1
|
Cuspineda ER, Machado C, Virues T, Martínez-Montes E, Ojeda A, Valdés PA, Bosch J, Valdes L. Source analysis of alpha rhythm reactivity using LORETA imaging with 64-channel EEG and individual MRI. Clin EEG Neurosci 2009; 40:150-6. [PMID: 19715176 DOI: 10.1177/155005940904000306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Conventional EEG and quantitative EEG visual stimuli (close-open eyes) reactivity analysis have shown their usefulness in clinical practice; however studies at the level of EEG generators are limited. The focus of the study was visual reactivity of cortical resources in healthy subjects and in a stroke patient. The 64 channel EEG and T1 magnetic resonance imaging (MRI) studies were obtained from 32 healthy subjects and a middle cerebral artery stroke patient. Low Resolution Electromagnetic Tomography (LORETA) was used to estimate EEG sources for both close eyes (CE) vs. open eyes (OE) conditions using individual MRI. The t-test was performed between source spectra of the two conditions. Thresholds for statistically significant t values were estimated by the local false discovery rate (lfdr) method. The Z transform was used to quantify the differences in cortical reactivity between the patient and healthy subjects. Closed-open eyes alpha reactivity sources were found mainly in posterior regions (occipito-parietal zones), extended in some cases to anterior and thalamic regions. Significant cortical reactivity sources were found in frequencies different from alpha (lower t-values). Significant changes at EEG reactivity sources were evident in the damaged brain hemisphere. Reactivity changes were also found in the "healthy" hemisphere when compared with the normal population. In conclusion, our study of brain sources of EEG alpha reactivity provides information that is not evident in the usual topographic analysis.
Collapse
Affiliation(s)
- E R Cuspineda
- Havana Institute of Neurology and Neurosurgery, Havana City, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Tekell JL, Hoffmann R, Hendrickse W, Greene RW, Rush AJ, Armitage R. High frequency EEG activity during sleep: characteristics in schizophrenia and depression. Clin EEG Neurosci 2005; 36:25-35. [PMID: 15683195 DOI: 10.1177/155005940503600107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies indicate that high frequency power (>20Hz) in the electroencephalogram (EEG) are associated with feature binding and attention. It has been hypothesized that hallucinations and perceptual abnormalities might be linked to irregularities in fast frequency activity. This study examines the power and distribution of high frequency activity (HFA) during sleep in healthy control subjects and unmedicated patients with schizophrenia and depression. This is a post-hoc analysis of an archival database collected under identical conditions. Groups were compared using multivariate analyses of covariance (MANCOVA) using group frequency by stage analysis. A multiple regression analyzed the association between HFA power and clinical symptoms. Schizophrenic (SZ) and major depressive disorder (MDD) patients showed significantly greater high frequency (HF) power than healthy controls (HC) in all sleep stages (p<0.0001). SZs also exhibited significantly greater HF power than MDD patients in all sleep stages except wakefulness (W) (p<0.05). In all groups, gamma (35-45Hz) power was greater in W, decreased during slow wave sleep (SWS) and decreased further during rapid eye movement (REM). Beta 2 (20-35 Hz) power was greater in W and REM than in SWS. Only positive symptoms exhibited an association with HF power. Elevated HFA during sleep in unmedicated patients with SZ and MDD is associated with positive symptoms of illness. It is not clear how HFA would change in relation to clinical improvement, and further study is needed to clarify the association of HFA to the state/trait characteristics of SZ and MDD.
Collapse
Affiliation(s)
- Janet L Tekell
- VA Ann Arbor Healthcare System (116A), University of Michigan, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
OBJECTIVE Electroencephalography (EEG) is an important tool for studying the temporal dynamics of the human brain's large-scale neuronal circuits. However, most EEG applications fail to capitalize on all of the data's available information, particularly that concerning the location of active sources in the brain. Localizing the sources of a given scalp measurement is only achieved by solving the so-called inverse problem. By introducing reasonable a priori constraints, the inverse problem can be solved and the most probable sources in the brain at every moment in time can be accurately localized. METHODS AND RESULTS Here, we review the different EEG source localization procedures applied during the last two decades. Additionally, we detail the importance of those procedures preceding and following source estimation that are intimately linked to a successful, reliable result. We discuss (1) the number and positioning of electrodes, (2) the varieties of inverse solution models and algorithms, (3) the integration of EEG source estimations with MRI data, (4) the integration of time and frequency in source imaging, and (5) the statistical analysis of inverse solution results. CONCLUSIONS AND SIGNIFICANCE We show that modern EEG source imaging simultaneously details the temporal and spatial dimensions of brain activity, making it an important and affordable tool to study the properties of cerebral, neural networks in cognitive and clinical neurosciences.
Collapse
Affiliation(s)
- Christoph M Michel
- Functional Brain Mapping Laboratory, Neurology Clinic, University Hospital of Geneva, 24 rue Micheli-du-Crest, 1211 Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
4
|
Veiga H, Deslandes A, Cagy M, Fiszman A, Piedade RAM, Ribeiro P. Neurocortical electrical activity tomography in chronic schizophrenics. ARQUIVOS DE NEURO-PSIQUIATRIA 2003; 61:712-7. [PMID: 14595470 DOI: 10.1590/s0004-282x2003000500002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional imaging of brain electrical activity was performed in 25 chronic medicated schizophrenics and 40 controls, analyzing the classical frequency bands (delta, theta, alpha, and beta) of 19-channel EEG during resting state to identify brain regions with deviant activity of different functional significances, using LORETA (Low Resolution Tomography) and SPM99 (Statistical Parametric Mapping). Patients differed from controls due to an excess of slow activity comprising delta + theta frequency bands (inhibitory pattern) located at the right middle frontal gyrus, right inferior frontal gyrus, and right insula, as well as at the bilateral anterior cingulum with a left preponderance. The high temporal resolution of EEG enables the specification of the deviations not only as an excess or a deficit of brain electrical activity, but also as inhibitory (delta, theta), normal (alpha), and excitatory (beta) activities. These deviations point out to an impaired functional brain state consisting of inhibited frontal and prefrontal areas that may result in inadequate treatment of externally or internally generated information.
Collapse
Affiliation(s)
- Heloisa Veiga
- Setor de Neuroimagem Funcional, Instituto de Psiquiatria, Universidade Federal do Rio de JaneiroRJ, Brasil
| | | | | | | | | | | |
Collapse
|
5
|
Gonzalez Andino SL, Grave de Peralta Menendez R, Lantz CM, Blank O, Michel CM, Landis T. Non-stationary distributed source approximation: an alternative to improve localization procedures. Hum Brain Mapp 2001; 14:81-95. [PMID: 11500992 PMCID: PMC6871930 DOI: 10.1002/hbm.1043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Localization of the generators of the scalp measured electrical activity is particularly difficult when a large number of brain regions are simultaneously active. In this study, we describe an approach to automatically isolate scalp potential maps, which are simple enough to expect reasonable results after applying a distributed source localization procedure. The isolation technique is based on the time-frequency decomposition of the scalp-measured data by means of a time-frequency representation. The basic rationale behind the approach is that neural generators synchronize during short time periods over given frequency bands for the codification of information and its transmission. Consequently potential patterns specific for certain time-frequency pairs should be simpler than those appearing at single times but for all frequencies. The method generalizes the FFT approximation to the case of distributed source models with non-stationary time behavior. In summary, the non-stationary distributed source approximation aims to facilitate the localization of distributed source patterns acting at specific time and frequencies for non-stationary data such as epileptic seizures and single trial event related potentials. The merits of this approach are illustrated here in the analysis of synthetic data as well as in the localization of the epileptogenic area at seizure onset in patients. It is shown that time and frequency at seizure onset can be precisely detected in the time-frequency domain and those localization results are stable over seizures. The results suggest that the method could also be applied to localize generators in single trial evoked responses or spontaneous activity.
Collapse
Affiliation(s)
- S L Gonzalez Andino
- Functional Brain Mapping Laboratory, Neurology Department, University Hospital Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
6
|
Pizzagalli D, Lehmann D, Gianotti L, Koenig T, Tanaka H, Wackermann J, Brugger P. Brain electric correlates of strong belief in paranormal phenomena: intracerebral EEG source and regional Omega complexity analyses. Psychiatry Res 2000; 100:139-54. [PMID: 11120441 DOI: 10.1016/s0925-4927(00)00070-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.
Collapse
Affiliation(s)
- D Pizzagalli
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
7
|
Koukkou M, Federspiel A, Bräker E, Hug C, Kleinlogel H, Merlo MC, Lehmann D. An EEG approach to the neurodevelopmental hypothesis of schizophrenia studying schizophrenics, normal controls and adolescents. J Psychiatr Res 2000; 34:57-73. [PMID: 10696833 DOI: 10.1016/s0022-3956(99)00040-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Based on an integrative brain model which focuses on memory-driven and EEG state-dependent information processing for the organisation of behaviour, we used the developmental changes of the awake EEG to further investigate the hypothesis that neurodevelopmental abnormalities (deviations in organisation and reorganisation of cortico-cortical connectivity during development) are involved in the pathogenesis of schizophrenia. First-episode, neuroleptic-naive schizophrenics and their matched controls and three age groups of normal adolescents were studied (total: 70 subjects). 19-channel EEG delta-theta, alpha and beta spectral band centroid frequencies during resting (baseline) and after verbal stimuli were used as measure of the level of attained complexity and momentary excitability of the neuronal network (working memory). Schizophrenics compared with all control groups showed lower delta-theta activity centroids and higher alpha and beta activity centroids. Reactivity centroids (centroid after stimulus minus centroid during resting) were used as measure of update of working memory. Schizophrenics showed partial similarities in delta-theta and beta reactivity centroids with the 11-year olds and in alpha reactivity centroids with the 13-year olds. Within the framework of our model, the results suggest multifactorially elicited imbalances in the level of excitability of neuronal networks in schizophrenia, resulting in network activation at dissociated complexity levels, partially regressed and partially prematurely developed. It is hypothesised that activation of age- and/or state-inadequate representations for coping with realities becomes manifest as productive schizophrenic symptoms. Thus, the results support some aspects of the neurodevelopmental hypothesis.
Collapse
Affiliation(s)
- M Koukkou
- University Hospital of Clinical Psychiatry, Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
8
|
Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M. Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 1999; 90:169-79. [PMID: 10466736 DOI: 10.1016/s0925-4927(99)00013-x] [Citation(s) in RCA: 406] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional imaging of brain electrical activity was performed in nine acute, neuroleptic-naive, first-episode, productive patients with schizophrenia and 36 control subjects. Low-resolution electromagnetic tomography (LORETA, three-dimensional images of cortical current density) was computed from 19-channel electroencephalographic (EEG) activity obtained under resting conditions, separately for the different EEG frequencies. Three patterns of activity were evident in the patients: (1) an anterior, near-bilateral excess of delta frequency activity; (2) an anterior-inferior deficit of theta frequency activity coupled with an anterior-inferior left-sided deficit of alpha-1 and alpha-2 frequency activity; and (3) a posterior-superior right-sided excess of beta-1, beta-2 and beta-3 frequency activity. Patients showed deviations from normal brain activity as evidenced by LORETA along an anterior-left-to-posterior-right spatial axis. The high temporal resolution of EEG makes it possible to specify the deviations not only as excess or deficit, but also as inhibitory, normal and excitatory. The patients showed a dis-coordinated brain functional state consisting of inhibited prefrontal/frontal areas and simultaneously overexcited right parietal areas, while left anterior, left temporal and left central areas lacked normal routine activity. Since all information processing is brain-state dependent, this dis-coordinated state must result in inadequate treatment of (externally or internally generated) information.
Collapse
Affiliation(s)
- R D Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Michel CM, Grave de Peralta R, Lantz G, Gonzalez Andino S, Spinelli L, Blanke O, Landis T, Seeck M. Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J Clin Neurophysiol 1999; 16:239-66. [PMID: 10426407 DOI: 10.1097/00004691-199905000-00005] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the attempts to localize electric sources in the brain on the basis of multichannel EEG and/or MEG measurements, distributed source estimation procedures have become of increasing interest. Several commercial software packages offer such localization programs and results using these methods are seen more and more frequently in the literature. It is crucial that the users understand the similarities and differences of these methods and that they become aware of the advantages and limitations that are inherent to each approach. This review provides this information from a theoretical as well as from a practical point of view. The theoretical part gives the algorithmic basis of the electromagnetic inverse problem and shows how the different a priori assumptions are formally integrated in these equations. The authors restrict this formalism to the linear inverse solutions i.e., those solutions in which the inversion procedure can be represented as a matrix applied to the data. It will be shown that their properties can be best characterized by their resolution kernels and that methods with optimal resolution matrices can be designed. The authors also discuss the important problem of regularization strategies that are used to minimize the influence of noise. Finally, a new kind of inverse solution, termed ELECTRA (for ELECTRical Analysis), is presented that is based on constraining the source model on the basis of the currents that can actually be measured by the scalp recorded EEG. The practical part of the review illustrates the localization procedures with different clinical data sets. Three aspects become important when working with real data: 1) Clinical data is usually far from ideal (limited number of electrodes, noise, etc.). The behavior of inverse procedures in such unfortunate situations has to be evaluated. 2) The selection of the time points or time periods of interest is crucial, especially in the analysis of spontaneous EEG. 3) Additional information coming from other modalities is usually available and can be incorporated. The authors are illustrating these important points in the case of interictal and ictal epileptiform activity. Spike averaging, frequency domain source localization, and temporal segmentation based on electric field topographies will be discussed. Finally, the technique of EEG-triggered functional magnetic resonance imaging (fMRI) will be illustrated, where EEG is recorded in the magnet and is used to synchronize fMRI acquisition with interictal events. The analysis of both functional data, i.e. the EEG in terms of three-dimensional source localization and the EEG-triggered fMRI, combines the advantages of the two techniques: the temporal resolution of the EEG and the spatial resolution of the fMRI.
Collapse
Affiliation(s)
- C M Michel
- Department of Neurology, University Hospital of Geneva, University of Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pizzagalli D, Koenig T, Regard M, Lehmann D. Affective attitudes to face images associated with intracerebral EEG source location before face viewing. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1999; 7:371-7. [PMID: 9838196 DOI: 10.1016/s0926-6410(98)00040-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning.
Collapse
Affiliation(s)
- D Pizzagalli
- EEG-EP Mapping Laboratory, Department of Neurology, University Hospital, CH-8091, Zurich, Switzerland.
| | | | | | | |
Collapse
|
11
|
Yagyu T, Kondakor I, Kochi K, Koenig T, Lehmann D, Kinoshita T, Hirota T, Yagyu T. Smell and taste of chewing gum affect frequency domain EEG source localizations. Int J Neurosci 1998; 93:205-16. [PMID: 9639238 DOI: 10.3109/00207459808986426] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated brain electric field signatures of subjective feelings after chewing regular gum or gum base without flavor. 19-channel eyes-closed EEG from 20 healthy males before and after 5 minutes of chewing the two gum types in random sequence was source modeled in the frequency domain using the FFT-Dipole-Approximation. 3-dimensional brain locations and strengths (Global Field Power, GFP) of the equivalent sources of five frequency bands were computed as changes from pre-chewing baseline. Gum types differed (ANOVA) in pre-post changes of source locations for the alpha-2 band (to anterior and right after regular gum, opposite after gum base) and beta-2 band (to anterior and inferior after regular gum, opposite after gum base), and of GFP for delta-theta, alpha-2 and beta-1 (regular gum: increase. gum base: decrease). Subjective feeling changed to more positive values after regular gum than gum base (ANOVA).--Thus, chewing gum with and without taste-smell activates different brain neuronal populations.
Collapse
Affiliation(s)
- T Yagyu
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Michel CM, Pascual-Marqui RD, Strik WK, Koenig T, Lehmann D. Frequency domain source localization shows state-dependent diazepam effects in 47-channel EEG. J Neural Transm (Vienna) 1995; 99:157-71. [PMID: 8579802 DOI: 10.1007/bf01271476] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The topic of this study was to evaluate state-dependent effects of diazepam on the frequency characteristics of 47-channel spontaneous EEG maps. A novel method, the FFT-Dipole-Approximation (Lehmann and Michel, 1990), was used to study effects on the strength and the topography of the maps in the different frequency bands. Map topography was characterized by the 3-dimensional location of the equivalent dipole source and map strength was defined as the spatial standard deviation (the Global Field Power) of the maps of each frequency point. The Global Field Power can be considered as a measure of the amount of energy produced by the system, while the source location gives an estimate of the center of gravity of all sources in the brain that were active at a certain frequency. State-dependency was studied by evaluating the drug effects before and after a continuous performance task of 25 min duration. Clear interactions between drug (diazepam vs. placebo) and time after drug intake (before and after the task) were found, especially in the inferior-superior location of the dipole sources. It supports the hypothesis that diazepam, like other drugs, has different effects on brain functions depending on the momentary functional state of the brain. In addition to the drug effects, clearly different source locations and Global Field Power were found for the different frequency bands, replicating earlier reports (Michel et al., 1992).
Collapse
Affiliation(s)
- C M Michel
- Department of Neurology, University Hospital, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Koukkou M, Lehmann D, Federspiel A, Merlo MC. EEG reactivity and EEG activity in never-treated acute schizophrenics, measured with spectral parameters and dimensional complexity. J Neural Transm (Vienna) 1995; 99:89-102. [PMID: 8579811 DOI: 10.1007/bf01271472] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our approaches to the use of EEG studies for the understanding of the pathogenesis of schizophrenic symptoms are presented. The basic assumptions of a heuristic and multifactorial model of the psychobiological brain mechanisms underlying the organization of normal behavior is described and used in order to formulate and test hypotheses about the pathogenesis of schizophrenic behavior using EEG measures. Results from our studies on EEG activity and EEG reactivity (= EEG components of a memory-driven, adaptive, non-unitary orienting response) as analyzed with spectral parameters and "chaotic" dimensionality (correlation dimension) are summarized. Both analysis procedures showed a deviant brain functional organization in never-treated first-episode schizophrenia which, within the framework of the model, suggests as common denominator for the pathogenesis of the symptoms a deviation of working memory, the nature of which is functional and not structural.
Collapse
Affiliation(s)
- M Koukkou
- University Hospital of Psychiatry, Bern/Ostermundigen, Switzerland
| | | | | | | |
Collapse
|