1
|
Insights into Biochemical Sources and Diffuse Reflectance Spectral Features for Colorectal Cancer Detection and Localization. Cancers (Basel) 2022; 14:cancers14225715. [PMID: 36428806 PMCID: PMC9688116 DOI: 10.3390/cancers14225715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most deadly type of cancer worldwide. Early detection not only reduces mortality but also improves patient prognosis by allowing the use of minimally invasive techniques to remove cancer while avoiding major surgery. Expanding the use of microsurgical techniques requires accurate diagnosis and delineation of the tumor margins in order to allow complete excision of cancer. We have used diffuse reflectance spectroscopy (DRS) to identify the main optical CRC biomarkers and to optimize parameters for the integration of such technologies into medical devices. A total number of 2889 diffuse reflectance spectra were collected in ex vivo specimens from 47 patients. Short source-detector distance (SDD) and long-SDD fiber-optic probes were employed to measure tissue layers from 0.5 to 1 mm and from 0.5 to 1.9 mm deep, respectively. The most important biomolecules contributing to differentiating DRS between tissue types were oxy- and deoxy-hemoglobin (Hb and HbO2), followed by water and lipid. Accurate tissue classification and potential DRS device miniaturization using Hb, HbO2, lipid and water data were achieved particularly well within the wavelength ranges 350-590 nm and 600-1230 nm for the short-SDD probe, and 380-400 nm, 420-610 nm, and 650-950 nm for the long-SDD probe.
Collapse
|
2
|
Piao D, Hawxby A, Wright H, Rubin EM. Perspective review on solid-organ transplant: needs in point-of-care optical biomarkers. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-14. [PMID: 30160078 DOI: 10.1117/1.jbo.23.8.080601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Solid-organ transplant is one of the most complex areas of modern medicine involving surgery. There are challenging opportunities in solid-organ transplant, specifically regarding the deficiencies in pathology workflow or gaps in pathology support, which may await alleviations or even de novo solutions, by means of point-of-care, or point-of-procedure optical biomarkers. Focusing the discussions of pathology workflow on donor liver assessment, we analyze the undermet need for intraoperative, real-time, and nondestructive assessment of the donor injuries (such as fibrosis, steatosis, and necrosis) that are the most significant predictors of post-transplant viability. We also identify an unmet need for real-time and nondestructive characterization of ischemia or irreversible injuries to the donor liver, earlier than appearing on morphological histology examined with light microscopy. Point-of-procedure laparoscopic optical biomarkers of liver injuries and tissue ischemia may also facilitate post-transplant management that is currently difficult for or devoid of pathological consultation due to lack of tools. The potential and pitfalls of point-of-procedure optical biomarkers for liver assessment are exemplified in breadth for steatosis. The more general and overarching challenges of point-of-procedure optical biomarkers for liver transplant pathology, including the shielding effect of the liver capsule that was quantitated only recently, are projected. The technological and presentational benchmarks that a candidate technology of point-of-procedure optical biomarkers for transplant pathology must demonstrate to motivate clinical translation are also foreseen.
Collapse
Affiliation(s)
- Daqing Piao
- Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma, United States
- Oklahoma State University, Department of Veterinary Clinical Sciences, Center for Veterinary Health, United States
| | - Alan Hawxby
- University of Oklahoma Health Sciences Center, Oklahoma Transplant Center, Oklahoma City, Oklahoma, United States
| | - Harlan Wright
- University of Oklahoma Health Sciences Center, Oklahoma Transplant Center, Oklahoma City, Oklahoma, United States
| | - Erin M Rubin
- University of Oklahoma Health Sciences Center, Department of Pathology, Oklahoma City, Oklahoma, United States
| |
Collapse
|
3
|
Dong L, Kudrimoti M, Cheng R, Shang Y, Johnson EL, Stevens SD, Shelton BJ, Yu G. Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery. BIOMEDICAL OPTICS EXPRESS 2012; 3:259-72. [PMID: 22312579 PMCID: PMC3269843 DOI: 10.1364/boe.3.000259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/15/2011] [Accepted: 01/01/2012] [Indexed: 05/19/2023]
Abstract
This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements.
Collapse
Affiliation(s)
- Lixin Dong
- Center for Biomedical Engineering, University of Kentucky College of Engineering, Lexington, KY 40506, USA
| | - Mahesh Kudrimoti
- Department of Radiation Medicine, University of Kentucky Chandler Hospital, Lexington, KY 40536, USA
| | - Ran Cheng
- Center for Biomedical Engineering, University of Kentucky College of Engineering, Lexington, KY 40506, USA
| | - Yu Shang
- Center for Biomedical Engineering, University of Kentucky College of Engineering, Lexington, KY 40506, USA
| | - Ellis L. Johnson
- Department of Radiation Medicine, University of Kentucky Chandler Hospital, Lexington, KY 40536, USA
| | - Scott D. Stevens
- Department of Radiology, University of Kentucky Chandler Hospital, Lexington, KY 40536, USA
| | - Brent J. Shelton
- Markey Cancer Center, University of Kentucky College of Medicine, and Department of Biostatistics, University of Kentucky College of Public Health, Lexington, KY 40536, USA
| | - Guoqiang Yu
- Center for Biomedical Engineering, University of Kentucky College of Engineering, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Kondepati VR, Oszinda T, Heise HM, Luig K, Mueller R, Schroeder O, Keese M, Backhaus J. CH-overtone regions as diagnostic markers for near-infrared spectroscopic diagnosis of primary cancers in human pancreas and colorectal tissue. Anal Bioanal Chem 2007; 387:1633-41. [PMID: 17205263 DOI: 10.1007/s00216-006-0960-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/29/2006] [Accepted: 10/20/2006] [Indexed: 12/13/2022]
Abstract
We have investigated the application of near-infrared spectroscopy for detection of human primary pancreatic and colorectal cancers. Spectra from cancerous and normal tissue were collected from a total of 37 surgically resected pancreatic and colorectal patient tissue specimens using a fibre-optic probe. Major spectral differences were observed in the CH-stretching first (6,000-5,400 cm(-1)) and second overtone (9,000-7,900 cm(-1)) regions. By use of artificial neural networks, linear discriminant analysis, and cluster analysis as pattern-recognition methods the spectra were classified into cancerous and normal tissue groups with accuracy up to 89%. We also explored differences between the spectra obtained from colorectal and pancreatic tissue. Spectral data from cancerous and normal tissue were classified organ-specifically into four groups with accuracy between 80 and 83%. Our results indicate that CH-overtone regions, besides serving as diagnostic markers for NIR spectroscopic diagnosis of primary human pancreas and colorectal cancers, are also useful for elucidating differences between the spectra obtained from colorectal and pancreatic cancerous tissue.
Collapse
Affiliation(s)
- Venkata Radhakrishna Kondepati
- Institute for Instrumental Analysis and Bioanalysis, Mannheim University of Applied Sciences, Windeckstrasse 110, 68163 Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu H, Gu Y, Kim JG, Mason RP. Near-infrared spectroscopy and imaging of tumor vascular oxygenation. Methods Enzymol 2004; 386:349-78. [PMID: 15120261 DOI: 10.1016/s0076-6879(04)86017-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hanli Liu
- Biomedical Engineering Program, The University of Texas at Arlington, 76019, USA
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Dawen Zhao
- Department of The University of Texas Southwestern Medicial Center at Dallas, 75390, USA
| | | | | |
Collapse
|
7
|
Cheng X, Mao JM, Bush R, Kopans DB, Moore RH, Chorlton M. Breast cancer detection by mapping hemoglobin concentration and oxygen saturation. APPLIED OPTICS 2003; 42:6412-21. [PMID: 14649285 DOI: 10.1364/ao.42.006412] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Near-infrared (NIR) spectroscopic imaging technology provides a new modality for measuring changes in total hemoglobin concentration (HbT) and blood oxygen saturation (SO2) in human tissue. The technology can be used to detect breast cancer because cancers may cause greater vascularization and greater oxygen consumption than in normal tissue. Based on the NIR technology, ViOptix, Inc., has developed an optical device that provides two-dimensional mapping of HbT and SO2 in human tissue. As an adjunctive tool to mammography, the device was preliminarily tested in a clinical trial with 50 mammogram-positive patients at the Massachusetts General Hospital. The results of the clinical trial demonstrate that the device can reach as much as 92% diagnostic sensitivity and 67% specificity in detecting ductal carcinoma. These results may indicate that the NIR technology can potentially be used as an adjunct to mammography for breast cancer detection to reduce the number of biopsies performed.
Collapse
Affiliation(s)
- Xuefeng Cheng
- ViOptix, Inc. (formerly Photonify Technologies, Inc.), 44061-B Old Warm Spring Boulevard, Fremont, California 94538, USA
| | | | | | | | | | | |
Collapse
|
8
|
Merritt S, Bevilacqua F, Durkin AJ, Cuccia DJ, Lanning R, Tromberg BJ, Gulsen G, Yu H, Wang J, Nalcioglu O. Coregistration of diffuse optical spectroscopy and magnetic resonance imaging in a rat tumor model. APPLIED OPTICS 2003; 42:2951-9. [PMID: 12790444 DOI: 10.1364/ao.42.002951] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report coregistration of near-infrared diffuse optical spectroscopy (DOS) and magnetic resonance imaging (MRI) for the study of animal model tumors. A combined broadband steady-state and frequency-domain apparatus was used to determine tissue oxyhemoglobin, deoxyhemoglobin, and water concentration locally in tumors. Simultaneous MRI coregistration provided structural (T2-weighted) and contrast-enhanced images of the tumor that were correlated with the optical measurements. By use of Monte Carlo simulations, the optically sampled volume was superimposed on the MR images, showing precisely which tissue structure was probed optically. DOS and MRI coregistration measurements were performed on seven rats over 20 days and were separated into three tumor tissue classifications: viable, edematous, and necrotic. A ratio of water concentration to total hemoglobin concentration, as measured optically, was performed for each tissue type and showed values for edematous tissue to be greater than viable tissue (1.2 +/- 0.49 M/microM versus 0.48 +/- 0.15 M/microM). Tissue hemoglobin oxygen saturation (StO2) also showed a large variation between tissue types: viable tissue had an optically measured StO2 value of 61 +/- 5%, whereas StO2 determined for necrotic tissue was 43 +/- 6%.
Collapse
Affiliation(s)
- Sean Merritt
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California Irvine, Irvine, California 92612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gu Y, Bourke VA, Kim JG, Constantinescu A, Mason RP, Liu H. Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters. APPLIED OPTICS 2003; 42:2960-2967. [PMID: 12790445 DOI: 10.1364/ao.42.002960] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The simultaneous measurement of three oxygen-sensitive parameters [arterial hemoglobin oxygen saturation (SaO2), tumor vascular-oxygenated hemoglobin concentration ([HbO2]), and tumor oxygen tension (pO2)] in response to hyperoxic respiratory challenge is demonstrated in rat breast tumors. The effects of two hyperoxic gases [oxygen and carbogen (5% CO2 and 95% O2)] were compared, by use of two groups of Fisher rats with subcutaneous 13762NF breast tumors implanted in pedicles on the foreback. Two different gas-inhalation sequences were compared, i.e., air-carbogen-air-oxygen-air and air-oxygen-air-carbogen-air. The results demonstrate that both of the inhaled, hyperoxic gases significantly improved the tumor oxygen status. All three parameters displayed similar dynamic response to hyperoxic gas interventions, but with different response times: the fastest for arterial SaO2, followed by biphasic changes in tumor vascular [HbO2], and then delayed responses for pO2. Both of the gases induced similar changes in vascular oxygenation and regional tissue pO2 in the rat tumors, and changes in [HbO2] and mean pO2 showed a linear correlation with large standard deviations, which presumably results from global versus local measurements. Indeed, the pO2 data revealed hetergeneous regional response to hyperoxic interventions. Although preliminary near-infrared measurements had been demonstrated previously in this model, the addition of the pO2 optical fiber probes provides a link between the noninvasive relative measurements of vascular phenomena based on endogenous reporter molecules, with the quantitative, albeit, invasive pO2 determinations.
Collapse
Affiliation(s)
- Yueqing Gu
- Biomedical Engineering Program, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kim JG, Zhao D, Song Y, Constantinescu A, Mason RP, Liu H. Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. JOURNAL OF BIOMEDICAL OPTICS 2003; 8:53-62. [PMID: 12542380 DOI: 10.1117/1.1527049] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2001] [Revised: 06/25/2002] [Accepted: 08/26/2002] [Indexed: 05/24/2023]
Abstract
This study investigates the correlation of tumor blood oxygenation and tumor pO(2) with respect to carbogen inhalation. After having refined and validated the algorithms for calculating hemoglobin concentrations, we used near-infrared spectroscopy (NIRS) to measure changes of oxygenated hemoglobin concentration (delta[HbO(2)]) and used an oxygen needle electrode and (19)F MRI for pO(2) measurements in tumors. The measurements were taken from Dunning prostate R3327 tumors implanted in rats, while the anesthetized rats breathed air or carbogen. The NIRS results from tumor measurements showed significant changes in tumor vascular oxygenation in response to carbogen inhalation, while the pO(2) electrode results showed an apparent heterogeneity for tumor pO(2) response to carbogen inhalation, which was also confirmed by (19)F MR pO(2) mapping. Furthermore, we developed algorithms to estimate hemoglobin oxygen saturation, sO(2), during gas intervention based on the measured values of delta[HbO(2)] and pO(2). The algorithms have been validated through a tissue-simulating phantom and used to estimate the values of sO(2) in the animal tumor measurement based on the NIRS and global mean pO(2) values. This study demonstrates that the NIRS technology can provide an efficient, real-time, noninvasive approach to monitoring tumor physiology and is complementary to other techniques, while it also demonstrates the need for an NIR imaging technique to study spatial heterogeneity of tumor vasculature under therapeutic interventions.
Collapse
Affiliation(s)
- Jae G Kim
- University of Texas at Arlington/University of Texas Southwestern Medical Center at Dallas, Joint Graduate Program in Biomedical Engineering, Arlington, Texas 76019, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gulsen G, Yu H, Wang J, Nalcioglu O, Merritt S, Bevilacqua F, Durkin AJ, Cuccia DJ, Lanning R, Tromberg BJ. Congruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors. Technol Cancer Res Treat 2002; 1:497-505. [PMID: 12625777 DOI: 10.1177/153303460200100610] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a combined near-infrared diffuse optical spectroscopy (DOS) and Magnetic Resonance Imaging (MRI) system for the study of animal model tumors. A combined broadband steady-state and frequency domain optical spectroscopy apparatus was integrated with the MRI. The physiological properties of tissue rendered by MRI, including vascular volume fraction and water, were compared with chromophore concentrations as determined from the parameters obtained by optical measurements. DOS measurements provided oxy-hemoglobin, deoxy-hemoglobin, and water concentration locally in tumors. A method for co-registration of the information obtained by both modalities was developed. Using Monte Carlo simulations, the optically sampled volume was superimposed on the MR images, illustrating which tissue structure was probed optically. Finally, two optical contrast agents, indocyanine green (ICG) and methylene blue (MB), were employed and their kinetics were measured by DOS system from different locations on the tumor and compared with Gd-DTPA enhancement maps obtained from MRI.
Collapse
Affiliation(s)
- Gultekin Gulsen
- John Tu and Thomas Yuen Center for Functional Onco-Imaging, University of California Irvine, Irvine, California 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu H, Song Y, Worden KL, Jiang X, Constantinescu A, Mason RP. Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy. APPLIED OPTICS 2000; 39:5231-43. [PMID: 18354520 DOI: 10.1364/ao.39.005231] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The measurement of dynamic changes in the blood oxygenation of tumor vasculature could be valuable for tumor prognosis and optimizing tumor treatment plans. In this study we employed near-infrared spectroscopy (NIRS) to measure changes in the total hemoglobin concentration together with the degree of hemoglobin oxygenation in the vascular bed of breast and prostate tumors implanted in rats. Measurements were made while inhaled gas was alternated between 33% oxygen and carbogen (95% O(2), 5% CO(2)). Significant dynamic changes in tumor oxygenation were observed to accompany respiratory challenge, and these changes could be modeled with two exponential components, yielding two time constants. Following the Fick principle, we derived a simplified model to relate the time constants to tumor blood-perfusion rates. This study demonstrates that the NIRS technology can provide an efficient, real-time, noninvasive means of monitoring the vascular oxygenation dynamics of tumors and facilitate investigations of tumor vascular perfusion. This may have prognostic value and promises insight into tumor vascular development.
Collapse
Affiliation(s)
- H Liu
- Joint Graduate Program in Biomedical Engineering, University of Texas at Arlington, Arlington, Texas 76109, USA.
| | | | | | | | | | | |
Collapse
|