• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624960)   Today's Articles (24)   Subscriber (49463)
For: Bennetto HP, Delaney GM, Mason JR, Roller SD, Stirling JL, Thurston CF. The sucrose fuel cell: Efficient biomass conversion using a microbial catalyst. Biotechnol Lett 1985. [DOI: 10.1007/bf01032279] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Number Cited by Other Article(s)
1
Walter XA, Santoro C, Greenman J, Ieropoulos IA. Scalability and stacking of self-stratifying microbial fuel cells treating urine. Bioelectrochemistry 2020;133:107491. [PMID: 32163891 PMCID: PMC7133052 DOI: 10.1016/j.bioelechem.2020.107491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/27/2022]
2
Exploration of Electrochemcially Active Bacterial Strains for Microbial Fuel Cells: An Innovation in Bioelectricity Generation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
3
Jiang Z, Zhang Y, Liu Z, Ma Y, Kang J, Liu Y. Isolation and characterization of an exoelectrogenic strain CL-1 from soil and electron transfer mechanism by linking electrochemistry and spectroscopy. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
4
Enhanced electricity generation and organic matter degradation during three-chamber bioelectrochemically assisted anaerobic composting of dewatered sludge. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
5
Pasternak G, Greenman J, Ieropoulos I. Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring. SENSORS AND ACTUATORS. B, CHEMICAL 2017;244:815-822. [PMID: 28579695 PMCID: PMC5362149 DOI: 10.1016/j.snb.2017.01.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
6
Sharma SCD, Feng C, Li J, Hu A, Wang H, Qin D, Yu CP. Electrochemical Characterization of a Novel Exoelectrogenic Bacterium Strain SCS5, Isolated from a Mediator-Less Microbial Fuel Cell and Phylogenetically Related to Aeromonas jandaei. Microbes Environ 2016;31:213-25. [PMID: 27396922 PMCID: PMC5017797 DOI: 10.1264/jsme2.me15185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
7
Yu H, Jiang J, Zhao Q, Wang K, Zhang Y, Zheng Z, Hao X. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation. BIORESOURCE TECHNOLOGY 2015;193:1-7. [PMID: 26115526 DOI: 10.1016/j.biortech.2015.06.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
8
Walter X, Greenman J, Taylor B, Ieropoulos I. Microbial fuel cells continuously fuelled by untreated fresh algal biomass. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
9
Kumar GG, Hashmi S, Karthikeyan C, GhavamiNejad A, Vatankhah-Varnoosfaderani M, Stadler FJ. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications. Macromol Rapid Commun 2014;35:1861-5. [PMID: 25228415 DOI: 10.1002/marc.201400332] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/31/2014] [Indexed: 11/10/2022]
10
Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Cortón E. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosens Bioelectron 2014;63:580-590. [PMID: 24856922 DOI: 10.1016/j.bios.2014.04.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023]
11
kumar GG, Sarathi VS, Nahm KS. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 2013;43:461-75. [DOI: 10.1016/j.bios.2012.12.048] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022]
12
Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J Microbiol 2012;50:575-80. [DOI: 10.1007/s12275-012-2135-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/13/2012] [Indexed: 11/26/2022]
13
Xia J, Song LX, Dang Z. Low-Temperature Carbonization and More Effective Degradation of Carbohydrates Induced by Ferric Trichloride. J Phys Chem B 2012;116:7635-43. [DOI: 10.1021/jp303041v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Yuan Y, Ahmed J, Zhou L, Zhao B, Kim S. Carbon nanoparticles-assisted mediator-less microbial fuel cells using Proteus vulgaris. Biosens Bioelectron 2011;27:106-12. [DOI: 10.1016/j.bios.2011.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/26/2011] [Accepted: 06/21/2011] [Indexed: 11/25/2022]
15
Microbial Fuel Cells – Scalability and their Use in Robotics. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-4614-0347-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
16
Biocatalysts in microbial fuel cells. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
17
Watanabe K. Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 2009;106:528-36. [PMID: 19134546 DOI: 10.1263/jbb.106.528] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/26/2008] [Indexed: 11/17/2022]
18
Powell EE, Mapiour ML, Evitts RW, Hill GA. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. BIORESOURCE TECHNOLOGY 2009;100:269-274. [PMID: 18614353 DOI: 10.1016/j.biortech.2008.05.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 04/29/2008] [Accepted: 05/01/2008] [Indexed: 05/26/2023]
19
He Z, Angenent L. Application of Bacterial Biocathodes in Microbial Fuel Cells. ELECTROANAL 2006. [DOI: 10.1002/elan.200603628] [Citation(s) in RCA: 426] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
20
Lovley DR. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 2006;4:497-508. [PMID: 16778836 DOI: 10.1038/nrmicro1442] [Citation(s) in RCA: 693] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Davis F, Higson SPJ. Biofuel cells--recent advances and applications. Biosens Bioelectron 2006;22:1224-35. [PMID: 16781864 DOI: 10.1016/j.bios.2006.04.029] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/19/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
22
Ieropoulos IA, Greenman J, Melhuish C, Hart J. Comparative study of three types of microbial fuel cell. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2005.03.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
23
Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 2003;81:348-55. [PMID: 12474258 DOI: 10.1002/bit.10501] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
24
Park DH, Zeikus JG. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 2000;66:1292-7. [PMID: 10742202 PMCID: PMC91983 DOI: 10.1128/aem.66.4.1292-1297.2000] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
25
A non-compartmentalized glucose∣O2 biofuel cell by bioengineered electrode surfaces. J Electroanal Chem (Lausanne) 1999. [DOI: 10.1016/s0022-0728(99)00425-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
26
Palmore GR, Bertschy H, Bergens SH, Whitesides GM. A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem (Lausanne) 1998. [DOI: 10.1016/s0022-0728(97)00393-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
27
Willner I, Arad G, Katz E. A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(97)00091-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
28
Microbial fuel-cells. Appl Biochem Biotechnol 1993. [DOI: 10.1007/bf02918975] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
29
Akiba T, Bennetto HP, Stirling JL, Tanaka K. Electricity production from alkalophilic organisms. Biotechnol Lett 1987. [DOI: 10.1007/bf01033196] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA