1
|
Keane L, Cheray M, Blomgren K, Joseph B. Multifaceted microglia - key players in primary brain tumour heterogeneity. Nat Rev Neurol 2021; 17:243-259. [PMID: 33692572 DOI: 10.1038/s41582-021-00463-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
Microglia are the resident innate immune cells of the immune-privileged CNS and, as such, represent the first line of defence against tissue injury and infection. Given their location, microglia are undoubtedly the first immune cells to encounter a developing primary brain tumour. Our knowledge of these cells is therefore important to consider in the context of such neoplasms. As the heterogeneous nature of the most aggressive primary brain tumours is thought to underlie their poor prognosis, this Review places a special emphasis on the heterogeneity of the tumour-associated microglia and macrophage populations present in primary brain tumours. Where available, specific information on microglial heterogeneity in various types and subtypes of brain tumour is included. Emerging evidence that highlights the importance of considering the heterogeneity of both the tumour and of microglial populations in providing improved treatment outcomes for patients is also discussed.
Collapse
Affiliation(s)
- Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Mellai M, Annovazzi L, Bisogno I, Corona C, Crociara P, Iulini B, Cassoni P, Casalone C, Boldorini R, Schiffer D. Chondroitin Sulphate Proteoglycan 4 (NG2/CSPG4) Localization in Low- and High-Grade Gliomas. Cells 2020; 9:E1538. [PMID: 32599896 PMCID: PMC7349878 DOI: 10.3390/cells9061538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neuron glial antigen 2 or chondroitin sulphate proteoglycan 4 (NG2/CSPG4) is expressed by immature precursors/progenitor cells and is possibly involved in malignant cell transformation. The aim of this study was to investigate its role on the progression and survival of sixty-one adult gliomas and nine glioblastoma (GB)-derived cell lines. METHODS NG2/CSPG4 protein expression was assessed by immunohistochemistry and immunofluorescence. Genetic and epigenetic alterations were detected by molecular genetic techniques. RESULTS NG2/CSPG4 was frequently expressed in IDH-mutant/1p19q-codel oligodendrogliomas (59.1%) and IDH-wild type GBs (40%) and rarely expressed in IDH-mutant or IDH-wild type astrocytomas (14.3%). Besides tumor cells, NG2/CSPG4 immunoreactivity was found in the cytoplasm and/or cell membranes of reactive astrocytes and vascular pericytes/endothelial cells. In GB-derived neurospheres, it was variably detected according to the number of passages of the in vitro culture. In GB-derived adherent cells, a diffuse positivity was found in most cells. NG2/CSPG4 expression was significantly associated with EGFR gene amplification (p = 0.0005) and poor prognosis (p = 0.016) in astrocytic tumors. CONCLUSION The immunoreactivity of NG2/CSPG4 provides information on the timing of the neoplastic transformation and could have prognostic and therapeutic relevance as a promising tumor-associated antigen for antibody-based immunotherapy in patients with malignant gliomas.
Collapse
Affiliation(s)
- Marta Mellai
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (M.M.); (R.B.)
- Centro Interdipartimentale di Ricerca Traslazionale sulle Malattie Autoimmuni e Allergiche (CAAD), Università del Piemonte Orientale (UPO), Corso Trieste 15A, 28100 Novara, Italy
- Fondazione Edo ed Elvo Tempia Valenta—ONLUS, Via Malta 3, 13900 Biella, Italy
| | - Laura Annovazzi
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| | - Ilaria Bisogno
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Paola Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Università di Torino/Città della Salute e della Scienza, Via Santena 7, 10126 Torino, Italy;
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (C.C.); (P.C.); (B.I.)
| | - Renzo Boldorini
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (M.M.); (R.B.)
| | - Davide Schiffer
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Via P. Micca 29, 13100 Vercelli, Italy; (L.A.); (I.B.); (D.S.)
| |
Collapse
|
3
|
Pan H, Xue W, Zhao W, Schachner M. Expression and function of chondroitin 4-sulfate and chondroitin 6-sulfate in human glioma. FASEB J 2020; 34:2853-2868. [PMID: 31908019 DOI: 10.1096/fj.201901621rrr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Key molecules promoting migration and invasion exist in the extracellular matrix, and include chondroitin 4-sulfate (C4S) and chondroitin 6-sulfate (C6S), functionally important carbohydrate chains of chondroitin sulfate proteoglycans that participate in regulating cancer development. Here, we show that C4S and C6S expression is upregulated in human glioma tissues, when compared to normal brain tissue, and that the extent of upregulation positively correlated with glioma malignancy. Treatment of cultured glioma cells with C4S and C6S enhanced cell viability, migration, and invasion, increased MMP-2 and MMP-9 levels, enhanced N-cadherin, but reduced E-cadherin expression. Inhibition of expression of the two CS synthetic enzymes chondroitin 4-O-sulfotransferase-1 (C4ST-1/CHST11) and chondroitin 6-O-sulfotransferase-1 (C6ST-1/CHST3) suppressed cell viability, migration and invasion, reduced MMP-2 and MMP-9 expression, and reduced N-cadherin expression, but increased E-cadherin levels. The C4S- and C6S-enhanced epithelial-to-mesenchymal transition and expression of MMP-2 occurred via activation of the PI3K/AKT signaling pathway, known to be involved in promoting cell migration and invasion. In immune-deficient larval zebrafish, C4S and C6S increased the numbers of viable tumor cells, thereby promoting glioma cell proliferation. The present observations point to a novel role of C4S and C6S in human glioma cell functions, thus possibly representing targets in glioma therapy.
Collapse
Affiliation(s)
- Hongchao Pan
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Weikang Xue
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Chondroitin Sulphate Proteoglycans in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:73-92. [PMID: 32845503 DOI: 10.1007/978-3-030-48457-6_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteoglycans are macromolecules that are essential for the development of cells, human diseases and malignancies. In particular, chondroitin sulphate proteoglycans (CSPGs) accumulate in tumour stroma and play a key role in tumour growth and invasion by driving multiple oncogenic pathways in tumour cells and promoting crucial interactions in the tumour microenvironment (TME). These pathways involve receptor tyrosine kinase (RTK) signalling via the mitogen-activated protein kinase (MAPK) cascade and integrin signalling via the activation of focal adhesion kinase (FAK), which sustains the activation of extracellular signal-regulated kinases 1/2 (ERK1/2).Human CSPG4 is a type I transmembrane protein that is associated with the growth and progression of human brain tumours. It regulates cell signalling and migration by interacting with components of the extracellular matrix, extracellular ligands, growth factor receptors, intracellular enzymes and structural proteins. Its overexpression by tumour cells, perivascular cells and precursor/progenitor cells in gliomas suggests that it plays a role in their origin, progression and neo-angiogenesis and its aberrant expression in tumour cells may be a promising biomarker to monitor malignant progression and patient survival.The aim of this chapter is to review and discuss the role of CSPG4 in the TME of human gliomas, including its potential as a druggable therapeutic target.
Collapse
|
5
|
Chondroitin sulfate content and decorin expression in glioblastoma are associated with proliferative activity of glioma cells and disease prognosis. Cell Tissue Res 2019; 379:147-155. [PMID: 31773303 DOI: 10.1007/s00441-019-03127-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are important components of brain extracellular matrix (ECM), although their contribution in gliomagenesis remains underinvestigated. Here, both chondroitin sulfate (CS) content/distribution and expression of a number of CSPG core proteins were studied in glioblastoma multiforme (GBM) tumours with different prognosis (n = 40) using immunohistochemistry and RT-PCR analysis. Survival rates for clinically different patient groups were compared using the Kaplan-Meier analysis and univariate Cox model. CS content was increased in 60-65% of studied GBM tumours and distributed heterogeneously, mainly at perinecrotic and perivascular zones rather than tumour cells with specific morphology. CS accumulation, especially in the tumour extracellular matrix, was positively associated with the proliferative activity of GBM cells according to theKi67 index (p < 0.01) but revealed no significant association with age or sex of the patients, tumour localisation, relapse or disease outcome. The increase in CS content in GBM tumours was accompanied by upregulation of decorin (1.5-fold), biglycan (3-fold) and serglycin (2-fold) expression (p < 0.05), while only decorin expression level was negatively associated with the overall survival rate of the GBM patients (p < 0.05). These results demonstrate a contribution of CS to high intratumoural heterogeneity of GBM and suggest CS content and decorin expression for further investigation as potential microenvironmental glycomarkers/targets for GBM diagnostics and treatment.
Collapse
|
6
|
The Significance of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in Human Gliomas. Int J Mol Sci 2018; 19:ijms19092724. [PMID: 30213051 PMCID: PMC6164575 DOI: 10.3390/ijms19092724] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by N-ethyl-N-nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target.
Collapse
|
7
|
Walkley SU, Thrall MA, Haskins ME, Mitchell TW, Wenger DA, Brown DE, Dial S, Seim H. Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux-Lamy) disease. Neuropathol Appl Neurobiol 2005; 31:536-44. [PMID: 16150124 DOI: 10.1111/j.1365-2990.2005.00675.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis (MPS) type VI, also known as Maroteaux-Lamy disease, is an inherited disorder of glycosaminoglycan catabolism caused by deficient activity of the lysosomal hydrolase, N-acetylgalactosamine 4-sulphatase (4S). A variety of prominent visceral and skeletal defects are characteristic, but primary neurological involvement has generally been considered absent. We report here that the feline model of MPS VI exhibits abnormal lysosomal storage in occasional neurones and glia distributed throughout the cerebral cortex. Abnormal lysosomal inclusions were pleiomorphic with some resembling zebra bodies and dense core inclusions typical of other MPS diseases or the membranous storage bodies characteristic of the gangliosidoses. Pyramidal neurones were shown to contain abnormal amounts of GM2 and GM3 gangliosides by immunocytochemical staining and unesterified cholesterol by histochemical (filipin) staining. Further, Golgi staining of pyramidal neurones revealed that some possessed ectopic axon hillock neurites and meganeurites similar to those described in Tay-Sachs and other neuronal storage diseases with ganglioside storage. Some animals evaluated in this study also received allogeneic bone marrow transplants, but no significant differences in neuronal storage were noted between treated and untreated individuals. These studies demonstrate that deficiency of 4S activity can lead to metabolic abnormalities in the neurones of central nervous system in cats, and that these changes may not be readily amenable to correction by bone marrow transplantation. Given the close pathological and biochemical similarities between feline and human MPS VI, it is conceivable that children with this disease have similar neuronal involvement.
Collapse
Affiliation(s)
- S U Walkley
- Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
McGlynn R, Dobrenis K, Walkley SU. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 2005; 480:415-26. [PMID: 15558784 DOI: 10.1002/cne.20355] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mucopolysaccharidoses (MPSs) are a complex family of lysosomal storage disorders characterized by failure to degrade heparan sulfate (HS) and/or other types of glycosaminoglycans (GAGs) secondary to the absence of specific lysosomal enzymes. An accompanying storage of glycosphingolipids (GSLs), most notably GM2 and GM3 gangliosides, has also been documented to occur in many types of MPS disease and is believed to be caused by secondary inhibition of GSL-degradative enzymes by intracellular GAG accumulation. We have documented the presence of secondary ganglioside accumulation in mouse models of several MPS disorders (types I, IIIA, IIIB, and VII) and report that this storage is accompanied by sequestration of free cholesterol in a manner similar to that observed in primary gangliosidoses. Using confocal microscopy, we evaluated the cellular distribution of cholesterol, GM2 and GM3 gangliosides, and HS in brains of mice with MPS IIIA disease. Unexpectedly, we found that although both gangliosides often accumulated in the same neurons, they were consistently located in separate populations of cytoplasmic vesicles. Additionally, GM3 ganglioside only partially co-localized with the primary storage material (HS), and cholesterol likewise only partially co-localized with the GM2 and GM3 gangliosides. These findings raise significant questions about the mechanism(s) responsible for secondary accumulation of storage materials in MPS disease. Furthermore, given that GSLs and cholesterol are constituents of membrane rafts believed critical in signal transduction events in neurons, their co-sequestration in individual neurons suggests the presence of defects in the composition, trafficking, and/or recycling of raft components and thus possible new mechanisms to explain neuronal dysfunction in MPS disorders.
Collapse
Affiliation(s)
- Robert McGlynn
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|