1
|
Duan H, Jin S, Zhang Y, Li F, Xiang J. Granulocytes of the red claw crayfish Cherax quadricarinatus can endocytose beads, E. coli and WSSV, but in different ways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:186-193. [PMID: 24747430 DOI: 10.1016/j.dci.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
The hemocytes of the red claw crayfish Cherax quadricarinatus are classified by morphologic observation into the following types: hyalinocytes (H), semi-granulocytes (SG) and granulocytes (G). Density gradient centrifugation with Percoll was developed to separate these three subpopulations of hemocytes. Beads, Escherichia coli, and FITC labeling WSSV were used to investigate the characteristics of granulocytes by using scanning electron microscope, transmission electron microscope, and laser scan confocal microscope. Results showed that granulocytes could phagocytose beads and E. coli by endocytic pathways. WSSV could rely on caveolae-mediated endocytosis to mainly enter into granulocytes. These results could elucidate the mechanism of the innate immunity function of granulocytes, and it also showed the mechanism by which WSSV invaded granulocytes in the red claw crayfish.
Collapse
Affiliation(s)
- Hu Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songjun Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Yan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China.
| |
Collapse
|
2
|
Huang ZJ, Kang ST, Leu JH, Chen LL. Endocytic pathway is indicated for white spot syndrome virus (WSSV) entry in shrimp. FISH & SHELLFISH IMMUNOLOGY 2013; 35:707-15. [PMID: 23747417 DOI: 10.1016/j.fsi.2013.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 05/08/2023]
Abstract
The white spot syndrome virus (WSSV) has had a serious economic impact on the global shrimp aquaculture industry in the past two decades. Although research has clarified a lot about its genome and structure, the mechanism of how WSSV enters a cell is still unclear. In this study to determine this mechanism, primary cultured hemocytes were used as an experimental model to observe the process of WSSV entry because the stable shrimp cell lines for WSSV infection are lacking. After labeling virions and endosomes with fluorescent dyes followed by observation with a confocal microscope, the results show that the WSSV colocalizes with early endosomes. Hemocytes are further treated with different endocytic inhibitors, methyl-β-cyclodextrin (MβCD) and chlorpromazine (CPZ). WSSV still can be detected in the hemocytes treated with CPZ, but not in the hemocytes treated with MβCD. Thus, we conclude that WSSV adopts the caveolae-mediated endocytosis to enter the shrimp cell.
Collapse
Affiliation(s)
- Zih-Jhan Huang
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 20224, Taiwan, ROC
| | | | | | | |
Collapse
|
3
|
Castro BM, de Almeida RFM, Fedorov A, Prieto M. The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases. Chem Phys Lipids 2012; 165:311-9. [PMID: 22405877 DOI: 10.1016/j.chemphyslip.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 11/27/2022]
Abstract
The organization of lipids and proteins into domains in cell membranes is currently an established subject within biomembrane research. Fluorescent probes have been used to detect and characterize these membrane lateral heterogeneities. However, a comprehensive understanding of the link between the probes' fluorescence features and membrane lateral organization can only be achieved if their photophysical properties are thoroughly defined. In this work, a systematic characterization of N-(lyssamine Rhodamine B sulfonyl)-1,2-dioleoyl-sn-3-phosphatidylehanolamine (Rhod-DOPE) absorption and fluorescence behavior in gel, liquid-ordered (l(o)) and liquid-disordered (l(d)) model membranes was performed. In agreement with a previous study, it was found that Rhod-DOPE fluorescence lifetimes present a strong sensitivity to lipid phases, becoming significantly shorter in l(o) membranes as the probe membrane concentration increases. The sensitivity of Rhod-DOPE absorption and fluorescence properties to the membrane phase was further explored. In particular, the fluorescence lifetime sensitivity was shown to be a consequence of the enhanced Rhod-DOPE fluorescence dynamic self-quenching, due to the formation of probe-rich membrane domains in these condensed phases that cannot be considered as typical probe aggregates, as excitonic interaction is not observed. The highly efficient dynamic self-quenching was shown to be specific to l(o) phases, pointing to an important effect of membrane dipole potential in this process. Altogether, this work establishes how to use Rhod-DOPE fluorescence properties in the study of membrane lipid lateral heterogeneities, in particular cholesterol-enriched lipid rafts.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química Física-Molecular, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal.
| | | | | | | |
Collapse
|
4
|
Cholesterol-rich microdomains as docking platforms for respiratory syncytial virus in normal human bronchial epithelial cells. J Virol 2011; 86:1832-43. [PMID: 22090136 DOI: 10.1128/jvi.06274-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the major causes of respiratory infections in children, and it is the main pathogen causing bronchiolitis in infants. The binding and entry mechanism by which RSV infects respiratory epithelial cells has not yet been determined. In this study, the earliest stages of RSV infection in normal human bronchial epithelial cells were probed by tracking virions with fluorescent lipophilic dyes in their membranes. Virions colocalized with cholesterol-containing plasma membrane microdomains, identified by their ability to bind cholera toxin subunit B. Consistent with an important role for cholesterol in RSV infection, cholesterol depletion profoundly inhibited RSV infection, while cholesterol repletion reversed this inhibition. Merger of the outer leaflets of the viral envelope and the cell membrane appeared to be triggered at these sites. Using small-molecule inhibitors, RSV infection was found to be sensitive to Pak1 inhibition, suggesting the requirement of a subsequent step of cytoskeletal reorganization that could involve plasma membrane rearrangements or endocytosis. It appears that RSV entry depends on its ability to dock to cholesterol-rich microdomains (lipid rafts) in the plasma membrane where hemifusion events begin, assisted by a Pak1-dependent process.
Collapse
|
5
|
Laliberte JP, McGinnes LW, Morrison TG. Incorporation of functional HN-F glycoprotein-containing complexes into newcastle disease virus is dependent on cholesterol and membrane lipid raft integrity. J Virol 2007; 81:10636-48. [PMID: 17652393 PMCID: PMC2045500 DOI: 10.1128/jvi.01119-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/05/2007] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus assembles in plasma membrane domains with properties of membrane lipid rafts, and disruption of these domains by cholesterol extraction with methyl-beta-cyclodextrin resulted in the release of virions with irregular protein composition, abnormal particle density, and reduced infectivity (J. P. Laliberte, L. W. McGinnes, M. E. Peeples, and T. G. Morrison, J. Virol. 80:10652-10662, 2006). In the present study, these results were confirmed using Niemann-Pick syndrome type C cells, which are deficient in normal membrane rafts due to mutations affecting cholesterol transport. Furthermore, cholesterol extraction of infected cells resulted in the release of virions that attached to target cells at normal levels but were defective in virus-cell membrane fusion. The reduced fusion capacity of particles released from cholesterol-extracted cells correlated with significant loss of HN-F glycoprotein-containing complexes detected in the virion envelopes of these particles and with detection of cell-associated HN-F protein-containing complexes in extracts of cholesterol-extracted cells. Extraction of cholesterol from purified virions had no effect on virus-cell attachment, virus-cell fusion, particle infectivity, or the levels of glycoprotein-containing complexes. Taken together, these results suggest that cholesterol and membrane rafts are required for the formation or maintenance of HN-F glycoprotein-containing complexes in cells but not the stability of preformed glycoprotein complexes once assembled into virions.
Collapse
Affiliation(s)
- Jason P Laliberte
- Department of Molecular Genetics and Microbiology, Room S5-250, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | |
Collapse
|
6
|
Epand RF, Schlattner U, Wallimann T, Lacombe ML, Epand RM. Novel lipid transfer property of two mitochondrial proteins that bridge the inner and outer membranes. Biophys J 2006; 92:126-37. [PMID: 17028143 PMCID: PMC1697860 DOI: 10.1529/biophysj.106.092353] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study provides evidence of a novel function for mitochondrial creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D). Both are basic peripheral membrane proteins with symmetrical homo-oligomeric structure, which in the case of MtCK was already shown to allow crossbridging of lipid bilayers. Here, different lipid dilution assays clearly demonstrate that both kinases also facilitate lipid transfer from one bilayer to another. Lipid transfer occurs between liposomes mimicking the lipid composition of mitochondrial contact sites, containing 30 mol % cardiolipin, but transfer does not occur when cardiolipin is replaced by phosphatidylglycerol. Ubiquitous MtCK, but not NDPK-D, shows some specificity in the nature of the lipids transferred and it is not active with phosphatidylcholine alone. MtCK can undergo reversible oligomerization between dimeric and octameric forms, but only the octamer can bridge membranes and promote lipid transfer. Cytochrome c, another basic mitochondrial protein known to bind to anionic membranes but not crosslinking them, is also incapable of promoting lipid transfer. The lipid transfer process does not involve vesicle fusion or loss of the internal contents of the liposomes.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
7
|
Decaffmeyer M, Lins L, Charloteaux B, VanEyck MH, Thomas A, Brasseur R. Rational design of complementary peptides to the betaAmyloid 29-42 fusion peptide: an application of PepDesign. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1758:320-7. [PMID: 16313882 DOI: 10.1016/j.bbamem.2005.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 02/07/2023]
Abstract
Peptides in solution currently exist under several conformations; an equilibrium which varies with solvent polarity. Despite or because of this structure versatility, peptides can be selective biological tools: they can adapt to a target, vary conformation with solvents and so on. These capacities are crucial for cargo carriers. One promising way of using peptides in biotechnologies is to decipher their medium-sequence-structure-function relationships and one approach is molecular modelling. Only few "in silico" methods of peptide design are described in the literature. Most are used in support of experimental screening of peptide libraries. However, the way they are made does not teach us much for future researches. In this paper, we describe an "in silico" method (PepDesign) which starts by analysing the native interaction of a peptide with a target molecule in order to define which points are important. From there, a modelling protocol for the design of 'better' peptides is set. The PepDesign procedure calculates new peptides fulfilling the hypothesis, tests the conformational space of these peptides in interaction with the target by angular dynamics and goes up to the selection of the best peptide based on the analysis of complex structure properties. Experimental biological assays are finally used to test the selected peptides, hence to validate the approach. Applications of PepDesign are wide because the procedure will remain similar irrespective of the target which can be a protein, a drug or a nucleic acid. In this paper, we describe the design of peptides which binds to the fusogenic helical form of the C-terminal domain of the Abeta peptide (Abeta29-42).
Collapse
Affiliation(s)
- Marc Decaffmeyer
- Centre de Biophysique Moléculaire Numérique, FSAGX, Passage des déportés, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Arnhold J, Wiegel D, Hussler O, Arnold K. Quenching and dequenching of octadecyl Rhodamine B chloride fluorescence in Ca(2+)-induced fusion of phosphatidylserine vesicles: effects of poly(ethylene glycol). BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1191:375-83. [PMID: 8172923 DOI: 10.1016/0005-2736(94)90189-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ca(2+)-induced fusion of SUV and LUV composed of ox brain phosphatidylserine (PS) was studied as a function of temperature and concentration of Ca2+ using octadecyl Rhodamine B chloride (R-18). Ca2+ was added to a 1:1 mixture of labelled (8 mol%) and unlabelled vesicles (assay conditions) or to samples containing only labelled liposomes (control conditions). Both, in SUV and LUV the dependence of differences in fluorescence between assay and control samples on temperature can be divided into three regions. At temperatures lower than 20 degrees C the differences in fluorescence increase only slightly in SUV or remain unchanged in LUV after the addition of Ca2+. At 28 degrees C and higher temperatures the differences of fluorescence intensities increase much more drastically, whereby SUV exhibit higher fusion rates than LUV. Between 20 degrees C and 28 degrees C exists an intermediate region for both SUV and LUV. Here the fluorescence changes continuously from one behaviour to the other independent of the concentration of Ca2+. A drastic quenching of R-18 fluorescence occurs in LUV composed of PS below 10 degrees C, where the lipids are in the gel state. In SUV the fluorescence is only weakly changed in this temperature region. It is assumed that a demixing between dye and phospholipid molecules occurs below phase transition. During fusion the phase transition of PS is shifted from 8-10 degrees C to about 24-28 degrees C as revealed by polarization measurements using diphenylhexatriene. Because the differences in R-18 fluorescence between assay and control samples depend strongly on temperature we assume that the shift in phase transition temperature of PS occurs immediately after the addition of Ca2+ to SUV or LUV. Poly(ethylene glycol) 6000 accelerates fusion in both SUV and LUV under all conditions where a fusion takes place. Further, the threshold concentration of Ca2+ to induce fusion is diminished from about 1 mmol/l without polymers to about 0.5 mmol/l in the presence of 10% (w/v) PEG 6000. The intermediate region of changes in fluorescence properties of R-18 in the Ca(2+)-induced fusion of PS is not changed by PEG.
Collapse
Affiliation(s)
- J Arnhold
- Institute of Medical Physics and Biophysics, School of Medicine, University of Leipzig, Germany
| | | | | | | |
Collapse
|
9
|
Abstract
In an earlier paper which models the cell-cell (or virus-cell) fusion complex as two partial spherical vesicles joined at a narrow neck (Rubin, R. J., and Yi-der Chen. 1990. Biophys. J. 58:1157-1167), the redistribution by diffusion of lipid-like molecules through the neck between the two fused cell surfaces was studied. In this paper, we extend the study to the calculation of the kinetics of fluorescence increase in a single fusion complex when the lipid-like molecules are fluorescent and self-quenching. The formalism developed in this paper is useful in deducing fusion activation mechanisms from cuvette fluorescence measurements in cell-cell fusion systems. Two different procedures are presented: 1) an exact one which is based on the exact local density functions obtained from diffusion equations in our earlier study; and 2) an approximate one which is based on treating the kinetics of transfer of probes between the two fused cells as a two-state chemical reaction. For typical cell-cell fusion complexes, the fluorescence dequencing curves calculated from the exact and approximate procedures are very similar. Due to its simplicity, the approximate method should be very useful in future applications. The formalism is applied to a typical cell-cell fusion complex to study the sensitivity of dequenching curves to changes in various fusion parameters, such as the radii of the cells, the radius of the pore at the fusion junction, and the number of probes initially loaded to the complex.
Collapse
Affiliation(s)
- Y D Chen
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
10
|
Morris SJ, Zimmerberg J, Sarkar DP, Blumenthal R. Kinetics of cell fusion mediated by viral spike glycoproteins. Methods Enzymol 1993; 221:42-58. [PMID: 8361385 DOI: 10.1016/0076-6879(93)21006-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S J Morris
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110
| | | | | | | |
Collapse
|
11
|
Porzig H, Moudry R, Montandon JB. Analysis by cell hybridization of mechanisms that regulate beta-adrenergic responses in reticulocytes and in differentiating erythroid cells. J Cell Physiol 1991; 147:439-46. [PMID: 1648565 DOI: 10.1002/jcp.1041470309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In intact reticulocytes, but not in fragmented membranes, the loss of adenylate cyclase activity during cell maturation followed a biphasic time course. A rapid phase (t1/2 approximately 2 h) during which the initial activity was reduced by 40-50% was followed by a slow phase with t1/2 close to 3 days. The fast decay seemed to occur on the adenylate cyclase level since (-)isoprenaline- or forskolin-stimulated activities behaved similarly and bacterial toxin-monitored Gs and Gi proteins remained stable. The mechanism of the initial decrease in hormonal responsiveness was further analysed in hybrid cells prepared by fusing reticulocytes with Friend erythroleukemia (MEL) cells. The hybrids contained reticulocyte-derived beta-adrenoceptors and MEL cell-derived adenylate cyclase and G proteins. Fusion of reticulocytes to native MEL cells caused adenylate cyclase activity to drop by 30% at 2 h and 45% at 18 h after fusion. By contrast, hybrids prepared after dimethylsulfoxide-induced differentiation of MEL cells showed stable or increasing rates of receptor-coupled cAMP formation between 2 and 18 h after fusion, concomitant with the enhanced activity of the Gs protein in these cells. A cyclase-stimulating factor present in the cytosol of MEL cells and of reticulocytes appeared not to be involved in short-term regulation of hormonal responsiveness. We conclude that the strength of beta-adrenergic responses in erythroid progenitor cells is primarily regulated by modulating G protein-mediated receptor cyclase coupling while reticulocytes, during early maturation, seem to rely on direct inactivation of adenylate cyclase, probably via a cytosolic proteolytic pathway.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Catecholamines/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Cyclic AMP/metabolism
- Erythroid Precursor Cells/cytology
- Erythroid Precursor Cells/metabolism
- Erythroid Precursor Cells/physiology
- Erythroid Precursor Cells/ultrastructure
- Female
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/physiology
- Hybrid Cells/cytology
- Hybrid Cells/metabolism
- Hybrid Cells/physiology
- Hybrid Cells/ultrastructure
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/physiopathology
- Rats
- Rats, Inbred Strains
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Reticulocytes/cytology
- Reticulocytes/metabolism
- Reticulocytes/physiology
- Reticulocytes/ultrastructure
Collapse
Affiliation(s)
- H Porzig
- Department of Pharmacology, University of Bern, Switzerland
| | | | | |
Collapse
|
12
|
Rubin RJ, Chen YD. Diffusion and redistribution of lipid-like molecules between membranes in virus-cell and cell-cell fusion systems. Biophys J 1990; 58:1157-67. [PMID: 2291940 PMCID: PMC1281061 DOI: 10.1016/s0006-3495(90)82457-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The kinetics of redistribution of lipid-like molecules between the membranes of two fused spherical vesicles is studied by solving the time-dependent diffusion equation of the system. The effects on the probe redistribution rate of pore size at the fusion junction and the relative sizes of the vesicles are examined. It is found that the redistribution rate constant decreases significantly, but not drastically, as the relative size of the pore to that of the vesicles decreases (the bottleneck effect). In general, the time scale of the probe redistribution rate is determined by the size of the vesicles that is loaded with the probe before the activation of the fusion. For a pore size 50 A in diameter and a typical diffusion coefficient of 10(-8) cm2/s for lipids, the mixing half times for typical virus-cell and cell-cell fusion systems are less than 30 ms and above 200 s, respectively. Thus, although the redistribution of lipid-like probes by diffusion is not rate limiting in virus-cell fusion, redistribution by diffusion is close to rate limiting in spike-protein mediated cell-cell fusion.
Collapse
Affiliation(s)
- R J Rubin
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
13
|
Puri A, Booy FP, Doms RW, White JM, Blumenthal R. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. J Virol 1990; 64:3824-32. [PMID: 2196382 PMCID: PMC249678 DOI: 10.1128/jvi.64.8.3824-3832.1990] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments.
Collapse
Affiliation(s)
- A Puri
- Section on Membrane Structure and Function, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
14
|
Abstract
To infect mammalian cells, enveloped viruses have to deposit their nucleocapsids into the cytoplasm of a host cell. Membrane fusion represents a key element in this entry mechanism. The fusion activity resides in specific, virally encoded membrane glycoproteins. Some molecular properties of these fusion proteins will be briefly described. These properties will then be correlated to the ability of a virus to fuse with target membranes, and to induce cell-cell fusion. Some molecular and physical parameters affecting virus fusion--at the level of either viral or target membrane or both--and the significance of modelling virus fusion by using synthetic peptides resembling viral fusion peptides, will also be discussed.
Collapse
Affiliation(s)
- D Hoekstra
- Laboratory of Physiological Chemistry, University of Groningen, The Netherlands
| |
Collapse
|
15
|
Sarkar DP, Morris SJ, Eidelman O, Zimmerberg J, Blumenthal R. Initial stages of influenza hemagglutinin-induced cell fusion monitored simultaneously by two fluorescent events: cytoplasmic continuity and lipid mixing. J Cell Biol 1989; 109:113-22. [PMID: 2745545 PMCID: PMC2115478 DOI: 10.1083/jcb.109.1.113] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have monitored the mixing of both aqueous intracellular and membrane-bound fluorescent dyes during the fusion of human red blood cells to influenza hemagglutinin-expressing fibroblasts using fluorescence spectroscopy and low light, image-enhanced video microscopy. The water-soluble fluorescent dye, N-(7-nitrobenzofurazan-4-yl)taurine, was incorporated into intact human red blood cells. The fluorescence of the dye in the intact red blood cell was partially quenched by hemoglobin. The lipid fluorophore, octadecylrhodamine, was incorporated into the membrane of the same red blood cell at self-quenching concentrations (Morris, S. J., D. P. Sarkar, J. M. White, and R. Blumenthal. 1989. J. Biol. Chem. 264: 3972-3978). Fusion, which allowed movement of the water-soluble dye from the cytoplasm of the red blood cell into the hemagglutinin-expressing fibroblasts, and movement of octadecylrhodamine from membranes of red blood cell to the plasma membrane of the fibroblasts, was observed by fluorescence microscopy as a spatial relocation of dyes, and monitored by spectrofluorometry as an increase in fluorescence. Upon lowering the pH below 5.4, fluorescence increased after a delay of about 30 s at 37 degrees C, reaching a maximum within 3 min. The kinetics, pH profile, and temperature dependence were similar for both fluorescent events measured simultaneously, indicating that influenza hemagglutinin-induced fusion rapidly establishes bilayer continuity and exchange of cytoplasmic contents.
Collapse
Affiliation(s)
- D P Sarkar
- Section on Membrane Structure and Function, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
16
|
Morris SJ, Sarkar DP, White JM, Blumenthal R. Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84948-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|