Talbot P, DiCarlantonio G. Ultrastructure of opossum oocyte investing coats and their sensitivity to trypsin and hyaluronidase.
Dev Biol 1984;
103:159-67. [PMID:
6714516 DOI:
10.1016/0012-1606(84)90017-4]
[Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ovulated opossum oocytes are surrounded by a zona pellucida, but not by cumulus cells. Opossum sperm carry at least four acrosomal hydrolases (hyaluronidase, acrosin, N-acetylhexosaminidase, and arylsulfatase); the functions of these enzymes in opossum fertilization are uncertain. To identify possible substrates for these hydrolases, the ultrastructure of opossum oocytes was examined after fixation in the presence of ruthenium red which stabilizes extracellular matrices. This oocyte is unusual in having a wide perivitelline space containing a highly structured extracellular matrix (ECM). The ECM is comprised of granules and filaments, and it resembles matrices known to contain hyaluronic acid in other systems. Hydrolases, known to be present in opossum acrosomes, were tested for their effect on the ultrastructure of the zona pellucida and matrix of the perivitelline space. Trypsin dissolved the zona pellucida and decreased the size of the granules in the perivitelline space. Streptomyces hyaluronidase, which specifically attacks hyaluronic acid, removed only matrix filaments. Arylsulfatase, N-acetylhexosaminidase, and beta-glucuronidase did not affect the zona pellucida or ECM in our assay. These observations are consistent with the ideas that (1) opossum sperm must penetrate two oocyte investments, the zona pellucida and ECM of the perivitelline space; (2) the ECM contains hyaluronic acid (filaments) and protein (granules); (3) opossum sperm acrosin may function in penetration of the zona pellucida and ECM; and (4) opossum sperm hyaluronidase may function in penetration of the ECM by degrading hyaluronic acid (filaments). Dissolution of the granules and filaments from oocyte microvilli is probably necessary to permit close apposition and fusion of the sperm and oocyte membranes. The evolutionary significance of these results is discussed.
Collapse