1
|
Toyohara J, Komoda T, Tago T, Ito M, Yoshino H. Light up heart-type fatty acid binding protein (FABP3) with a novel fluorine-18 labelled selective FABP3 ligand. EJNMMI Res 2024; 14:107. [PMID: 39542944 PMCID: PMC11564661 DOI: 10.1186/s13550-024-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Heart-type fatty acid binding proteins (FABP3) constitute a family of lipid chaperone proteins. They are found in the cytosol and enhance cellular fatty acid solubilisation, transport, and metabolism. FABP3 is highly expressed in the myocardium and is released from myocytes during myocardial damage. As FABP3 content in the myocardium is closely related to the metabolic state of fatty acids, we hypothesised that targeting of FABP3 with a radiolabelled small organic compound would visualise myocardium. RESULTS The selective FABP3 inhibitor, 4-(4-fluoro-2-(1-phenyl-5-(2-(trifluoromethyl)phenyl)-1H-pyrazol-3-yl)phenoxy)butanoic acid (LUF), was radiolabelled via a two-step reaction comprising copper-mediated 18F-fluorination of an arylboronic precursor followed by alkaline hydrolysis of the ethoxy protecting group. [18F]LUF was successfully synthesised by automated synthesiser with sufficient activity yields (14.0 ± 1.8 GBq) and high quality (molar activity, > 250 GBq/µmol and radiochemical purity, > 99.6%). Biological assessment of [18F]LUF as an in vivo myocardial imaging agent included evaluations of biodistribution, metabolite analysis, and positron emission tomography (PET) imaging of small animals. [18F]LUF clearly visualised the myocardium with high contrast against background tissues such as the lung and liver. [18F]LUF also showed a high absolute myocardial uptake equivalent to that of the promising myocardial perfusion tracer [18F]flurpiridaz and excellent metabolic stability in the body. These properties are ideal for stable and noise-less imaging of the heart. PET imaging of rat surgical permanent myocardial infarction (MI) and experimental autoimmune myocarditis (EAM) was also performed. [18F]LUF successfully visualised lesions of permanent MI and EAM. CONCLUSION Our results showed for the first time that the 18F-labelled FABP3 selective small organic compound clearly visualised myocardium with good quality. To determine the clinical utility of [18F]LUF for cardiovascular disease in clinical practice, it will be necessary to evaluate a greater variety of cardiovascular disease models and elucidate the accumulation mechanism, particularly in relation to fatty acid metabolism in the myocardium.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Taichi Komoda
- R&D Center, Shiratori Pharmaceuticals Co., Ltd., Narashino, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masahiko Ito
- R&D Center, Shiratori Pharmaceuticals Co., Ltd., Narashino, Japan
| | - Hiroshi Yoshino
- R&D Center, Shiratori Pharmaceuticals Co., Ltd., Narashino, Japan
| |
Collapse
|
2
|
Kochansky CJ, Lyman MJ, Fauty SE, Vlasakova K, D'mello AP. Administration of Fenofibrate Markedly Elevates Fabp3 in Rat Liver and Plasma and Confounds Its Use as a Preclinical Biomarker of Cardiac and Muscle Toxicity. Lipids 2018; 53:947-960. [PMID: 30592062 DOI: 10.1002/lipd.12110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023]
Abstract
Proteins involved in lipid homeostasis are often regulated through the nuclear peroxisome proliferator-activated receptors (PPAR). PPARα is the target for the fibrate-class of drugs. Fenofibrate has been approved for its lipid-lowering effects in patients with hypercholesterolemia and hypertriglyceridemia. We were interested in understanding the expression of the energy transporters in energy-utilizing tissues like liver, heart, muscle, and adipose tissues in rat with the hypothesis that the change in transporter expression would align with the known lipid-lowering effects of PPARα agonists like fenofibrate. We found that several fatty-acid transporter proteins had significantly altered levels following 8 days of fenofibrate dosing. The mRNA levels of the highly abundant Fatp2 and Fatp5 in rat liver increased approximately twofold and decreased fourfold, respectively. Several fatty-acid-binding proteins and acyl-CoA-binding proteins had a significant increase in mRNA abundance but not the major liver fatty-acid-binding protein, Fabp1. Of particular interest was the increased liver expression of Fabp3 also known as heart-fatty acid binding protein (H-FABP or FABP3). FABP3 has been proposed as a circulating clinical biomarker for cardiomyopathy and muscle toxicity, as well as a preclinical marker for PPARα-induced muscle toxicity. Here, we show that fenofibrate induces liver mRNA levels of Fabp3 ~5000-fold resulting in an approximately 50-fold increase in FABP3 protein levels in the whole liver. This increased liver expression complicates the interpretation and potential use of FABP3 as a specific biomarker for PPARα-induced muscle toxicities.
Collapse
Affiliation(s)
- Christopher J Kochansky
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75A-203A, West Point, PA, 19486, USA.,Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19104-4495, USA
| | - Michael J Lyman
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75A-203A, West Point, PA, 19486, USA
| | - Scott E Fauty
- Safety Assessment, Merck & Co., Inc., 770 Sumneytown Pike, WP81-217, West Point, PA, 19486, USA
| | - Katerina Vlasakova
- Safety Assessment, Merck & Co., Inc., 770 Sumneytown Pike, WP81-217, West Point, PA, 19486, USA
| | - Anil P D'mello
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19104-4495, USA
| |
Collapse
|
3
|
Chuppa S, Liang M, Liu P, Liu Y, Casati MC, Cowley AW, Patullo L, Kriegel AJ. MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal Syndrome Type 4. Kidney Int 2017; 93:375-389. [PMID: 28760335 DOI: 10.1016/j.kint.2017.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
Cardiovascular events are the leading cause of death in patients with chronic kidney disease (CKD), although the pathological mechanisms are poorly understood. Here we longitudinally characterized left ventricle pathology in a 5/6 nephrectomy rat model of CKD and identify novel molecular mediators. Next-generation sequencing of left ventricle mRNA and microRNA (miRNA) was performed at physiologically distinct points in disease progression, identifying alterations in genes in numerous immune, lipid metabolism, and inflammatory pathways, as well as several miRNAs. MiRNA miR-21-5p was increased in our dataset and has been reported to regulate many identified pathways. Suppression of miR-21-5p protected rats with 5/6 nephrectomy from developing left ventricle hypertrophy and improved left ventricle function. Next-generation mRNA sequencing revealed that miR-21-5p suppression altered gene expression in peroxisome proliferator-activated receptor alpha (PPARα) regulated pathways in the left ventricle. PPARα, a miR-21-5p target, is the primary PPAR isoform in the heart, importantly involved in regulating fatty acid metabolism. Therapeutic delivery of low-dose PPARα agonist (clofibrate) to rats with 5/6 nephrectomy improved cardiac function and prevented left ventricle dilation. Thus, comprehensive characterization of left ventricle molecular changes highlights the involvement of numerous signaling pathways not previously explored in CKD models and identified PPARα as a potential therapeutic target for CKD-related cardiac dysfunction.
Collapse
Affiliation(s)
- Sandra Chuppa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marc C Casati
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Leah Patullo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
4
|
Quantitative evaluation of the effects of cold exposure of rats on the expression levels of ten FABP isoforms in brown adipose tissue. Biotechnol Lett 2010; 33:237-42. [PMID: 20972819 DOI: 10.1007/s10529-010-0444-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
We quantitatively examined the transcript levels of ten fatty acid-binding protein (FABP) isoforms in the brown adipose tissue (BAT) of rats kept at room temperature and of rats exposed to the cold by Northern blotting using the synthesized RNA of each isoform as an external standard. FABP3-5 were expressed in BAT of both rats maintained at room temperature and those exposed to the cold. FABP4 was the most abundantly expressed isoform, but its transcript level was not significantly affected by cold exposure. FABP3 was slightly expressed in the BAT of rats maintained at room temperature and its transcript level was elevated ten fold by cold exposure. FABP5 was also elevated four fold by cold exposure but the amount of its mRNA in BAT was negligible.
Collapse
|
5
|
Mirtschink P, Stehr SN, Walther M, Pietzsch J, Bergmann R, Pietzsch HJ, Weichsel J, Pexa A, Dieterich P, Wunderlich G, Binas B, Kropp J, Deussen A. Validation of 99mTc-labeled “4+1” fatty acids for myocardial metabolism and flow imaging. Nucl Med Biol 2009; 36:833-43. [DOI: 10.1016/j.nucmedbio.2009.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/12/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
|
6
|
Mirtschink P, Stehr SN, Walther M, Pietzsch J, Bergmann R, Pietzsch HJ, Weichsel J, Pexa A, Dieterich P, Wunderlich G, Binas B, Kropp J, Deussen A. Validation of 99mTc-labeled “4+1” fatty acids for myocardial metabolism and flow imaging. Nucl Med Biol 2009; 36:845-52. [DOI: 10.1016/j.nucmedbio.2009.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/12/2009] [Accepted: 06/22/2009] [Indexed: 11/29/2022]
|
7
|
Qian Q, Kuo L, Yu YT, Rottman JN. A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. Circ Res 1999; 84:276-89. [PMID: 10024301 DOI: 10.1161/01.res.84.3.276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The heart fatty acid-binding protein (HFABP) is a member of a family of binding proteins with distinct tissue distributions and diverse roles in fatty acid metabolism, trafficking, and signaling. Other members of this family have been shown to possess concise promoter regions that direct appropriate tissue-specific expression. The basis for the specific expression of the HFABP has not been previously evaluated, and the mechanisms governing expression of metabolic genes in the heart are not completely understood. We used transient and permanent transfections in ventricular myocytes, skeletal myocytes, and nonmyocytic cells to map regulatory elements in the HFABP promoter, and audited results in transgenic mice. Appropriate tissue-specific expression in cell culture and in transgenic mice was dictated by 1.2 kb of the 5'-flanking sequence of FABP3, the HFABP gene. Comparison of orthologous murine and human genomic sequences demonstrated multiple regions of near-identity within this promoter region, including a CArG-like element close to the TATA box. Binding and transactivation studies demonstrated that this element can function as an atypical myocyte enhancer-binding factor 2 site. Interactions with adjacent sites are likely to be necessary for fully appropriate, tissue-specific, developmental and metabolic regulation.
Collapse
Affiliation(s)
- Q Qian
- Departments of Internal Medicine (Cardiology), Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
8
|
Glatz JF, Van Breda E, Van der Vusse GJ. Intracellular transport of fatty acids in muscle. Role of cytoplasmic fatty acid-binding protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 441:207-18. [PMID: 9781327 DOI: 10.1007/978-1-4899-1928-1_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Long-chain fatty acids represent a major substrate for energy production in striated muscles, especially in those muscles which have a high oxidative enzymatic capacity. Following their uptake from the extracellular compartment the fatty acids have to translocate through the aqueous cytoplasm of the myocytes to reach the mitochondria where they undergo oxidative degradation. This intracellular transport is assisted by cytoplasmic fatty acid-binding protein (FABPc), a small (15 kD) protein which shows a high affinity for the non-covalent binding of long-chain fatty acids, and of which several types occur. So-called heart-type or muscle-type FABPc is found in muscle cells, and is abundant especially in oxidative fibers. The muscular FABPc content appears to relate to the rate of fatty acid utilization, and also changes in concert to modulations in fatty acid utilization induced by (patho)physiological stimuli (e.g. endurance training, diabetes). The facilitation of intracellular fatty acid transport by FABPc is accomplished by increasing the concentration of the diffusing fatty acids in the aqueous cytoplasm and, most likely, also by interacting directly with membranes to promote transfer of fatty acids to and from the cytosolic binding protein.
Collapse
Affiliation(s)
- J F Glatz
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | | |
Collapse
|
9
|
Abstract
Long-chain fatty acids are important fuel molecules for the heart, their oxidation in mitochondria providing the bulk of energy required for cardiac functioning. The low solubility of fatty acids in aqueous solutions impairs their cellular transport. However, cardiac tissue contains several proteins capable of binding fatty acids non-covalently. These fatty acid-binding proteins (FABPs) are thought to facilitate both cellular uptake and intracellular transport of fatty acids. The majority of fatty acids taken up by the heart seems to pass the sarcolemma through a carrier-mediated translocation mechanism consisting of one or more membrane-associated FABPs. Intracellular transport of fatty acids towards sites of metabolic conversion is most likely accomplished by cytoplasmic FABPs. In this review, the roles of membrane-associated and cytoplasmic FABPs in cardiac fatty acid metabolism under (patho)physiological circumstances are discussed.
Collapse
Affiliation(s)
- F G Schaap
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | | | | |
Collapse
|
10
|
Guglielmo CG, Haunerland NH, Williams TD. Fatty acid binding protein, a major protein in the flight muscle of migrating western sandpipers. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:549-55. [PMID: 9734338 DOI: 10.1016/s0305-0491(98)00016-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Migratory flight in birds is fueled primarily by fatty acid oxidation imposing a requirement for high rates of fatty acid: (a) transport; (b) uptake; and (c) delivery to intracellular sites of beta-oxidation. Muscle fatty acid binding protein (M-FABP) is a cytosolic protein involved in the intracellular transport of fatty acids. Its expression appears to be correlated with muscle fatty acid oxidation capacity. The M-FABP was isolated for the first time from a long distance migrant bird using: (i) size exclusion; (ii) anion exchange; and (iii) hydroxyapatite chromatography. M-FABP has a molecular weight of approximately 14,000 Da and an isoelectric point of pH 4.8. A partial amino acid sequence of the protein demonstrated homology to M-FABPs from other species (80% identical to human heart FABP). It was estimated that M-FABP comprises approximately 14 and 21% of total cytosolic protein of the pectoralis and heart, respectively; the highest values yet reported from any vertebrate muscle. The abundance of M-FABP in these tissues suggests that the protein may play a key role in fatty acid supply during endurance flight. Thus, it is proposed that a seasonal increase in M-FABP expression could be a component of physiological preparation for migration.
Collapse
Affiliation(s)
- C G Guglielmo
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | | | | |
Collapse
|
11
|
Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 1996; 35:243-82. [PMID: 9082452 DOI: 10.1016/s0163-7827(96)00006-9] [Citation(s) in RCA: 366] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J F Glatz
- Department of Physiology, Maastricht University, The Netherlands.
| | | |
Collapse
|
12
|
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| |
Collapse
|
13
|
Zschiesche W, Kleine AH, Spitzer E, Veerkamp JH, Glatz JF. Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues. Histochem Cell Biol 1995; 103:147-56. [PMID: 7634154 DOI: 10.1007/bf01454012] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cellular fatty acid-binding proteins (FABP) are a highly conserved family of proteins consisting of several subtypes, among them the mammary-derived growth inhibitor (MDGI) which is quite homologous to or even identical with the heart-type FABP (H-FABP). The FABPs and MDGI have been suggested to be involved in intracellular fatty acid metabolism and trafficking. Recently, evidence for growth and differentiation regulating properties of MDGI and H-FABP was provided. Using four affinity-purified polyclonal antibodies against bovine and human antigen preparations, the cellular localization of MDGI/H-FABP in human and mouse tissues and organs was studied. The antibodies were weakly cross-reactive with adipose tissue extracts known to lack H-FABP, but failed to react by Western blot analysis with liver-type FABP (L-FABP) and intestinal-type FABP (I-FABP). MDGI/H-FABP protein was mainly detected in myocardium, skeletal and smooth muscle fibres, lipid and/or steroid synthesising cells (adrenals, Leydig cells, sebaceous glands, lactating mammary gland) and terminally differentiated epithelia of the respiratory, intestinal and urogenital tracts. The results provide evidence that expression of H-FABP is associated with an irreversibly postmitotic and terminally differentiated status of cells. Since all the antisera employed showed spatially identical and qualitatively equal immunostaining, it is suggested that human, bovine and mouse MDGI/H-FABP proteins share highly homologous epitopes.
Collapse
Affiliation(s)
- W Zschiesche
- Max-Delbrück-Centre of Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|