1
|
Abstract
This article discusses antibodies associated with immune-mediated myasthenia gravis and the pathologic action of these antibodies at the neuromuscular junctions of skeletal muscle. To explain how these antibodies act, we consider the physiology of neuromuscular transmission with emphasis on 4 features: the structure of the neuromuscular junction; the roles of postsynaptic acetylcholine receptors and voltage-gated Na+ channels and in converting the chemical signal from the nerve terminal into a propagated action potential on the muscle fiber that triggers muscle contraction; the safety factor for neuromuscular transmission; and how the safety factor is reduced in different forms of autoimmune myasthenia gravis.
Collapse
Affiliation(s)
- Robert L Ruff
- Department of Neurology, Case Western University School of Medicine, The Metro Health System, 2500 Metro Health Drive, Cleveland, OH 44109, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Robert P Lisak
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St Antoine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Serra A, Ruff RL, Leigh RJ. Neuromuscular transmission failure in myasthenia gravis: decrement of safety factor and susceptibility of extraocular muscles. Ann N Y Acad Sci 2013; 1275:129-35. [PMID: 23278588 DOI: 10.1111/j.1749-6632.2012.06841.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An appropriate density of acetylcholine receptors (AChRs) and Na(+) channels (NaChs) in the normal neuromuscular junction (NMJ) determines the magnitude of safety factor (SF) that guarantees fidelity of neuromuscular transmission. In myasthenia gravis (MG), an overall simplification of the postsynaptic folding secondary to NMJ destruction results in AChRs and NaChs depletion. Loss of AChRs and NaChs accounts, respectively, for 59% and 40% reduction of the SF at the endplate, which manifests as neuromuscular transmission failure. The extraocular muscles (EOM) have physiologically less developed postsynaptic folding, hence a lower baseline SF, which predisposes them to dysfunction in MG and development of fatigue during "high performance" eye movements, such as saccades. However, saccades in MG show stereotyped, conjugate initial components, similar to normal, which might reflect preserved neuromuscular transmission fidelity at the NMJ of the fast, pale global fibers, which have better developed postsynaptic folding than other extraocular fibers.
Collapse
Affiliation(s)
- Alessandro Serra
- Mellen Center for Multiple Sclerosis, Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
3
|
How myasthenia gravis alters the safety factor for neuromuscular transmission. J Neuroimmunol 2008; 201-202:13-20. [PMID: 18632162 DOI: 10.1016/j.jneuroim.2008.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 04/21/2008] [Indexed: 11/22/2022]
Abstract
Myasthenia gravis (MG), the most common of autoimmune myasthenic syndromes, is characterized by antibodies directed against the skeletal muscle acetylcholine receptors (AChRs). Endplate Na(+) channels ensure the efficiency of neuromuscular transmission by reducing the threshold depolarization needed to trigger an action potential. Postsynaptic AChRs and voltage-gated Na(+) channels are both lost from the neuromuscular junction in MG. This study examined the impact of postsynaptic voltage-gated Na(+) channel loss on the safety factor for neuromuscular transmission. In intercostal nerve-muscle preparations from MG patients, we found that endplate AChR loss decreases the size of the endplate potential, and endplate Na(+) channel loss increases the threshold depolarization needed to produce a muscle action potential. To evaluate whether AChR-specific antibody impairs the function of Na(+) channels, we tested omohyoid nerve-muscle preparations from rats injected with monoclonal myasthenogenic IgG (passive transfer model of MG [PTMG]). The AChR antibody that produces PTMG did not alter the function of Na(+) channels. We conclude that loss of endplate Na(+) channels in MG is due to complement-mediated loss of endplate membrane rather than a direct effect of myasthenogenic antibodies on endplate Na(+) channels.
Collapse
|
4
|
Kaakinen M, Salmela P, Zelenin S, Metsikkö K. Distribution of aquaporin 4 on sarcolemma of fast-twitch skeletal myofibres. Cell Tissue Res 2007; 329:529-39. [PMID: 17593398 DOI: 10.1007/s00441-007-0442-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/10/2007] [Indexed: 11/29/2022]
Abstract
The aquaporin 4 (AQP4) water channel is present on the sarcolemma of fast-twitch-type skeletal myofibres. We have examined the distribution of AQP4 in relation to sarcolemmal domain structure and found that AQP4 protein is not evenly distributed on the sarcolemma. Immunofluorescence staining of isolated single myofibres indicated a punctate staining pattern overlapping with the dystrophin glycoprotein complex, but with the transverse tubule openings being left clear. Myotendinous and neuromuscular junctions also lacked AQP4, despite their high content of the dystrophin glycoprotein complex. The destruction of caveoli with methyl-beta-cyclodextrin did not change the distribution of AQP4 at the sarcolemma. Moreover, AQP4 did not float with the caveolar marker caveolin-3 in sucrose gradients after Triton X-100 extraction at 4 degrees C. These data indicated that AQP4 was not associated with caveoli. Surprisingly, m. flexor digitorum brevis fibres, although of the fast-twitch type, often lacked AQP4. Furthermore, those fibres harbouring AQP4 at the sarcolemma showed a regionalized distribution, suggesting that large areas were devoid of the protein. Blockage of the synthesized proteins in the endoplasmic reticulum with brefeldin A showed that, in spite of its regionalized sarcolemmal distribution, AQP4 was synthesized along the entire length of the fibres. These results suggest functional differences in the water permeability of the sarcolemma not only between the fast-twitch muscles, but also within single muscle fibres.
Collapse
Affiliation(s)
- Mika Kaakinen
- Department of Anatomy and Cell Biology, University of Oulu, PO Box 5000, FIN-90014 Oulu, Finland.
| | | | | | | |
Collapse
|
5
|
O'Leary DA, Noakes PG, Lavidis NA, Kola I, Hertzog PJ, Ristevski S. Targeting of the ETS factor GABPalpha disrupts neuromuscular junction synaptic function. Mol Cell Biol 2007; 27:3470-80. [PMID: 17325042 PMCID: PMC1899955 DOI: 10.1128/mcb.00659-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The GA-binding protein (GABP) transcription factor has been shown in vitro to regulate the expression of the neuromuscular proteins utrophin, acetylcholine esterase, and acetylcholine receptor subunits delta and epsilon through the N-box promoter motif (5'-CCGGAA-3'), but its in vivo function remains unknown. A single point mutation within the N-box of the gene encoding the acetylcholine receptor epsilon subunit has been identified in several patients suffering from postsynaptic congenital myasthenic syndrome, implicating the GA-binding protein in neuromuscular function and disease. Since conventional gene targeting results in an embryonic-lethal phenotype, we used conditional targeting to investigate the role of GABPalpha in neuromuscular junction and skeletal muscle development. The diaphragm and soleus muscles from mutant mice display alterations in morphology and distribution of acetylcholine receptor clusters at the neuromuscular junction and neurotransmission properties consistent with reduced receptor function. Furthermore, we confirmed decreased expression of the acetylcholine receptor epsilon subunit and increased expression of the gamma subunit in skeletal muscle tissues. Therefore, the GABP transcription factor aids in the structural formation and function of neuromuscular junctions by regulating the expression of postsynaptic genes.
Collapse
Affiliation(s)
- Debra A O'Leary
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Yee Chin J, Matthews HR, Fraser JA, Skepper JN, Chawla S, Huang CLH. Detubulation experiments localise delayed rectifier currents to the surface membrane of amphibian skeletal muscle fibres. J Muscle Res Cell Motil 2004; 25:389-95. [PMID: 15548868 DOI: 10.1007/s10947-004-4069-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ionic currents in intact and detubulated frog sartorius muscle fibres were compared at room temperature using a loose-patch voltage clamp configuration in four experimental groups. The test fibres (i) were detubulated by a previously established osmotic shock protocol that involved the introduction and withdrawal of extracellular glycerol followed by exposure to Ca2+/Mg2+-Ringer solution and cooling. The control fibres were spared osmotic shock and (ii) simply studied in normal Ringer solution, (iii) exposed to 30 min of steady cooling to 9-10 degrees C before electrophysiological study or (iv) exposed to and studied in glycerol-Ringer solution. The presence or absence of detubulation was confirmed for all the experimental groups through assessing for the abolition or otherwise of the delayed after-depolarisation normally associated with action potential propagation into the transverse (T) tubules. All fibre groups showed similar resting potentials (-80 to -90 mV) thus ensuring consistent baseline voltages from which the voltage clamp steps were imposed. The intact muscle fibres in the three control groups (ii)-(iv) spared osmotic shock showed both inward Na+ and delayed rectifier outward (K+) currents. In contrast, patches from detubulated muscle fibres in the test group (i) showed only delayed outward currents, consistent with contrasting contributions to Na+ and K+ currents from regions of membrane affected or spared by the detubulation procedure. Nevertheless, the voltage dependence, maximum steady state amplitudes and timecourses of the delayed outward currents were conserved through all the experimental groups. These findings suggest that the surface as opposed to the tubular membrane contributes the greater part of the delayed rectifier current in amphibian skeletal muscle.
Collapse
Affiliation(s)
- Jann Yee Chin
- Physiological Laboratory and Multi-Imaging Centre, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Sikes RA, Walls AM, Brennen WN, Anderson JD, Choudhury-Mukherjee I, Schenck HA, Brown ML. Therapeutic Approaches Targeting Prostate Cancer Progression Using Novel Voltage-Gated Ion Channel Blockers. ACTA ACUST UNITED AC 2003; 2:181-7. [PMID: 15040863 DOI: 10.3816/cgc.2003.n.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The early detection and treatment of prostate cancer have increased survival and improved clinical outcomes. The nature of the disease and pathologic understaging result in a high proportion of patients developing locally recurrent disease or distant metastases. The development of prostate cancer the time from tumor initiation and progression to invasive carcinoma often begins in men in the fourth or fifth decades of life and extends across decades. This prolonged window highlights the tremendous clinical impact that early intervention with therapeutic agents that selectively target the invasive and metastatic potential of the prostate cancer cell could have on patient survival and quality of life. Our research is currently focused on the development and testing of novel voltage-gated ion channel blockers. The expression of voltage-gated sodium channels (VGSCs) was recently associated with the metastatic behavior of prostate cancer cells. In these studies, VGSC blockers altered prostate cancer cell morphology and arrested prostate cancer cell migration. Clinically, one of the most widely used sodium channel blockers is phenytoin. We have used rational drug design based on the phenytoin binding site in a VGSC to make novel sodium channel blockers with enhanced activity and minimal acute toxicity. Our initial studies in vitro demonstrate enhanced binding of the compounds to the sodium channel and increased inhibition of prostate cancer cell growth in culture and in soft agarose compared with phenytoin. These derivatives are currently being tested for their antitumor activity in human prostate cancer xenografts.
Collapse
Affiliation(s)
- Robert A Sikes
- Laboratory for Cancer Ontogeny and Therapeutics, Department of Biological Sciences, 330 Wolf Hall, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ruff RL, Lennon VA. End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis. Ann Neurol 1998; 43:370-9. [PMID: 9506554 DOI: 10.1002/ana.410430315] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study examined the loss of voltage-gated Na+ channels as well as acetylcholine receptors (AChRs) from the end-plate region in patients with acquired myasthenia gravis (MG) and in rats with experimental autoimmune passively transferred MG (PTMG). Rats received a monoclonal IgG antibody directed against an extracellular epitope of the nicotinic acetylcholine receptor of muscle (AChR) to produce PTMG. At the end-plate border we examined miniature end-plate potentials (MEPPs), sodium current (INa) amplitude, and action potential (AP) properties; the latter two were also examined on the extrajunctional membrane. In the normal situation, the safety factor for neuromuscular transmission is ensured by the large INa at the end plate, which reduces the AP threshold. Among different fiber types, INa was largest for type IIb fibers and smallest for type I fibers. When end-plate border properties of fibers from 3 MG patients and 15 PTMG rats were compared with controls, INa was reduced, AP thresholds were higher, and rates of AP rise were reduced. Amplitudes of MEPPs and INa at the end plate indicated that loss of AChRs was greater than loss of Na+ channels in patients with MG and rats with PTMG; INa was reduced to about 60% of control values, whereas MEPPs were reduced to less than 30% of control values. On the extrajunctional membrane, INa and AP thresholds and rates of rise were similar for MG patients, PTMG rats, and controls. This evidence for loss of voltage-gated Na+ channels at the motor end plate in both patients with MG and in rats with PTMG reveals a hitherto unrecognized consequence of the end-plate damage initiated by the binding of complement-fixing IgG to end-plate AChRs.
Collapse
Affiliation(s)
- R L Ruff
- Neurology Service, Department of Veterans Affairs Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
9
|
Wood SJ, Slater CR. beta-Spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction. J Cell Biol 1998; 140:675-84. [PMID: 9456326 PMCID: PMC2140176 DOI: 10.1083/jcb.140.3.675] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1997] [Revised: 12/05/1997] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) are concentrated in the depths of the postsynaptic folds at mammalian neuromuscular junctions (NMJs) where they facilitate action potential generation during neuromuscular transmission. At the nodes of Ranvier and the axon hillocks of central neurons, VGSCs are associated with the cytoskeletal proteins, beta-spectrin and ankyrin, which may help to maintain the high local density of VGSCs. Here we show in skeletal muscle, using immunofluorescence, that beta-spectrin is precisely colocalized with both VGSCs and ankyrinG, the nodal isoform of ankyrin. In en face views of rat NMJs, acetylcholine receptors (AChRs), and utrophin immunolabeling are organized in distinctive linear arrays corresponding to the crests of the postsynaptic folds. In contrast, beta-spectrin, VGSCs, and ankyrinG have a punctate distribution that extends laterally beyond the AChRs, consistent with a localization in the depths of the folds. Double antibody labeling shows that beta-spectrin is precisely colocalized with both VGSCs and ankyrinG at the NMJ. Furthermore, quantification of immunofluorescence in labeled transverse sections reveals that beta-spectrin is also concentrated in perijunctional regions, in parallel with an increase in labeling of VGSCs and ankyrinG, but not of dystrophin. These observations suggest that interactions with beta-spectrin and ankyrinG help to maintain the concentration of VGSCs at the NMJ and that a common mechanism exists throughout the nervous system for clustering VGSCs at a high density.
Collapse
Affiliation(s)
- S J Wood
- School of Neurosciences, The Medical School, University of Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | |
Collapse
|
10
|
Affiliation(s)
- R L Ruff
- Department of Neurology, Cleveland Veterans Administration Medical Center, Case Western Reserve University Medical School, Ohio 44106, USA
| |
Collapse
|
11
|
Abstract
Na+ current (INa), membrane capacitance (Cm), action potential (AP) properties, and cable properties were studied on the end-plate (E), the end-plate border (EB), and extrajunctional (EJ) membrane of rat fast twitch muscle fibers. INa normalized to Cm, which is proportional to the density of Na+ channels, was the same on the E and the EB and smallest on EJ membrane. The AP threshold was lower and rate of rise of the AP was larger at the EB compared with EJ membrane. On the E and the EB, Cm and INa did not change in response to changes in fiber length. On EJ membrane, INa, Cm, and membrane cable properties changed in a manner consistent with folding and unfolding of the sarcolemma during length changes. The stiffness of the E membrane may add mechanical stability of the neuromuscular junction so that the electrical properties of the end-plate do not change with fiber length. The higher density of Na+ channels near the end-plate increases the safety factor for neuromuscular transmission by lowering the AP threshold.
Collapse
Affiliation(s)
- R L Ruff
- Department of Neurology, Cleveland Veterans Administration Medical Center, OH 44106, USA
| |
Collapse
|
12
|
Abstract
1. In skeletal muscle fibres, voltage-gated sodium channels are concentrated at the neuromuscular junction. The effect of this accumulation of sodium channels on action potential generation was investigated in rat slow- and fast-twitch muscle fibres. 2. Intracellular microelectrodes were used to generate and record action potentials, from an imposed membrane potential of -75 and -90 mV, in junctional and extrajunctional regions of the muscle fibre. To identify junctional regions, preparations were incubated with 5 x 10(-7) M d-tubocurarine (dTC) to block muscle contraction in response to nerve stimulation whilst allowing endplate potentials (EPPs) to be recorded. Injection of rectangular depolarizing current pulses initiated action potentials at the endplate with threshold values several millivolts lower than those generated elsewhere in the fibre. In addition, the maximum rate of rise of the action potential was greater at the endplate than in extrajunctional regions. 3. In other muscles, neuromuscular transmission was partially blocked with dTC (2 x 10(-7) M), such that repetitive nerve stimulation evoked action potentials and EPPs in the same fibre. The threshold of these nerve-evoked action potentials was approximately 50% lower than values derived from action potentials generated by current injection. 4. It is concluded that the threshold for action potential generation is significantly lower at the neuromuscular junction than in extrajunctional regions of skeletal muscle fibres. Furthermore, nerve-evoked current is more effective at generating an action potential than is injected current.
Collapse
Affiliation(s)
- S J Wood
- Muscular Dystrophy Group Research Laboratories, Newcastle General Hospital, Newcastle Upon Tyne, UK
| | | |
Collapse
|
13
|
Bambrick L, Gordon T. Neurotoxins in the study of neural regulation of membrane proteins in skeletal muscle. J Pharmacol Toxicol Methods 1994; 32:129-38. [PMID: 7858306 DOI: 10.1016/1056-8719(94)90066-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The discovery and purification of several neurotoxins, including alpha-bungarotoxin and tetrodotoxin has provided very high-affinity ligands which have proved to be central to the elucidation of the neural control of skeletal muscle membrane proteins and to the purification and characterization of the nicotinic acetylcholine receptor (AChR) and the Na+ channel, respectively. This review describes the use of neurotoxins for quantification and localization of receptors and ion channels in normal and denervated skeletal muscles with particular emphasis on the appropriateness of the muscle preparation and ligand used in the studies. It is now clear that the nerve controls the synthesis and spatial distribution of AChRs and Na+ channels by regulating gene expression in extrajunctional and subjunctional nuclei. The down-regulation of extrajunctional AChRs is primarily mediated by neuromuscular activity and the concentration of AChRs and Na+ channels in specific membrane domains at the neuromuscular junction is controlled by a number of neurotrophic substances at the neuromuscular junction. These include agrin, ARIA, and CGRP.
Collapse
Affiliation(s)
- L Bambrick
- University of Alberta (T.G.), Edmonton, Canada, Department of Physiology, University of Maryland School of Medicine, Baltimore
| | | |
Collapse
|
14
|
Brazil OV, Fontana MD. Toxins as tools in the study of sodium channel distribution in the muscle fibre membrane. Toxicon 1993; 31:1085-98. [PMID: 8266342 DOI: 10.1016/0041-0101(93)90124-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The number of tetrodotoxin molecules bound to the membrane of the fibres of muscles in normal conditions and after detubulation produced by glycerol-induced osmotic shock pointed to a higher sodium channel density at the surface membrane than at the membrane in the transverse tubules. Study of the maximum rate of rise of the action potential at the junctional and nonjunctional regions of the muscle fibre membrane suggested that the Na+ channel density is also not the same along the muscle fibre membrane, being higher at the junctional region. Further studies on the distribution of the Na+ channel along the muscle fibre membrane were carried out with the use of (1) the loose patch voltage-clamp technique, (2) labelling the Na+ channels with fluorescently labelled scorpion toxins, (3) autoradiography of localized Na+ channels with 125I-labelled scorpion toxins, and (4) toxins that induce persistent activation of the Na+ channel. The studies referred to in (1), (2) and (3) demonstrate that the density of the Na+ channel is much higher at the junctional region than elsewhere in the membrane of the muscle fibre. On the other hand, in experiments carried out on curarized rat diaphragms several sodium channel activating toxins (crotamine, Phoneutria nigriventer venom, its toxin PhTx2, veratrine) were found to produce a much greater depolarization of the membrane at the junctional region than at nonjunctional regions. However, it was also found that some toxins (veratridine, batrachotoxin) depolarized equally well the junctional and nonjunctional regions. Two alternative hypotheses to explain the uniform depolarization of the muscle fibre membrane induced by these toxins are suggested.
Collapse
Affiliation(s)
- O V Brazil
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | | |
Collapse
|
15
|
Ruff RL, Whittlesey D. Na+ currents near and away from endplates on human fast and slow twitch muscle fibers. Muscle Nerve 1993; 16:922-9. [PMID: 8355723 DOI: 10.1002/mus.880160906] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fast and slow twitch muscle fibers have distinct contractile properties. Here we determined that membrane excitability also varies with fiber type. Na+ currents (INa) were studied with the loose-patch voltage clamp technique on 29 histochemically classified human intercostal skeletal muscle fibers at the endplate border and > 200 microns from the endplate (extrajunctional). Fast and slow twitch fibers showed slow inactivation of endplate border and extrajunctional INa and had increased INa at the endplate border compared to extrajunctional membrane. The voltage dependencies of INa were similar on the endplate border and extrajunctional membrane, which suggests that both regions have physiologically similar channels. Fast twitch fibers had larger INa on the endplate border and extrajunctional membrane and manifest fast and slow inactivation of INa at more negative potentials than slow twitch fibers. For normal muscle, the differences between INa on fast and slow twitch fibers might: (1) enable fast twitch fibers to operate at high firing frequencies for brief periods; and (2) enable slow twitch fibers to operate at low firing frequencies for prolonged times. Disorders of skeletal membrane excitability, such as the periodic paralyses and myotonias, may impact fast and slow twitch fibers differently due to the distinctive Na+ channel properties of each fiber type.
Collapse
Affiliation(s)
- R L Ruff
- Department of Neurology, Cleveland Veterans Administration Medical Center, OH 44106
| | | |
Collapse
|
16
|
Ruff RL. Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C229-34. [PMID: 1733232 DOI: 10.1152/ajpcell.1992.262.1.c229] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Na current density and membrane capacitance were studied with the loose patch voltage clamp technique on rat fast- and slow-twitch skeletal muscle fibers at three different regions on the fibers: 1) the end plate border, 2) greater than 200 microns from the end plate (extrajunctional), and 3) on the end plate postsynaptic membrane. Fibers were treated with collagenase to improve visualization of the end plate and to enzymatically remove the nerve terminal. The capacitance of membrane patches was similar on fast- and slow-twitch fibers and patches of membrane on the end plate had twice the capacitance of patches elsewhere. For fast- and slow-twitch fibers, the sizes of the Na current normalized to the area of the patch were as follows: end plate greater than end plate border greater than extrajunctional. For both types of fibers, the amplitudes of the Na current normalized to the capacitance of the membrane patch were as follows: end plate approximately end plate border greater than extrajunctional. At each of the three regions, the Na current densities were larger on fast-twitch fibers and fast-twitch fibers had a larger increase in Na current density at the end plate border compared with extrajunctional membrane.
Collapse
Affiliation(s)
- R L Ruff
- Department of Neurology, Cleveland Veterans Affairs Medical Center, Ohio
| |
Collapse
|
17
|
Massacrier A, Couraud F, Cau P. Voltage-sensitive Na+ channels in mammalian peripheral nerves detected using scorpion toxins. JOURNAL OF NEUROCYTOLOGY 1990; 19:850-72. [PMID: 1963443 DOI: 10.1007/bf01186815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The localization of voltage-sensitive sodium channels was investigated in mouse, rat and rabbit sciatic nerves using iodinated alpha- and beta-Scorpion toxins (ScTx) as specific probes. Saturable specific binding for a beta-ScTx was detected in mouse sciatic nerve homogenates (Kd = 90 pM, binding site capacity = 90 fmol mg-1 protein). LM autoradiographic studies demonstrated that the two types of ScTx stained the Ranvier nodes of the myelinated fibres, and also showed a clear but weaker labelling of the unmyelinated Remak bundles. In the sciatic nerve, which is widely considered as a model 'myelinated nerve', the nodal membrane represented only a small fraction of the total axonal membranes (0.2% and 0.05% for mouse and rabbit sciatic nerves respectively). Therefore, despite their high channel density, nodal membranes contribute only a small proportion of the total labelling by beta-ScTx (15% and 2.3% for mouse and rabbit sciatic nerves respectively), with the major contribution to labelling arising from unmyelinated axons. The distribution of specific binding sites for a beta-Scorpion toxin was then analysed in cross-sections of rabbit sciatic nerve at the EM level. The quantitative analysis of autoradiograms involved three methods, the 50% probability circle method, and two cross-fire analyses using either systematically distributed hypothetical sources or hypothetical sources only located on the plasma membranes of axons and of Schwann cells associated with unmyelinated Remak bundles. No specific beta-Scorpion toxin binding sites were detected at the plasma membrane of Schwann cells from either myelinated fibres or unmyelinated bundles, or at the internodal surface of myelinated axons. Sites were only detected at the surface of unmyelinated axons and at nodal axolemma. Their density in unmyelinated axons was found to be in the range of 1-6 per micron2 of plasma membrane surface area by combining quantitative EM autoradiography and stereological measurements.
Collapse
Affiliation(s)
- A Massacrier
- Laboratoire de Biologie Cellulaire-Histologie, INSERM U 172-CNRS UA 1179, Faculté de Médecine-Nord, Marseille, France
| | | | | |
Collapse
|