and pepsin, and comparison of their identified cleaved sites relative to the three-dimensional structure of type A neurotoxin. Toxicon 2001; 39:1515-31. [PMID: 11478959 DOI: 10.1016/s0041-0101(01)00124-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Botulinum neurotoxin (NT) serotypes B and E are approximately 150 kDa proteins. Isolated from the liquid culture of Clostridium botulinum the NT type E is a single chain protein while the NT type B, from the proteolytic strain of the bacteria, is a mixture of dichain (nicked within a disulfide loop located about one-third the way from the N-terminus to the C-terminus) protein and its precursor single-chain protein. Endoproteinase Glu-C (EC 3.4.21.19) and pepsin (EC 3.4.23.1) were used for controlled digestion of NT types B and E; the amino acid residues flanking many of the cleavable peptide bonds were identified and the corresponding proteolytic fragments partially characterized. Chemical identification of 82 and 108 residues of types B and E NT, respectively, revealed that the residue 738 and 1098 in type E NT, identified as Leu and Asn, respectively, differ from those deduced from nucleotide sequences. Several fragments overlapped spanning various segments of the NT's functional domains; they appear to have potential for structure-function studies of the NT. The cleavage sites were compared with the previously determined proteolyzed sites on NT types A and E. The cleavage sites of the NT types A, B and E, all exposed on the protein surface, were scrutinized in the context of the three-dimensional structure of crystallized NT type A [Lacy, D.B., Stevens, R.C., 1999. J. Mol. Biol. 291, 1091-1104]. Detailed procedures for isolation of pure NT types B and E in large quantities (average yield 92 and 62 mg, respectively) suitable for crystallization are reported.
Collapse
Affiliation(s)
- S Prabakaran
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, 53706, USA
| | | | | |
Collapse
|
23
|
Kouguchi H, Watanabe T, Sagane Y, Ohyama T. Characterization and reconstitution of functional hemagglutinin of the Clostridium botulinum type C progenitor toxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4019-26. [PMID: 11453996 DOI: 10.1046/j.1432-1327.2001.02317.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purified progenitor toxin of Clostridium botulinum type C strain 6814 (C-6814) forms a large complex composed of 150-kDa neurotoxin (NT), 130-kDa nontoxic-nonhemagglutinin (NTNHA), and hemagglutinin (HA) components. The HA component consisted of a mixture of several subcomponents with molecular masses of 70, 55, 33, 26-21 and 17 kDa. We isolated the HA subcomponents from the progenitor toxin by chromatography in the presence of denaturants. The isolated HA subcomponents, designated as i-HA-33, i-HA-55, i-HA-70 and i-HA-33/17, were nearly homogeneous on SDS/PAGE, but the HA-17 and HA-26-21 components were not purified. Some HA subcomponents, designated as f-HA-33 and f-HA-33/17 complex, existed free of the progenitor toxin in the culture medium and they were separately purified. Every HA subcomponent so far isolated shows binding activity to erythrocytes. The hemagglutination activities of each HA subcomponent had a titer of 25 for the f-HA-33/17 complex, and below 23 for the other f- and i-HA subcomponents, while the parent progenitor L toxin was 28. The reconstitution of various combinations of f- and i-HA subcomponents was attempted via mixing and tested for hemagglutination activity. When the i-HA-33/17 complex and i-HA-55 were mixed, the hemagglutination activity was recovered to a titer of 29, which was slightly higher than that of the parent toxin. These data imply that a combination of at least HA-33, -17 and -55 subcomponents is required for full hemagglutination activity of the botulinum progenitor toxin, but each single HA subcomponent shows weak or no aggregation of erythrocytes.
Collapse
Affiliation(s)
- H Kouguchi
- Department of Food Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | | | | | | |
Collapse
|
24
|
Callaway JE, Arezzo JC, Grethlein AJ. Botulinum toxin type B: an overview of its biochemistry and preclinical pharmacology. SEMINARS IN CUTANEOUS MEDICINE AND SURGERY 2001; 20:127-36. [PMID: 11474745 DOI: 10.1053/sder.2001.24421] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Produced by Clostridium botulinum, botulinum toxins are high molecular weight protein complexes consisting of the neurotoxin and additional nontoxic proteins that function to protect the toxin molecule. The neurotoxin acts to inhibit the release of acetylcholine at the neuromuscular junction, causing muscle paralysis. Purified toxin complexes have found a niche in the treatment of clinical disorders involving muscle hyperactivity. The different serotypes are structurally and functionally similar; however, specific differences in neuronal acceptor binding sites, intracellular enzymatic sites, and species sensitivities suggest that each serotype is its own unique pharmacologic entity. Recently, botulinum toxin type B has been developed as a liquid formulation to avoid the lyophilization (vacuum-drying) and reconstitution processes associated with decreasing the potency and stability of current type A toxin preparations. Biochemical tests were conducted to evaluate the quality of toxin in this formulation. In 3 consecutive manufacturing lots, the botulinum toxin type B complex was found to be highly purified, intact, uniform, and consistent from lot to lot. Also, it showed long-term stability at refrigerator and room temperatures (2 to 25 degrees C). Electrophysiologic studies in cynomolgus monkeys showed that botulinum toxin type B is effective in paralyzing injected muscle groups, with minimal spread to relatively distant noninjected muscles.
Collapse
Affiliation(s)
- J E Callaway
- Elan Pharmaceuticals, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
25
|
Klein AW. Complications and adverse reactions with the use of botulinum toxin. SEMINARS IN CUTANEOUS MEDICINE AND SURGERY 2001; 20:109-20. [PMID: 11474743 DOI: 10.1053/sder.2001.25964] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Botulinum toxins are the causative agents of the severe food-borne illness botulism. With lethal doses approximating 10(-9) g/kg body weight, these neurotoxins represent some of the most toxic naturally occurring substances. Regardless, botulinum toxin is considered a safe therapy for inappropriate muscle spasms with adverse effects being typically self-limited. This article deals with some of the complications that have occurred with these treatments. The greatest concern with the use of BOTOX is probably the formation of blocking antibodies leading to nonresponse of subsequent treatment. Prevalence of resistance is less than 5%. Most complications associated with its aesthetic use are few and anecdotal. Nevertheless, the common problems and pitfalls associated with aesthetic treatment of the various areas of the face and neck with botulinum toxin are discussed. Also included are recommendations as to how to avoid these very undesirable, yet common, problems.
Collapse
Affiliation(s)
- A W Klein
- Department of Dermatology/Medicine, UCLA, USA
| |
Collapse
|
26
|
Sagane Y, Watanabe T, Kouguchi H, Sunagawa H, Inoue K, Fujinaga Y, Oguma K, Ohyama T. Characterization of nicking of the nontoxic-nonhemagglutinin components of Clostridium botulinum types C and D progenitor toxin. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:575-81. [PMID: 11233171 DOI: 10.1023/a:1007198202016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clostridium botulinum C and D strains produce two types of progenitor toxins, M and L. Previously we reported that a 130-kDa nontoxic-nonhemagglutinin (NTNHA) component of the M toxin produced by type D strain CB16 was nicked at a unique site, leading to a 15-kDa N-terminal fragment and a 115-kDa C-terminal fragment. In this study, we identified the amino acid sequences around the nicking sites in the NTNHAs of the M toxins produced by C. botulinum type C and D strains by analysis of their C-terminal and N-terminal sequences and mass spectrometry. The C-terminus of the 15-kDa fragments was identified as Lys127 from these strains, indicating that a bacterial trypsin-like protease is responsible for the nicking. The 115-kDa fragment had mixtures of three different N-terminal amino acid sequences beginning with Leu135, Val139, and Ser141, indicating that 7-13 amino acid residues were deleted from the nicking site. The sequence beginning with Leu135 would also suggest cleavage by a trypsin-like protease, while the other two N-terminal amino acid sequences beginning with Val139 and Ser141 would imply proteolysis by an unknown protease. The nicked NTNHA forms a binary complex of two fragments that could not be separated without sodium dodecyl sulfate.
Collapse
Affiliation(s)
- Y Sagane
- Department of Food Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cai S, Sarkar HK, Singh BR. Enhancement of the endopeptidase activity of botulinum neurotoxin by its associated proteins and dithiothreitol. Biochemistry 1999; 38:6903-10. [PMID: 10346912 DOI: 10.1021/bi990086c] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins type A (BoNT/A), the most toxic substance known to man, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs), possibly through a polycistronic expression of a clustered group of genes. The botulinum neurotoxin complex is the only known example of a protein complex where a group of proteins (NAPs) protect another protein (BoNT) against acidity and proteases of the GI tract. We now report that NAPs also potentiate the Zn2+ endopeptidase activity of BoNT/A in both in vitro and in vivo assays against its known intracellular target protein, 25 kDa synaptosomal associated protein (SNAP-25). While BoNT/A exhibited no protease activity prior to reduction with dithiothreitol (DTT), the BoNT/A complex exhibited a high protease activity even in its nonreduced form. Our results suggest that the bacterial production of NAPs along with BoNT is designed for the NAPs to play an accessory role in the neurotoxin function, in contrast to their previously known limited role in protecting the neurotoxin in the GI tract and in the external environment. Structural features of BoNT/A change considerably upon disulfide reduction, as revealed by near-UV circular dichroism spectroscopy. BoNT/A in the reduced form adopts a more flexible structure than in the unreduced form, as also indicated by large differences in DeltaH values (155 vs 248 kJ mol-1) of temperature-induced unfolding of BoNT/A.
Collapse
Affiliation(s)
- S Cai
- Department of Chemistry and Biochemistry, Center for Marine Science and Technology, University of Massachusetts at Dartmouth 02747, USA
| | | | | |
Collapse
|
28
|
Sharma SK, Fu FN, Singh BR. Molecular properties of a hemagglutinin purified from type A Clostridium botulinum. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:29-38. [PMID: 10071926 DOI: 10.1023/a:1020691215056] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clostridium botulinum causes the food poisoning disease botulism by producing botulinum neurotoxin, the most potent toxin known. The neurotoxin is produced along with a group of neurotoxin-associated proteins, or NAPs, which protect it from the low pH and proteases of the gastrointestinal tract. Recently, we isolated one of the major components of NAPs, a 33-kDa hemagglutinin (Hn-33) [Fu et al. (1998), J. Protein Chem. 17, 53-60]. In this study, we present molecular properties of Hn-33 derived from several biochemical and biophysical techniques. Hn-33 in pure form requires a 66-fold lower concentration of sugar inhibition of its hemagglutination activity than in its complexed form with the neurotoxin and other NAPs. However, its protease resistance is not affected by sugar binding. Based on FT-IR and circular dichroism (CD) analysis, Hn-33 is a predominantly beta-sheet protein (74-77%). Hn-33 analysis by laser desorption mass spectrometry and size exclusion column chromatography reveals that it exists predominantly in a dimeric form in the aqueous solution. Even a very low concentration of SDS (0.05%) irreversibly destroyed the biological activity of Hn-33 by changing its secondary structure as revealed by far-UV CD analysis.
Collapse
Affiliation(s)
- S K Sharma
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth 02747, USA
| | | | | |
Collapse
|
29
|
Marvaud JC, Gibert M, Inoue K, Fujinaga Y, Oguma K, Popoff MR. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol Microbiol 1998; 29:1009-18. [PMID: 9767569 DOI: 10.1046/j.1365-2958.1998.00985.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genes of the botulinum neurotoxin A (BoNT) complex are clustered in a locus consisting of two divergent polycistronic operons, one containing the non-toxic, non-haemagglutinin (NTNH) component and bontA genes, the other containing the haemagglutinin (HA) component genes. The two operons are separated by a gene (botR/A, previously called orf21) encoding a 21 kDa protein. A recombinant Clostridium botulinum A strain that overexpresses botR/A was constructed by electroporating strain 62 with the vector pAT19 containing botR/A under the control of its own promoter. The transformed strain produced more BoNT/A and associated non-toxic proteins (ANTPs) and the corresponding mRNAs than the non-transformed strain. Partial inhibition of botR/A by antisense mRNA resulted in lower levels of BoNT/A, NTNH and HA70 and the levels of the corresponding mRNAs. Gel mobility shift assays and immunoprecipitations showed that BotR/A bound to the DNA promoter region upstream from the two BoNT/A complex operons. These results show that botR/A activated transcription of the genes encoding BoNT/A and ANTPs in C. botulinum A by interacting directly with the region promoter, and that the homologous genes in C. botulinum B, C and D presumably have the same function.
Collapse
Affiliation(s)
- J C Marvaud
- Unité des Toxines Microbiennes, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Chen F, Kuziemko GM, Stevens RC. Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900-kilodalton botulinum toxin complex species. Infect Immun 1998; 66:2420-5. [PMID: 9596697 PMCID: PMC108219 DOI: 10.1128/iai.66.6.2420-2425.1998] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxin serotype A is initially released from the bacterium Clostridium botulinum as a stable 900-kDa complex. The serotype A 900-kDa complex is one of the forms of the toxin being used as a therapeutic agent for the treatment of various neuromuscular disorders. Previous experiments have demonstrated that the 900-kDa complex form of the toxin protects the toxin from the harsh conditions of the gastrointestinal tract. To provide molecular level details of the stability and equilibrium of the 900-kDa complex, the nontoxic component, and the toxic (botulinum neurotoxin) component, the three species have been investigated with a series of biophysical techniques at the molecular level (dynamic light scattering, proteolysis, circular dichroism, pH incubations, and agglutination assays). These experiments were conducted under harsh conditions which mimic those found along the gastrointestinal tract. Separately, exposure to denaturing and proteolytic conditions degrades both the botulinum neurotoxin and the nontoxic component. In the 900-kDa complex, the botulinum neurotoxin is protected during exposure to the gastrointestinal environment and the nontoxic component is slightly modified. Surprisingly, the toxin protects the ability of the nontoxic component to agglutinate erythrocytes. Contrary to previous reports, the purified 900-kDa complex did not have agglutination ability until after exposure to the proteolytic conditions. These experiments provide new evidence and detail for the theory that the nontoxic component and the toxic component protect one another during exposure to harsh conditions, and a molecular model is presented for the passage of the toxin through the gastrointestinal tract.
Collapse
Affiliation(s)
- F Chen
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
31
|
Kubota T, Yonekura N, Hariya Y, Isogai E, Isogai H, Amano K, Fujii N. Gene arrangement in the upstream region of Clostridium botulinum type E and Clostridium butyricum BL6340 progenitor toxin genes is different from that of other types. FEMS Microbiol Lett 1998; 158:215-21. [PMID: 9465394 DOI: 10.1111/j.1574-6968.1998.tb12823.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cluster of genes encoding the botulinum progenitor toxin and the upstream region including p21 and p47 were divided into three different gene arrangements (class I-III). To determine the gene similarity of the type E neurotoxin (BoNT/E) complex to other types, the gene organization in the upstream region of the nontoxic-nonhemagglutinin gene (ntnh) was investigated in chromosomal DNA from Clostridium botulinum type E strain Iwanai and C. butyricum strain BL6340. The gene cluster of type E progenitor toxin (Iwanai and BL6340) was similar to those of type F and type A (from infant botulism in Japan), but not to those of types A, B, and C. Though genes for the hemagglutinin component and P21 were not discovered, genes encoding P47, NTNH, and BoNT were found in type E strain Iwanai and C. butyricum strain BL6340. However, the genes of ORF-X1 (435 bp) and ORF-X2 (partially sequenced) were present just upstream of that of P47. The orientation of these genes was in inverted direction to that of p47. The gene cluster of type E progenitor toxin (Iwanai and BL6340) is, therefore, a specific arrangement (class IV) among the genes encoding components of the BoNT complex.
Collapse
Affiliation(s)
- T Kubota
- Department of Microbiology, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Henderson I, Whelan SM, Davis TO, Minton NP. Genetic characterisation of the botulinum toxin complex of Clostridium botulinum strain NCTC 2916. FEMS Microbiol Lett 1996. [DOI: 10.1111/j.1574-6968.1996.tb08329.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Emanuel P, O'Brien T, Burans J, DasGupta BR, Valdes JJ, Eldefrawi M. Directing antigen specificity towards botulinum neurotoxin with combinatorial phage display libraries. J Immunol Methods 1996; 193:189-97. [PMID: 8699032 DOI: 10.1016/0022-1759(96)00053-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The production of antibodies towards antigens with low immunogenicity is enhanced by the intrinsic efficiency of screening combinatorial libraries of immunoglobulins. The need to isolate clones with rare binding specificities has dictated a highly efficient method of screening and isolating antibody clones. The production of recombinant immunoglobulin libraries in bacteria allows for a more controlled selection of antibody specificity and can be used in circumstances where hybridoma fusions are unable to isolate rare clones with the desired epitope specificity. Botulinum neurotoxin (NT) with associated non neurotoxin proteins (non-NT) as a complex was used to immunize mice to obtain mRNA for the production of a recombinant antibody library with a repertoire of specificities. Initial screens of the combinatorial library revealed clones which recognized the non-neurotoxin proteins of the toxin complex similar to monoclonal antibodies produced by conventional hybridoma fusions. The combinatorial library was re-screened in order to isolate antibodies that specifically recognized the neurotoxin component of the toxin complex. The ability to alter the biopanning selection process affords the researcher a measure of control in the selection process not available with traditional hybridoma fusions.
Collapse
Affiliation(s)
- P Emanuel
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Baltimore 21201, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hutson RA, Zhou Y, Collins MD, Johnson EA, Hatheway CL, Sugiyama H. Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J Biol Chem 1996; 271:10786-92. [PMID: 8631890 DOI: 10.1074/jbc.271.18.10786] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A recent study detected genes encoding type B botulinum neurotoxin in some type A strains of Clostridium botulinum that exhibit no type B toxin activity. In this study, we investigated the presence, structure, linkage, and organization of genes encoding botulinum neurotoxin (BoNT) and other components of the progenitor complex. Sequence analysis showed that the silent BoNT/B gene is highly related to that from authentic proteolytic type B C. botulinum. However, a stop signal and deletions were found within the sequence. A non-toxin nonhemagglutinin gene (NTNH) was mapped immediately upstream of both the BoNT/A and silent BoNT/B genes. Significantly the NTNH gene adjacent to the defective BoNT/B gene was "chimeric, " the 5'- and 3'-regions of the gene had high homology with corresponding regions of the type B NTNH gene, while the 471-amino acid sequence in the central region was identical to NTNH of type A. Hemagglutinin genes HA-33 and HA-II were not found adjacent to the NTNH/A gene, but instead there was an unidentified open reading frame previously reported in strains of C. botulinum types E and F. By contrast HA-II, HA-33, and NTNH genes were located immediately upstream of the silent BoNT/B gene. Pulsed-field gel electrophoretic analysis of chromosomal DNA digests indicated the distance between type A and B gene clusters to be less than 40 kilobases.
Collapse
Affiliation(s)
- R A Hutson
- Biological and Biotechnical Science Research Council, Institute of Food Research, Reading Laboratory, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Inoue K, Fujinaga Y, Watanabe T, Ohyama T, Takeshi K, Moriishi K, Nakajima H, Inoue K, Oguma K. Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 1996; 64:1589-94. [PMID: 8613365 PMCID: PMC173966 DOI: 10.1128/iai.64.5.1589-1594.1996] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The molecular composition of progenitor toxins produced by a Clostridium botulinum type A strain (A-NIH) was analyzed. The strain produced three types of progenitor toxins (19 S, 16 S, and 12 S) as reported previously. Purified 19 S and 16 S toxins demonstrated the same banding profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that they consist of the same protein components. The nontoxic components of the 19 S and 16 S toxins are a nontoxic non-hemagglutinin (HA) (molecular mass, 120 kDa) and HA. HA could be fractionated into five subcomponents with molecular masses of 52, 35, 20, 19, and 15 kDa in the presence of 2-mercaptoethanol. The molar ratios of neurotoxins, nontoxic non-HAs, and each HA subcomponent of the 19 S and 16 S toxins showed that only HA-35 of the 19 S toxin was approximately twice the size of that of the 16 S toxin, suggesting that the 19 S toxin is a dimer of the 16 S toxin cross-linked by the 35-kDa subcomponent. The nontoxic non-HA of the 12 S toxin, but not those of the 19 S and 16 S toxins, demonstrated two bands with molecular masses of 106 and 13 kDa on SDS-PAGE with or without 2-mercaptoethanol. It was concluded from the N-terminal amino acid sequences that 106- and 13-kDa proteins were generated by a cleavage of whole nontoxic non-HA. This may explain why the 12 S and 16 S (and 19 S) toxins exist in the same culture. We also found that the HA and its 35-kDa subcomponent exist in a free state in the culture fluid along with three types of progenitor toxins.
Collapse
Affiliation(s)
- K Inoue
- Department of Bacteriology, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fujita R, Fujinaga Y, Inoue K, Nakajima H, Kumon H, Oguma K. Molecular characterization of two forms of nontoxic-nonhemagglutinin components of Clostridium botulinum type A progenitor toxins. FEBS Lett 1995; 376:41-4. [PMID: 8521962 DOI: 10.1016/0014-5793(95)01241-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The entire sequences of the type A nontoxic-nonhemagglutinin gene and an adjacent open reading frame designated as orf 22-a, which are located between the neurotoxin and the HA-35 genes were determined. SDS-PAGE and N-terminal amino acid sequence analyses of the purified type A progenitor toxins (12S, 16S and 19S) indicate that the nontoxic-nonhemagglutinins of 16S and 19S are single peptides of approximately 120k, but that of 12S has a cleavage at the site between Pro-144 and Phe-145 of this protein.
Collapse
Affiliation(s)
- R Fujita
- Department of Bacteriology, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Ohyama T, Watanabe T, Fujinaga Y, Inoue K, Sunagawa H, Fujii N, Inoue K, Oguma K. Characterization of nontoxic-nonhemagglutinin component of the two types of progenitor toxin (M and L) produced by Clostridium botulinum type D CB-16. Microbiol Immunol 1995; 39:457-65. [PMID: 8569530 DOI: 10.1111/j.1348-0421.1995.tb02229.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 9.8-kbp DNA fragment which contained a neurotoxin gene and its upstream region was cloned from Clostridium botulinum type D strain CB-16. Nucleotide sequencing of the fragment revealed that genes encoding for hemagglutinin (HA) subcomponents and one for a nontoxic-nonhemagglutinin (NTNH) component were located upstream of the neurotoxin gene. This strain produced two toxins of different molecular size (approximately 300 kDa and 500 kDa) which were designated as progenitor toxins (M and L toxins). The molecular size of the NTNH component of L toxin was approximately 130 kDa on SDS-PAGE and its N-terminal amino acid sequence was M-D-I-N-D-D-L-N-I-N-S-P-V-D-N-K-N-V-V-I which agreed with that deduced from the nucleotide sequence. In contrast, the M toxin had a 115-kDa NTNH component whose N-terminal sequence was S-T-I-P-F-P-F-G-G-Y-R-E-T-N-Y-I-E, corresponding to the sequence from Ser141 of the deduced sequence. A 15-kDa fragment, which was found to be associated with an M toxin preparation, possessed the same N-terminal amino acid sequence as that of the 130-kDa NTNH component. Furthermore, five major fragments generated by limited proteolysis with V8 protease were shown to have N-terminal amino acid sequences identical to those deduced from the nucleotide sequence of 130-kDa NTNH. These results indicate that the 130-kDa NTNH of the L toxin is cleaved at a unique site, between Thr and Ser, leading to the 115-kDa NTNH of the M toxin.
Collapse
Affiliation(s)
- T Ohyama
- Hokkaido Institute of Public Health, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hauser D, Gibert M, Marvaud JC, Eklund MW, Popoff MR. Botulinal neurotoxin C1 complex genes, clostridial neurotoxin homology and genetic transfer in Clostridium botulinum. Toxicon 1995; 33:515-26. [PMID: 7570637 DOI: 10.1016/0041-0101(94)00190-j] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The botulinal neurotoxins (BoNT) associate with non-toxic proteins (ANTP) by non-covalent bonds to form large complexes. In C. botulinum C, the BoNT/C1 locus consists of six genes which are organized in three clusters. Cluster 1 encompasses the genes of BoNT/C1 and ANTP/139 which could be involved in the resistance of the BoNT/C1 to the acidic pH and protease degradation. The second cluster consists of three genes which encode hemagglutinin components. The last gene encodes a DNA binding protein (Orf22) which might regulate the BoNT/C1 complex gene expression. BoNT and tetanus toxin (TeTx) display similar structure and mechanism of action at the molecular level. Their identity at the amino acid level range from 34 to 96.8%, indicating that the clostridial neurotoxin genes probably derive from a common ancestor. The fact that Clostridium other than C. botulinum such as C. butyricum and C. baratii can produce a BoNT suggests that the BoNT genes can be transferred between Clostridium strains. The toxigenic C. butyricum strains seem to derive from originally non-toxic strains by neurotoxin gene transfer from C. botulinum E, probably including a mobile DNA element. In C. botulinum C and D the gene encoding the exoenzyme C3 has been localized in a transposon-like element of 21.5 kbp. Transposons could be involved in BoNT gene transfer in C. botulinum.
Collapse
Affiliation(s)
- D Hauser
- Unité des Toxines Microbiennes, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- K Oguma
- Department of Bacteriology, Okayama University Medical School, Japan
| | | | | |
Collapse
|
40
|
Affiliation(s)
- N P Minton
- Department of Molecular Microbiology, Centre for Applied Microbiology and Research, Porton Down, Salisbury, UK
| |
Collapse
|
41
|
Cordoba JJ, Collins MD, East AK. Studies on the Genes Encoding Botulinum Neurotoxin Type A of Clostridium botulinum from a Variety of Sources. Syst Appl Microbiol 1995. [DOI: 10.1016/s0723-2020(11)80443-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
East AK, Stacey JM, Collins MD. Cloning and Sequencing of a Hemagglutinin Component of the Botulinum Neurotoxin Complex encoded by Clostridium botulinum Types A and B. Syst Appl Microbiol 1994. [DOI: 10.1016/s0723-2020(11)80045-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
East AK, Collins MD. Conserved structure of genes encoding components of botulinum neurotoxin complex M and the sequence of the gene coding for the nontoxic component in nonproteolytic Clostridium botulinum type F. Curr Microbiol 1994; 29:69-77. [PMID: 7764998 DOI: 10.1007/bf01575751] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For investigation of the genes of proteins associated in vivo with botulinum neurotoxin (BoNT), polymerase chain reaction (PCR) experiments were carried out with oligonucleotide primers designed to regions of the nontoxic-nonhemagglutinin (NTNH) gene of Clostridium botulinum type C. The primers were used to amplify a DNA fragment from genomic DNA of C. botulinum types A, B, E, F, G and toxigenic strains of Clostridium barati and Clostridium butyricum. The amplified product from all of these strains hybridized with an internal oligonucleotide probe, whereas all nontoxigenic clostridia tested gave no PCR product and showed no reaction with the probe. The NTNH gene was shown to be located upstream of the gene encoding BoNT, thereby revealing a conserved structure for genes encoding the proteins of the M complex of the progenitor botulinum toxin in these organisms. The sequence of the NTNH gene of nonproteolytic C. botulinum type F was determined by PCR amplification and sequencing of overlapping cloned fragments. NTNH/F showed 71% and 61% identity with NTNH of C. botulinum type E and type C respectively.
Collapse
Affiliation(s)
- A K East
- Department of Microbiology, Institute of Food Research, Reading Laboratory, UK
| | | |
Collapse
|
44
|
Hauser D, Eklund MW, Boquet P, Popoff MR. Organization of the botulinum neurotoxin C1 gene and its associated non-toxic protein genes in Clostridium botulinum C 468. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:631-40. [PMID: 8028579 DOI: 10.1007/bf00279572] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A 12.3 kb DNA fragment encompassing the botulinum neurotoxin C1 (BoNT/C1) gene and an upstream flanking region was sequenced from Clostridium botulinum C 468 phage 1C. The resulting bont/C1 locus includes six genes which are organized into three transcriptional units. Cluster 1 encompasses the bont/C1 gene and an upstream gene encoding a non-toxic protein associated with the toxin (Antp139/C1). Transcriptional analysis revealed that these two genes form an operon; the bont/C1 gene can be transcribed alone or co-transcribed with antp139/C1. Cluster 2 encompasses three genes (antp33/C1, antp17/C1 and antp70/C1), which also form an operon. The corresponding proteins are similar to components of the hemagglutinin complex associated with BoNT/A and BoNT/B of C. botulinum A and B. In addition, Antp33/C1 is identical to HA-33, an hemagglutinin encoded by C. botulinum C-Stockholm phage C-St; Antp70/C1 displays some relatedness to C. perfringens enterotoxin. The third transcriptional unit consists of orf-22, which encodes a basic protein showing 29% identity with the gene product of uviA, a plasmid-encoded protein of 22 kDa which has been identified as a positive regulator of the bacteriocin production in C. perfringens. Orf-22 could be an effector controlling the expression of the bont/C1 and its antp genes in C. botulinum C 468.
Collapse
Affiliation(s)
- D Hauser
- Unité des Toxines Microbiennes, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
45
|
Goodnough MC, Hammer B, Sugiyama H, Johnson EA. Colony immunoblot assay of botulinal toxin. Appl Environ Microbiol 1993; 59:2339-42. [PMID: 8357267 PMCID: PMC182282 DOI: 10.1128/aem.59.7.2339-2342.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Botulinal neurotoxin in and around colonies of Clostridium botulinum types A, B, and E and of toxigenic Clostridium butyricum was detected by an enzyme-linked immunoassay procedure whereby the toxin was transferred from the agar medium to a nitrocellulose support and the immobilized toxin was probed with type-specific antibodies. The method identified the toxin types of the colonies grown from a mixed inoculum of C. botulinum serotypes. The specificity of the antitoxins for type A and B toxins was improved by adsorption of the antitoxins with the antigens of heterologous type cultures.
Collapse
Affiliation(s)
- M C Goodnough
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
46
|
Schantz EJ, Johnson EA. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 1992; 56:80-99. [PMID: 1579114 PMCID: PMC372855 DOI: 10.1128/mr.56.1.80-99.1992] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crystalline botulinum toxin type A was licensed in December 1989 by the Food and Drug Administration for treatment of certain spasmodic muscle disorders following 10 or more years of experimental treatment on human volunteers. Botulinum toxin exerts its action on a muscle indirectly by blocking the release of the neurotransmitter acetylcholine at the nerve ending, resulting in reduced muscle activity or paralysis. The injection of only nanogram quantities (1 ng = 30 mouse 50% lethal doses [U]) of the toxin into a spastic muscle is required to bring about the desired muscle control. The type A toxin produced in anaerobic culture and purified in crystalline form has a specific toxicity in mice of 3 x 10(7) U/mg. The crystalline toxin is a high-molecular-weight protein of 900,000 Mr and is composed of two molecules of neurotoxin (ca. 150,000 Mr) noncovalently bound to nontoxic proteins that play an important role in the stability of the toxic unit and its effective toxicity. Because the toxin is administered by injection directly into neuromuscular tissue, the methods of culturing and purification are vital. Its chemical, physical, and biological properties as applied to its use in medicine are described. Dilution and drying of the toxin for dispensing causes some detoxification, and the mouse assay is the only means of evaluation for human treatment. Other microbial neurotoxins may have uses in medicine; these include serotypes of botulinum toxins and tetanus toxin. Certain neurotoxins produced by dinoflagellates, including saxitoxin and tetrodotoxin, cause muscle paralysis through their effect on the action potential at the voltage-gated sodium channel. Saxitoxin used with anaesthetics lengthens the effect of the anaesthetic and may enhance the effectiveness of other medical drugs. Combining toxins with drugs could increase their effectiveness in treatment of human disease.
Collapse
Affiliation(s)
- E J Schantz
- Department of Food Microbiology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
47
|
Giménez JA, Giménez MA, DasGupta BR. Characterization of the neurotoxin isolated from a Clostridium baratii strain implicated in infant botulism. Infect Immun 1992; 60:518-22. [PMID: 1730484 PMCID: PMC257658 DOI: 10.1128/iai.60.2.518-522.1992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Botulism is widely known to result from ingestion of food containing botulinum neurotoxin produced in situ by certain strains of Clostridium botulinum. Infant botulism caused by C. botulinum, unlike the food-borne intoxication, is the toxicoinfectious form of botulism (S. S. Arnon, p. 331-345, in G. E. Lewis, ed., Biomedical Aspects of Botulism, 1981). The strain of Clostridium baratii implicated in infant botulism produced a neurotoxin that was neutralized with antiserum for botulinum neurotoxin serotype F (J. D. Hall, L. M. McCroskey, B. J. Pincomb, and C. L. Hatheway, J. Clin. Microbiol. 21:654-655, 1985). We developed a procedure to culture the toxigenic C. baratii (strain 6341) in dialysis bags and a simple purification scheme (precipitation of 900-ml culture supernatant with ammonium sulfate and two anion-exchange chromatographic steps at pH 5.5 and 8.0) that yielded up to 150 micrograms of purified neurotoxin. It is an approximately 140-kDa single-chain protein and has the following sequence of amino acid residues at the N terminus: Pro-Val-Asn-Ile-Asn-Asn-Phe-Asn-Tyr-Asn-Asp-Pro-Ile-Asn-Asn-Thr-Thr-Ile- Leu. Comparison of this amino acid sequence with those of the botulinum neurotoxin serotypes A, B, and E showed 40 to 50% identical residues in comparable positions. The specific toxicity of the neurotoxin, approximately 2 x 10(6) 50% lethal doses for mice per mg of protein injected, was not enhanced significantly by mild trypsinization, although the protease cleaved the neurotoxin within a disulfide loop that generated at least two primary fragments, approximately 47 and approximately 86 kDa, that remained linked by an interchain disulfide. These two fragments resembled the light and heavy chains of the well-characterized neurotoxin serotypes A, B, C, D, E, and F produced by C. botulinum.
Collapse
Affiliation(s)
- J A Giménez
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison 53706-1187
| | | | | |
Collapse
|