1
|
Screening of Differentially Expressed Genes and miRNAs in Hypothalamus and Pituitary Gland of Sheep under Different Photoperiods. Genes (Basel) 2022; 13:genes13061091. [PMID: 35741853 PMCID: PMC9222358 DOI: 10.3390/genes13061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
The reproduction of sheep is affected by many factors such as light, nutrition and genetics. The Hypothalamic-pituitary-gonadal (HPG) axis is an important pathway for sheep reproduction, and changes in HPG axis-related gene expression can affect sheep reproduction. In this study, a model of bilateral ovarian removal and estrogen supplementation (OVX + E2) was applied to screen differentially expressed genes and miRNAs under different photoperiods using whole transcriptome sequencing and reveal the regulatory effects of the photoperiod on the upstream tissues of the HPG axis in sheep. Whole transcriptome sequencing was performed in ewe hypothalamus (HYP) and distal pituitary (PD) tissues under short photoperiod 21st day (SP21) and long photoperiod 21st day (LP21). Compared to the short photoperiod, a total of 1813 differential genes (up-regulation 966 and down-regulation 847) and 145 differential miRNAs (up-regulation 73 and down-regulation 72) were identified in the hypothalamus of long photoperiod group. Similarly, 2492 differential genes (up-regulation 1829 and down-regulation 663) and 59 differential miRNAs (up-regulation 49 and down-regulation 10) were identified in the pituitary of long photoperiod group. Subsequently, GO and KEGG enrichment analysis revealed that the differential genes and target genes of differential miRNA were enriched in GnRH, Wnt, ErbB and circadian rhythm pathways associated with reproduction. Combined with sequence complementation and gene expression correlation analysis, several miRNA-mRNA target combinations (e.g., LHB regulated by novel-414) were obtained. Taken together, these results will help to understand the regulatory effect of the photoperiod on the upstream tissues of HPG in sheep.
Collapse
|
2
|
Hartley SW, Mullikin JC, Klein DC, Park M, Coon SL. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation. PLoS One 2016; 11:e0163590. [PMID: 27684375 PMCID: PMC5042479 DOI: 10.1371/journal.pone.0163590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/12/2016] [Indexed: 01/23/2023] Open
Abstract
Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome.
Collapse
Affiliation(s)
- Stephen W. Hartley
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- * E-mail:
| | - James C. Mullikin
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - David C. Klein
- Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Morgan Park
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - NISC Comparative Sequencing Program
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, 20852, United States of America
| | - Steven L. Coon
- Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| |
Collapse
|
3
|
Hartley SW, Mullikin JC. Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq. Nucleic Acids Res 2016; 44:e127. [PMID: 27257077 PMCID: PMC5009739 DOI: 10.1093/nar/gkw501] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Although RNA-Seq data provide unprecedented isoform-level expression information, detection of alternative isoform regulation (AIR) remains difficult, particularly when working with an incomplete transcript annotation. We introduce JunctionSeq, a new method that builds on the statistical techniques used by the well-established DEXSeq package to detect differential usage of both exonic regions and splice junctions. In particular, JunctionSeq is capable of detecting differential usage of novel splice junctions without the need for an additional isoform assembly step, greatly improving performance when the available transcript annotation is flawed or incomplete. JunctionSeq also provides a powerful and streamlined visualization toolset that allows bioinformaticians to quickly and intuitively interpret their results. We tested our method on publicly available data from several experiments performed on the rat pineal gland and Toxoplasma gondii, successfully detecting known and previously validated AIR genes in 19 out of 19 gene-level hypothesis tests. Due to its ability to query novel splice sites, JunctionSeq is still able to detect these differences even when all alternative isoforms for these genes were not included in the transcript annotation. JunctionSeq thus provides a powerful method for detecting alternative isoform regulation even with low-quality annotations. An implementation of JunctionSeq is available as an R/Bioconductor package.
Collapse
Affiliation(s)
- Stephen W Hartley
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C Mullikin
- Comparative Genomics Analysis Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Adrenergic activation of melatonin secretion in ovine pineal explants in short-term superfusion culture occurs via protein synthesis independent and dependent phenomena. BIOMED RESEARCH INTERNATIONAL 2014; 2014:715708. [PMID: 25133175 PMCID: PMC4123513 DOI: 10.1155/2014/715708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
Abstract
The ovine pineal is generally considered as an interesting model for the study on adrenergic regulation of melatonin secretion due to some functional similarities with this gland in the human. The present investigations, performed in the superfusion culture of pineal explants, demonstrated that the norepinephrine-induced elevation of melatonin secretion in ovine pinealocytes comprised of two subsequent periods: a rapid increase phase and a slow increase phase. The first one included the quick rise in release of N-acetylserotonin and melatonin, occurring parallel to elevation of NE concentration in the medium surrounding explants. This rapid increase phase was not affected by inhibition of translation. The second, slow increase phase began after NE level had reached the maximum concentration in the culture medium and lasted about two hours. It was completely abolished by the treatment with translation inhibitors. The obtained results showed for the first time that the regulation of N-acetylserotonin synthesis in pinealocytes of some species like the sheep involves the on/off mechanism, which is completely independent of protein synthesis and works very fast. They provided strong evidence pointing to the need of revision of the current opinion that arylalkylamines N-acetyltransferase activity in pinealocytes is controlled exclusively by changes in enzyme abundance.
Collapse
|
5
|
Rauen T, Hedrich CM, Tenbrock K, Tsokos GC. cAMP responsive element modulator: a critical regulator of cytokine production. Trends Mol Med 2013; 19:262-9. [PMID: 23491535 DOI: 10.1016/j.molmed.2013.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 01/03/2023]
Abstract
T lymphocytes from patients with systemic lupus erythematosus (SLE) display a complex array of cellular, molecular, and signaling anomalies, many of which have been attributed to increased expression of the transcriptional regulator cAMP responsive element modulator α (CREMα). Recent evidence indicates that CREMα, in addition to its regulatory functions on gene promoters in T lymphocytes, alters the epigenetic conformation of cytokine genes by interacting with enzymes that control histone methylation and acetylation as well as cytosine-phosphate-guanosine (CpG) DNA methylation. This review summarizes the most recent findings on CREM protein expression in various cell types, in particular its effects on T lymphocyte biology in the context of both health and SLE. We emphasize CREMα as a key molecule that drives autoimmunity.
Collapse
Affiliation(s)
- Thomas Rauen
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
6
|
Pandi-Perumal SR, Srinivasan V, Spence DW, Cardinali DP. Role of the melatonin system in the control of sleep: therapeutic implications. CNS Drugs 2008; 21:995-1018. [PMID: 18020480 DOI: 10.2165/00023210-200721120-00004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The circadian rhythm of pineal melatonin secretion, which is controlled by the suprachiasmatic nucleus (SCN), is reflective of mechanisms that are involved in the control of the sleep/wake cycle. Melatonin can influence sleep-promoting and sleep/wake rhythm-regulating actions through the specific activation of MT(1) (melatonin 1a) and MT(2) (melatonin 1b) receptors, the two major melatonin receptor subtypes found in mammals. Both receptors are highly concentrated in the SCN. In diurnal animals, exogenous melatonin induces sleep over a wide range of doses. In healthy humans, melatonin also induces sleep, although its maximum hypnotic effectiveness, as shown by studies of the timing of dose administration, is influenced by the circadian phase. In both young and elderly individuals with primary insomnia, nocturnal plasma melatonin levels tend to be lower than those in healthy controls. There are data indicating that, in affected individuals, melatonin therapy may be beneficial for ameliorating insomnia symptoms. Melatonin has been successfully used to treat insomnia in children with attention-deficit hyperactivity disorder or autism, as well as in other neurodevelopmental disorders in which sleep disturbance is commonly reported. In circadian rhythm sleep disorders, such as delayed sleep-phase syndrome, melatonin can significantly advance the phase of the sleep/wake rhythm. Similarly, among shift workers or individuals experiencing jet lag, melatonin is beneficial for promoting adjustment to work schedules and improving sleep quality. The hypnotic and rhythm-regulating properties of melatonin and its agonists (ramelteon, agomelatine) make them an important addition to the armamentarium of drugs for treating primary and secondary insomnia and circadian rhythm sleep disorders.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Comprehensive Center for Sleep Medicine, Department of Pulmonary, Critical Care, and Sleep Medicine, Mt Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Jack Falcón
- Laboratoire Aragó, Unité Mixte de Recherche 7628/Groupement de Recherche 2821, Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, F-66651 Banyuls-Sur-Mer, Cedex, France.
| |
Collapse
|
8
|
Chansard M, Iwahana E, Liang J, Fukuhara C. Regulation of cAMP-induced arylalkylamine N-acetyltransferase, Period1, and MKP-1 gene expression by mitogen-activated protein kinases in the rat pineal gland. ACTA ACUST UNITED AC 2006; 139:333-40. [PMID: 16024134 DOI: 10.1016/j.molbrainres.2005.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/31/2005] [Accepted: 06/08/2005] [Indexed: 11/17/2022]
Abstract
In rodent pineal glands, sympathetic innervation, which leads to norepinephrine release, is a key process in the circadian regulation of physiology and certain gene expressions. It has been shown that gene expression of the rate-limiting enzyme in the melatonin synthesis arylalkylamine N-acetyltransferase (Aa-Nat), circadian clock gene Period1, and mitogen-activated protein kinase (MAPK) phosphtase-1 (MKP-1), is controlled mainly by a norepinephrine-beta-adrenergic receptor-cAMP signaling cascade in the rat pineal gland. To further dissect the signaling cascades that regulate those gene expressions, we examined whether MAPKs are involved in cAMP-induced gene expression. Western blot and immunohistochemical analyses showed that one of the three MAPKs, c-Jun N-terminal kinase (JNK), was expressed in the pineal, and was phosphorylated by cAMP analogue stimulation with a peak 20 min after start of the stimulation, in vitro. A specific JNK inhibitor SP600125 (Anthra[1,9-cd]pyrazol-6(2H)-one1,9-pyrazoloanthrone), but not its negative control (N1-Methyl-1,9-pyrazoloanthrone), significantly reduced cAMP-stimulated Aa-Nat, Period1, and MKP-1 mRNA levels. Although another MAPK, p38(MAPK), has also been shown to be activated by cAMP stimulation, a p38(MAPK) inhibitor, SB203580 (4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole, HCl), showed no effect on cAMP-induced Aa-Nat and Period1 mRNA levels; whereas SB203580, but not its negative analogue SB202474 (4-Ethyl-2(p-methoxyphenyl)-5-(4'-pyridyl)-IH-imidazole, DiHCl), significantly reduced cAMP-induced MKP-1 mRNA levels. Taken together, our data suggest that cAMP-induced Aa-Nat and Period1 are likely to be mediated by activation of JNK, whereas MKP-1 may be mediated by both p38(MAPK) and JNK activations.
Collapse
Affiliation(s)
- Mathieu Chansard
- Department of Anatomy and Neurobiology, Center for Behavioral Neuroscience, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA 30310-1495, USA
| | | | | | | |
Collapse
|
9
|
Fukuhara C. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland. ACTA ACUST UNITED AC 2005; 130:109-14. [PMID: 15519681 DOI: 10.1016/j.molbrainres.2004.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that dark exposure in the day causes phase shifts in circadian rhythms, but it does not induce changes in the melatonin levels in the pineal gland. In this study, we examined the effect of dark exposure on two "circadian clock" genes Period1 and Period2 mRNA levels in the rat SCN, and on Period1, Period2, and arylalkylamine N-acetyltransferase (Aa-Nat, the rate-limiting enzyme in melatonin synthesis) gene expression in the pineal gland. Period1 and Period2 mRNA levels were significantly decreased in the SCN after 0.5 and 2 h, respectively, therefore suggesting that changes in those mRNA levels may be the part of the mechanisms of dark-induced phase shifts. Period1 and Aa-Nat mRNA levels in the pineal gland were not affected by darkness, but Period2 was moderately affected. Since Period1 and Aa-Nat mRNA levels in the pineal gland did not respond to dark stimulation, we further examined whether the pineal gland itself is capable of responding to adrenergic stimulation at this time of the day. Isoproterenol significantly induced Period1 and Aa-Nat mRNA levels; however, it did not affect Period2. Although previous studies have reported that during the day the SCN "gates" the dark information reaching the pineal, our data demonstrate that dark information may reach the pineal during the daytime.
Collapse
Affiliation(s)
- Chiaki Fukuhara
- Neuroscience Institute, and NSF Center for Behavioral Neuroscience, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| |
Collapse
|
10
|
Hernandez SC, Vicini S, Xiao Y, Dávila-García MI, Yasuda RP, Wolfe BB, Kellar KJ. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype. Mol Pharmacol 2004; 66:978-87. [PMID: 15247319 DOI: 10.1124/mol.104.002345] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex. The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at alpha3beta4 nAChRs heterologously expressed in human embryonic kidney 293 cells. In functional studies, the potencies and efficacies of nicotinic drugs to activate or block whole-cell currents in dissociated pinealocytes match closely their potencies and efficacies to activate or block 86Rb+ efflux in the cells expressing heterologous alpha3beta4 nAChRs. Measurements of mRNA indicated the presence of transcripts for alpha3, beta2, and beta4 nAChR subunits but not those for alpha2, alpha4, alpha5, alpha6, alpha7, or beta3 subunits. Immunoprecipitation with subunit-specific antibodies showed that virtually all [3H]EB-labeled nAChRs contained alpha3 and beta4 subunits associated in one complex. The beta2 subunit was not associated with this complex. Taken together, these results indicate that virtually all of the nAChRs in the rat pineal gland are the alpha3beta4 nAChR subtype and that the pineal gland can therefore serve as an excellent and convenient model in which to study the pharmacology and function of these receptors in a native tissue.
Collapse
Affiliation(s)
- Susan C Hernandez
- Department of Pharmacology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Fukuhara C, Dirden JC, Tosini G. Analysis of gene expression following norepinephrine stimulation in the rat pineal gland using DNA microarray technique. J Pineal Res 2003; 35:196-203. [PMID: 12932204 DOI: 10.1034/j.1600-079x.2003.00078.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have demonstrated that norepinephrine (NE) is the critical neurotransmitter for the regulation of gene expression in the pineal gland. We studied the acute effect of NE stimulation in cultured rat pineal glands using Affymetrix rat genome microarray GeneChip probe arrays. Our data demonstrate that NE stimulation affects regulation of several genes; 44 and 29 genes were up- or down-regulated more than 2.5-fold, respectively. As shown in previous studies, arylalkylamine N-acetyltransferase, cyclic AMP responsive element modulator, jun-B and c-fos mRNA levels were increased by NE stimulation. Genes that were not previously reported and increased by NE stimulation in the pineal gland were protein tyrosine phosphatase, nuclear receptors, and activity and neurotransmitter-induced early genes. Unlike up-regulated genes, most of the down-regulated genes were not reported previously. Genes encoding enzymes involved in metabolism and structural proteins were decreased following NE stimulation. Identification of genes affected by NE stimulation would provide valuable information to understanding pineal biology fully.
Collapse
Affiliation(s)
- Chiaki Fukuhara
- Neuroscience Institute and NSF Center for Behavioral Neuroscience, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | |
Collapse
|
12
|
Koch M, Mauhin V, Stehle JH, Schomerus C, Korf HW. Dephosphorylation of pCREB by protein serine/threonine phosphatases is involved in inactivation of Aanat gene transcription in rat pineal gland. J Neurochem 2003; 85:170-9. [PMID: 12641739 DOI: 10.1046/j.1471-4159.2003.01651.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rat pineal gland is a suitable model to investigate neurotransmitter-controlled gene expression, because it is well established that the stimulation of melatonin biosynthesis by norepinephrine (NE) depends on the activation of the gene that encodes arylalkylamine N-acetyltransferase (AANAT), the melatonin rhythm enzyme. The mechanisms responsible for downregulation of Aanat transcription are less clear. In this in vitro study we investigated the role of pCREB dephosphorylation for termination of Aanat gene transcription. Immunosignals for pCREB, strongly induced after NE stimulation, rapidly decreased after withdrawal of NE. The immunoreactivity of the inhibitory transcription factor ICER increased twofold after NE treatment for 6 h, but did not change within 30 min after removal of the stimulus. Application of protein serine/threonine phosphatase (PSP) inhibitors prevented pCREB dephosphorylation and blocked the decreases in Aanat mRNA levels, AANAT protein amount and melatonin biosynthesis all of which occurred rapidly after NE withdrawal. PSPs in the rat pineal gland were characterized by immunocytochemistry and immunoblotting. NE-stimulation for 8 h induced accumulation of PSP1-catalytic subunit (CSU) in pinealocyte nuclei, but did not affect the distribution of PSP2A-CSU. The results identify dephosphorylation of pCREB by PSPs as an essential mechanism for downregulation of Aanat transcription in the rat pineal gland.
Collapse
Affiliation(s)
- Marco Koch
- Dr. Senckenbergische Anatomie, Anatomisches Institut II, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
13
|
Morimoto R, Hayashi M, Yatsushiro S, Otsuka M, Yamamoto A, Moriyama Y. Co-expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and their association with synaptic-like microvesicles in rat pinealocytes. J Neurochem 2003; 84:382-91. [PMID: 12559000 DOI: 10.1046/j.1471-4159.2003.01532.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A vesicular glutamate transporter (VGLUT) is responsible for the accumulation of l-glutamate in synaptic vesicles in glutamatergic neurons. Two isoforms, VGLUT1 and VGLUT2, have been identified, which are complementarily expressed in these neurons. Mammalian pinealocytes, endocrine cells for melatonin, are also glutamatergic in nature, accumulate l-glutamate in synaptic-like microvesicles (SLMVs), and secrete it through exocytosis. Although the storage of l-glutamate in SLMVs is mediated through a VGLUT, the molecular nature of the transporter is less understood. We recently observed that VGLUT2 is expressed in pinealocytes. In the present study, we show that pinealocytes also express VGLUT1. RT-PCR and northern blot analyses indicated expression of the VGLUT1 gene in pineal gland. Western blotting with specific antibodies against VGLUT1 indicated the presence of VGLUT1 in pineal gland. Indirect immunofluorescence microscopy with a section of pineal gland and cultured cells indicated that VGLUT1 and VGLUT2 are co-localized with process terminal regions of pinealocytes. Furthermore, immunoelectronmicroscopy as well as subcellular fractionation studies revealed that both VGLUT1 and VGLUT2 are specifically associated with SLMVs. These results indicate that both VGLUTs are responsible for storage of l-glutamate in SLMVs in pinealocytes. Pinealocytes are the first exception as to complementary expression of VGLUT1 and VGLUT2.
Collapse
Affiliation(s)
- Riyo Morimoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Yatsushiro S, Hayashi M, Morita M, Yamamoto A, Moriyama Y. Glutamate receptor subunit delta2 is highly expressed in a novel population of glial-like cells in rat pineal glands in culture. J Neurochem 2000; 75:1115-22. [PMID: 10936193 DOI: 10.1046/j.1471-4159.2000.0751115.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian pineal gland uses L-glutamate as an intercellular chemical transmitter to regulate negatively melatonin synthesis. To receive glutamate signals, pinealocytes express at least three kinds of glutamate receptors: metabotropic receptor types 3 and 5 and an ionotropic receptor, GluR1. In this study, we examined whether or not the fourth class of ionotropic receptor, delta, which is known for its nondefinitive molecular function and its unique expression pattern in brain, is expressed in pineal gland. RT-PCR analyses with specific probes indicated the expression of mRNA of delta2 but not that of delta1 in pineal gland and cultured pineal cells. Western blotting analysis with polyclonal antibodies specific to the carboxyl-terminal region of the delta2 receptor recognized a single 110-kDa polypeptide of cerebellar membranes and specifically immunostained Purkinje cells. The delta2 antibodies recognized a 110-kDa polypeptide of pineal membranes and specifically immunostained huge glial-like cells with the occasional presence of several long, branching processes in a pineal cell culture. delta2 is not uniformly distributed throughout the cells and is relatively abundant at the periphery of the cell bodies and long processes, where the terminals of synaptophysin-positive processes of pinealocytes, a site for glutamate secretion, are frequently present. The delta2-positive cells constitute a very minor population among total pineal cells (approximately 0.03%). Double immunolabeling with delta2 antibodies and antibodies against marker proteins for pineal interstitial cells clearly distinguishes delta2-positive pineal cells and other known interstitial cells, including glial fibrillary acidic protein- or vimentin-positive glial-like cells. These results indicated that the delta2 glutamate receptor is expressed in a novel subpopulation of pineal glial-like cells in culture and suggest the presence of a glutamate-mediated intercellular signal transduction mechanism between pinealocytes and delta2-expressing cells. The pineal cells may provide a good experimental system for studies on the function of glutamate receptor delta2.
Collapse
Affiliation(s)
- S Yatsushiro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|
15
|
Yatsushiro S, Yamada H, Hayashi M, Yamamoto A, Moriyama Y. Ionotropic glutamate receptors trigger microvesicle-mediated exocytosis of L-glutamate in rat pinealocytes. J Neurochem 2000; 75:288-97. [PMID: 10854273 DOI: 10.1046/j.1471-4159.2000.0750288.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis. Besides melatonin, we showed previously that pinealocytes accumulate L-glutamate in microvesicles and secrete it through an exocytic mechanism. The secreted glutamate binds to the class II metabotropic glutamate receptor and inhibits norepinephrine-stimulated melatonin synthesis in neighboring pinealocytes through an inhibitory cyclic AMP cascade. In this study, it was found that, in addition to metabotropic receptors, pinealocytes express functional ionotropic receptors. RT-PCR and northern analyses indicated the expression of mRNA for GluR1, KA2, and NR2C in pineal gland. The presence of GluR1 protein was confirmed by immunological techniques, but neither KA2 nor NR2C was detected. Consistent with this observation, the presence of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate, non-N-methyl-D-aspartate receptor agonists, transiently stimulated increased the intracellular Ca(2+) concentration of cultured pinealocytes, whereas N-methyl-D-aspartate did not. These responses were prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, a selective antagonist for non-N-methyl-D-aspartate receptors, by L-type Ca(2+) channel blockers such as nifedipine, or by omitting Ca(2+) or Na(+) in the medium. In the presence of Ca(2+) and Na(+), (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate evoked glutamate secretion from the cultured cells, which was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, L-type Ca(2+) channel blockers, type E or B botulinum neurotoxin, or incubation at <20 degrees C. These results strongly suggest that GluR1 is functionally expressed in pinealocytes and triggers microvesicle-mediated exocytosis of L-glutamate via activation of L-type Ca(2+) channels. It is possible that GluR1 participates in a signaling cascade that enhances and expands the L-glutamate signal throughout the pineal gland.
Collapse
Affiliation(s)
- S Yatsushiro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama. CREST, Japan
| | | | | | | | | |
Collapse
|
16
|
Maronde E, Pfeffer M, von Gall C, Dehghani F, Schomerus C, Wicht H, Kroeber S, Olcese J, Stehle JH, Korf HW. Signal transduction in the rodent pineal organ. From the membrane to the nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 460:109-31. [PMID: 10810507 DOI: 10.1007/0-306-46814-x_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The rodent pineal organ transduces a photoneural input into a hormonal output. This photoneuroendocrine transduction leads to highly elevated levels of the hormone melatonin at night-time which serves as a message for darkness. The melatonin rhythm depends on transcriptional, translational and posttranslational regulation of the arylalkylamine-N-acetyltransferase, the key enzyme of melatonin biosynthesis. These regulatory mechanisms are fundamentally linked to two second messenger systems, namely the cAMP- and the Ca(2+)-signal transduction pathways. Our data gained by molecular biology, immunohistochemistry and single-cell imaging demonstrate a time- and substance-specific activation of these signaling pathways and provide a framework for the understanding of the complex signal transduction cascades in the rodent pineal gland which in concert not only regulate the basic profile but also fine-tune the circadian rhythm in melatonin synthesis.
Collapse
Affiliation(s)
- E Maronde
- Dr. Senckenbergische Anatomie, Anatomisches Institut II, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevét P, Korf HW, Stehle JH. Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. Eur J Neurosci 2000; 12:964-72. [PMID: 10762326 DOI: 10.1046/j.1460-9568.2000.00990.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In rodents, the nocturnal rise and fall of arylalkylamine N-acetyltransferase (AANAT) activity controls the rhythmic synthesis of melatonin, the hormone of the pineal gland. This rhythm involves the transcriptional regulation of the AANAT by two norepinephrine (NE)-inducible transcription factors, e.g. the activator pCREB (phosphorylated Ca2+/cAMP-response element binding protein) and the inhibitor ICER (inducible cAMP early repressor). Most inbred mouse strains do not produce melatonin under standard laboratory light/dark conditions. As melatonin-deficient mice are often the founders for transgenic animals used for chronobiological experimentations, molecular components of neuroendocrine signalling in the pineal gland as an integral part of clock entrainment mechanisms have to be deciphered. We therefore compared calcium signalling, transcriptional events and melatonin synthesis in the melatonin-deficient C57BL mouse and the melatonin-proficient C3H mouse. Pineal glands and primary pinealocytes were cultured and stimulated with NE or were collected at various times of the light/dark (LD) cycle. Changes in intracellular calcium concentrations, the phosphorylation of CREB, and ICER protein levels follow similar dynamics in the pineal glands of both mouse strains. pCREB levels are high during the early night and ICER protein shows elevated levels during the late night. In the C57BL pineal gland, a low but significant increase in melatonin synthesis could be observed upon NE stimulation, and, notably, also when animals were exposed to long nights. We conclude that the commonly used C57BL mouse is not completely melatonin-deficient and that this melatonin-deficiency does not affect molecular details involved in regulating transcriptional events of melatonin synthesis.
Collapse
Affiliation(s)
- C von Gall
- Dr Senckenbergische Anatomie, Anatomisches Institut II, J. W. Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Thommesen L, Nørsett K, Sandvik AK, Hofsli E, Laegreid A. Regulation of inducible cAMP early repressor expression by gastrin and cholecystokinin in the pancreatic cell line AR42J. J Biol Chem 2000; 275:4244-50. [PMID: 10660591 DOI: 10.1074/jbc.275.6.4244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The CREM gene encodes both activators and repressors of cAMP-induced transcription. Inducible cAMP early repressor (ICER) isoforms are generated upon activation of an alternative, intronic promoter within the CREM gene. ICER is proposed to down-regulate both its own expression and the expression of other genes that contain cAMP-responsive elements such as a number of growth factors. Thus, ICER has been postulated to play a role in proliferation and differentiation. Here we show that ICER gene expression is induced by gastrin, cholecystokinin (CCK), and epidermal growth factor in AR42J cells. The time course of gastrin- and CCK-mediated ICER induction is rapid and transient, similar to forskolin- and phorbol 12-myristate 13-acetate-induced ICER expression. The specific CCK-B receptor antagonist L740,093 blocks the gastrin but not the CCK response, indicating that both the CCK-B and the CCK-A receptor can mediate ICER gene activation. Noteworthy, CREB is constitutively phosphorylated at Ser-133 in AR42J cells, and ICER induction proceeds in the absence of increased CREB Ser(P)-133. Gastrin-mediated ICER induction was not reduced in the presence of the protein kinase A inhibitor H-89, indicating a protein kinase A-independent mechanism. This is the first report on ICER inducibility via G(q)/G(11) protein-coupled receptors.
Collapse
Affiliation(s)
- L Thommesen
- Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
19
|
Ishio S, Yamada H, Craft CM, Moriyama Y. Hydroxyindole-O-methyltransferase is another target for L-glutamate-evoked inhibition of melatonin synthesis in rat pinealocytes. Brain Res 1999; 850:73-8. [PMID: 10629750 DOI: 10.1016/s0006-8993(99)02102-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rat pinealocytes use L-glutamate as a modulator for melatonin synthesis. Upon binding of L-glutamate to the class II metabotropic glutamate receptor, norepinephrine (NE)-dependent formation of cAMP was inhibited, resulting in decreased serotonin-N-acetyltransferase (NAT) activity and melatonin output. Although L-glutamate at 1 mM caused 90% inhibition of melatonin synthesis, about 30% of the NAT activity remained, suggesting the presence of another target for L-glutamate. In this study, we found that L-glutamate also inhibits hydroxyindole-O-methyltransferase (HIOMT). The inhibition is reversible and dose-dependent: the maximal inhibition was obtained with more than 0.4 mM L-glutamate. Contrary to L-glutamate-evoked inhibition of NAT, agonists for class II metabotropic receptors such as (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) had no effect on HIOMT. Neither (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (MCCG), an specific antagonist for class II mGluRs, nor dibutyryl cAMP restored the L-glutamate-evoked inhibition of HIOMT. Northern blot analyses revealed that L-glutamate significantly inhibits the expression of mRNA of NAT, but not that of HIOMT. These results indicated that HIOMT is an another target for L-glutamate due to its inhibition of melatonin synthesis, and the signaling pathway toward the inhibition is distinct from that of NAT.
Collapse
Affiliation(s)
- S Ishio
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | |
Collapse
|
20
|
Nelson TJ, Zhao WQ, Yuan S, Favit A, Pozzo-Miller L, Alkon DL. Calexcitin interaction with neuronal ryanodine receptors. Biochem J 1999; 341 ( Pt 2):423-33. [PMID: 10393102 PMCID: PMC1220376 DOI: 10.1042/0264-6021:3410423] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calexcitin (CE), a Ca2+- and GTP-binding protein, which is phosphorylated during memory consolidation, is shown here to co-purify with ryanodine receptors (RyRs) and bind to RyRs in a calcium-dependent manner. Nanomolar concentrations of CE released up to 46% of the 45Ca label from microsomes preloaded with 45CaCl2. This release was Ca2+-dependent and was blocked by antibodies against the RyR or CE, by the RyR inhibitor dantrolene, and by a seven-amino-acid peptide fragment corresponding to positions 4689-4697 of the RyR, but not by heparin, an Ins(1,4,5)P3-receptor antagonist. Anti-CE antibodies, in the absence of added CE, also blocked Ca2+ release elicited by ryanodine, suggesting that the CE and ryanodine binding sites were in relative proximity. Calcium imaging with bis-fura-2 after loading CE into hippocampal CA1 pyramidal cells in hippocampal slices revealed slow, local calcium transients independent of membrane depolarization. Calexcitin also released Ca2+ from liposomes into which purified RyR had been incorporated, indicating that CE binding can be a proximate cause of Ca2+ release. These results indicated that CE bound to RyRs and suggest that CE may be an endogenous modulator of the neuronal RyR.
Collapse
Affiliation(s)
- T J Nelson
- Laboratory of Adaptive Systems, National Institutes of Health, Bldg. 36, Room 4A-23, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Daily rhythms are a fundamental feature of all living organisms; most are synchronized by the 24 hr light/dark (LD) cycle. In most species, these rhythms are generated by a circadian system, and free run under constant conditions with a period close to 24 hr. To function properly the system needs a pacemaker or clock, an entrainment pathway to the clock, and one or more output signals. In vertebrates, the pineal hormone melatonin is one of these signals which functions as an internal time-keeping molecule. Its production is high at night and low during day. Evidence indicates that each melatonin producing cell of the pineal constitutes a circadian system per se in non-mammalian vertebrates. In addition to the melatonin generating system, they contain the clock as well as the photoreceptive unit. This is despite the fact that these cells have been profoundly modified from fish to birds. Modifications include a regression of the photoreceptive capacities, and of the ability to transmit a nervous message to the brain. The ultimate stage of this evolutionary process leads to the definitive loss of both the direct photosensitivity and the clock, as observed in the pineal of mammals. This review focuses on the functional properties of the cellular circadian clocks of non-mammalian vertebrates. How functions the clock? How is the photoreceptive unit linked to it and how is the clock linked to its output signal? These questions are addressed in light of past and recent data obtained in vertebrates, as well as invertebrates and unicellulars.
Collapse
Affiliation(s)
- J Falcón
- CNRS UMR 6558, Département des Neurosciences, Université de Poitiers, France.
| |
Collapse
|
22
|
Transcription factors in neuroendocrine regulation: rhythmic changes in pCREB and ICER levels frame melatonin synthesis. J Neurosci 1999. [PMID: 10212292 DOI: 10.1523/jneurosci.19-09-03326.1999] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotransmitter-driven activation of transcription factors is important for control of neuronal and neuroendocrine functions. We show with an in vivo approach that the norepinephrine cAMP-dependent rhythmic hormone production in rat pineal gland is accompanied by a temporally regulated switch in the ratio of a transcriptional activator, phosphorylated cAMP-responsive element-binding protein (pCREB), and a transcriptional inhibitor, inducible cAMP early repressor (ICER). pCREB accumulates endogenously at the beginning of the dark period and declines during the second half of the night. Concomitant with this decline, the amount of ICER rises. The changing ratio between pCREB and ICER shapes the in vivo dynamics in mRNA and, thus, protein levels of arylalkylamine-N-acetyltransferase, the rate-limiting enzyme of melatonin synthesis. Consequently, a silenced ICER expression in pinealocytes leads to a disinhibited arylalkylamine-N-acetyltransferase transcription and a primarily enhanced melatonin synthesis.
Collapse
|
23
|
Wicht H, Maronde E, Olcese J, Korf HW. A semiquantitative image-analytical method for the recording of dose-response curves in immunocytochemical preparations. J Histochem Cytochem 1999; 47:411-20. [PMID: 10026243 DOI: 10.1177/002215549904700315] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Knowledge about intracellular signal transduction cascades is largely based on investigations of cultured cells whose responses to different stimuli are typically quantified via RIA, ELISA, or immunoblots. These techniques, which require relatively large amounts of biological material, are performed with homogenized cells and therefore do not allow localization of the molecules under investigation. We describe a protocol for recording dose-response curves directly from immunocytochemical preparations using rat pinealocytes as a model system. The cells were exposed to beta-adrenergic stimuli inducing the phosphorylation of the transcription factor CREB (mediated by PKA), an increase in ICER protein levels, and synthesis and release of melatonin. Melatonin concentrations were determined by ELISA. cPKA, phosphorylated CREB, and ICER were demonstrated by immunocytochemistry and immunoblots. Dose-response curves were recorded by measuring the integrated density of the immunoreactive sites with an image analysis program. Dose-response curves from immunoblots and immunocytochemical preparations showed almost identical dynamics, validating the immunocytochemical approach, which minimizes the amount of biological material needed for such studies, allows combined quantification and localization of biomolecules, and may even be more sensitive than immunoblotting.
Collapse
Affiliation(s)
- H Wicht
- Dr. Senckenbergische Anatomie, Anatomisches Institut II, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany.
| | | | | | | |
Collapse
|
24
|
Takigawa Y, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Imai K. D-aspartate uptake into cultured rat pinealocytes and the concomitant effect on L-aspartate levels and melatonin secretion. Biochem Biophys Res Commun 1998; 248:641-7. [PMID: 9703979 DOI: 10.1006/bbrc.1998.8971] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significant amounts of D-aspartate (Asp) are found in mammalian tissues and D-Asp is presumed to play some significant, but as yet undefined physiological role. However, it is not known whether D-Asp is synthesized in mammals. In this study, we addressed this issue in cultured rat pinealocytes, parenchymal cells of the pineal gland, which contain significant amounts of D-Asp. Biosynthesis of D-Asp was found to be minimal to non-existent in cultured rat pinealocytes. We then investigated the mechanism of uptake of D-Asp into these cells and its consequent effect on cell function. D-Asp was efficiently taken up into cells, in a time- and dose-dependent manner. Interestingly, the L-Asp levels in the cells and media decreased concomitantly with the uptake of D-Asp. This decrease was not due to D-Asp cytotoxicity, since the cellular levels of othernted. D-Serine and D-alanine were not taken up efficiently into the cells and the cellular levels of L-serine and L-alanine were unchanged. Also, immunocytochemical staining with anti-D-Asp antibody showed that D-Asp, which had been taken up into the cells, was dispersed throughout the cytoplasm. In response to norepinephrine stimulation, pinealocytes, which had been pretreated with D-Asp released D-Asp as well as L-Asp. In these cells, norepinephrine-induced secretion of melatonin, a pineal hormone, was suppressed. The mechanism of this suppression is discussed here.
Collapse
Affiliation(s)
- Y Takigawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Acetylcholine triggers L-glutamate exocytosis via nicotinic receptors and inhibits melatonin synthesis in rat pinealocytes. J Neurosci 1998. [PMID: 9634560 DOI: 10.1523/jneurosci.18-13-04946.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rat pinealocytes, melatonin-secreting endocrine cells, contain peripheral glutaminergic systems. L-Glutamate is a negative regulator of melatonin synthesis through a metabotropic receptor-mediated inhibitory cAMP cascade. Previously, we reported that depolarization of pinealocytes by externally added KCl and activation of L-type Ca2+ channels resulted in secretion of L-glutamate by microvesicle exocytosis. What is unknown is how and what kinds of stimuli trigger glutamate exocytosis under physiological conditions. Here, we report that the nicotinic acetylcholine receptor can trigger glutamate exocytosis from cultured rat pinealocytes. Moreover, acetylcholine or nicotine inhibited norepinephrine-dependent serotonin N-acetyltransferase activity, which results in decreased melatonin synthesis. These activities were blocked by (2S,3S, 4S)-2-methyl-2-(carboxycyclopropyl)glycine, an antagonist of the metabotropic glutamate receptor. These results suggest that cholinergic stimulation initiates the glutaminergic signaling cascade in pineal glands and that parasympathetic neurons innervating the gland exert negative control over melatonin synthesis by way of the glutaminergic systems.
Collapse
|
26
|
Abstract
The reaction of pinealocytes and glia cells to an acute immobilization stress and their poststress recovery was studied in gerbils. Pinealocytes responded to immobilization with an increased peptidergic activity and formation of new concretions, whereas glia cells with an increased growth of interstitial concretions. The occurrence of degenerating pinealocytes indicated deleterious actions of immobilization stress on functionally stimulated cells. The pyroantimonate method to detect Ca2+ demonstrated enlarged crystalline profiles (Ca2+ crystallization into hydroxyapatite) in functionally stimulated pinealocytes and the accumulation of Ca2+ in the interstitial concretion. The pinealocyte concretions did not show the Ca2+ accumulation. The pineal gland poststress recovery was manifested by a reduced functionally stimulated pinealocyte activity and a protracted increase in glia cell activity. It is suggested that the physiological relevance of the crystallization of Ca2+ into hydroxyapatite is to maintain a noradrenalin-stimulated Ca2+ influx at an optimal level during attentuated pinealocyte turnover. The interstitial concretions may lower the extracellular Ca2+ concentrations and thereby stimulate pinealocytes and restrict an increased Ca2+ influx.
Collapse
Affiliation(s)
- J Milin
- Medical Faculty, Institute of Pathology and Histology, Novi Sad, Serbia, Yugoslavia
| |
Collapse
|
27
|
Abstract
Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis in a cAMP-mediated manner. In addition to melatonin, we showed previously that pinealocytes secrete L-glutamate through an exocytic mechanism. The released glutamate inhibits norepinephrine (NE)-dependent melatonin synthesis. Consistent with this observation, specific agonists of class II metabotropic glutamate receptors (mGluRs), including 1-(1S,3R)-aminocyclopentane-1,3-dicarboxylic acid (tACPD), inhibited NE-dependent melatonin synthesis, whereas agonists for other types of glutamate receptors did not. Furthermore, reverse transcription-PCR, Northern blotting, and immunohistochemistry analyses indicated expression of class II mGluR3 in pinealocytes. Inhibitory guanine nucleotide-binding protein (Gi) was also detected in pinealocytes. L-Glutamate or agonists of class II receptors decreased NE- or forskolin-dependent increase of cAMP and serotonin-N-acetyltransferase activities to similar extents. These effects were blocked by pertussis toxin or dibutyryl cAMP. These results indicate that the inhibitory cAMP cascade is involved in the glutamate-evoked inhibition of melatonin synthesis. We propose that the glutaminergic system negatively regulates NE-dependent melatonin synthesis in rat pinealocytes.
Collapse
|