1
|
Barillari G, Bei R, Manzari V, Modesti A. Infection by High-Risk Human Papillomaviruses, Epithelial-to-Mesenchymal Transition and Squamous Pre-Malignant or Malignant Lesions of the Uterine Cervix: A Series of Chained Events? Int J Mol Sci 2021; 22:13543. [PMID: 34948338 PMCID: PMC8703928 DOI: 10.3390/ijms222413543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Wound healing requires static epithelial cells to gradually assume a mobile phenotype through a multi-step process termed epithelial-to-mesenchymal transition (EMT). Although it is inherently transient and reversible, EMT perdures and is abnormally activated when the epithelium is chronically exposed to pathogens: this event deeply alters the tissue and eventually contributes to the development of diseases. Among the many of them is uterine cervical squamous cell carcinoma (SCC), the most frequent malignancy of the female genital system. SCC, whose onset is associated with the persistent infection of the uterine cervix by high-risk human papillomaviruses (HR-HPVs), often relapses and/or metastasizes, being resistant to conventional chemo- or radiotherapy. Given that these fearsome clinical features may stem, at least in part, from the exacerbated and long-lasting EMT occurring in the HPV-infected cervix; here we have reviewed published studies concerning the impact that HPV oncoproteins, cellular tumor suppressors, regulators of gene expression, inflammatory cytokines or growth factors, and the interactions among these effectors have on EMT induction and cervical carcinogenesis. It is predictable and desirable that a broader comprehension of the role that EMT inducers play in SCC pathogenesis will provide indications to flourish new strategies directed against this aggressive tumor.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montellier, 00133 Rome, Italy; (R.B.); (V.M.); (A.M.)
| | | | | | | |
Collapse
|
2
|
Spencer CT, Bezbradica JS, Ramos MG, Arico CD, Conant SB, Gilchuk P, Gray JJ, Zheng M, Niu X, Hildebrand W, Link AJ, Joyce S. Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules. Proteomics Clin Appl 2016; 9:1035-52. [PMID: 26768311 DOI: 10.1002/prca.201500106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE MHC class I presentation of peptides allows T cells to survey the cytoplasmic protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by presentation of microbial peptides. However, little is known about the self peptides presented during infection, despite the fact that microbial infections alter host cell gene expression patterns and protein metabolism. EXPERIMENTAL DESIGN The self peptide repertoire presented by HLA-A*01;01, HLA-A*02;01, HLA-B*07;02, HLA-B*35;01, and HLA-B*45;01 (where HLA is human leukocyte antigen) was determined by tandem MS before and after vaccinia virus infection. RESULTS We observed a profound alteration in the self peptide repertoire with hundreds of self peptides uniquely presented after infection for which we have coined the term "self peptidome shift." The fraction of novel self peptides presented following infection varied for different HLA class I molecules. A large part (approximately 40%) of the self peptidome shift arose from peptides derived from type I interferon-inducible genes, consistent with cellular responses to viral infection. Interestingly, approximately 12% of self peptides presented after infection showed allelic variation when searched against approximately 300 human genomes. CONCLUSION AND CLINICAL RELEVANCE Self peptidome shift in a clinical transplant setting could result in alloreactivity by presenting new self peptides in the context of infection-induced inflammation.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jelena S Bezbradica
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mireya G Ramos
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Stephanie B Conant
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jennifer J Gray
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Mu Zheng
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Centre, Oklahoma City, OK, USA
| | - Andrew J Link
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
3
|
Burova E, Vassilenko K, Dorosh V, Gonchar I, Nikolsky N. Interferon gamma-dependent transactivation of epidermal growth factor receptor. FEBS Lett 2007; 581:1475-80. [PMID: 17362940 DOI: 10.1016/j.febslet.2007.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 03/01/2007] [Indexed: 11/16/2022]
Abstract
The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.
Collapse
Affiliation(s)
- Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Sciences, St.-Petersburg 194064, Russia.
| | | | | | | | | |
Collapse
|
4
|
Lee YS, Bae SM, Kwak SY, Park DC, Kim YW, Hur SY, Park EK, Han BD, Lee YJ, Kim CK, Kim DK, Ahn WS. Cell cycle regulatory protein expression profiles by adenovirus p53 infection in human papilloma virus-associated cervical cancer cells. Cancer Res Treat 2006; 38:168-77. [PMID: 19771278 DOI: 10.4143/crt.2006.38.3.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 05/23/2006] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The tumor suppressor gene, p53, has been established as an essential component for the suppression of tumor cell growth. In this study, we investigated the time-course anticancer effects of adenoviral p53 (Adp53) infection on human ovarian cancer cells to provide insight into the molecular-level understanding of the growth suppression mechanisms involved in Adp53-mediated apoptosis and cell cycle arrest. MATERIALS AND METHODS Three human cervical cancer cell lines (SiHa, CaSki, HeLa and HT3) were used. The effect of Adp53 infection was studied via cell count assay, cell cycle analysis, FACS, Western blot and macroarray assay. RESULTS Adp53 exerts a significant role in suppressing cervical cancer cell growth. Adp53 also showed growth inhibitory effects in each cell line, and it induced apoptosis and cell cycle arrest. Adp53 differentially regulated the expression of genes and proteins, and the gene expression profiles in the SiHa cells revealed that the p21, p53 and mdm2 expressions were significantly up-regulated at 24 and 48 hr. Western blot shows that the p21 and p53 expression-levels were significantly increased after Adp53 infection. In addition, in all cell lines, both the CDK4 and PCNA protein expression levels were decreased 48 h after Adp53 infection. Cell cycle arrest at the G1 phase was induced only in the SiHa and HeLa cells, suggesting that exogenous infection of Adp53 in cancer cells was significantly different from the other HPV-associated cervical cancer cells. CONCLUSION Adp53 can inhibit cervical cancer cell growth through induction of apoptosis and cell cycle arrest, as well as through the regulation of the cell cycle-related proteins. The Adp53-mediated apoptosis can be employed as an advanced strategy for developing preferential tumor cell-specific delivery.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jin HS, Bae SM, Kim YW, Lee JM, Namkoong SE, Han BD, Lee YJ, Kim CK, Chun HJ, Ahn WS. Distinctive cell cycle regulatory protein profiles by adenovirus delivery of p53 in human papillomavirus-associated cancer cells. Int J Gynecol Cancer 2006; 16:698-707. [PMID: 16681750 DOI: 10.1111/j.1525-1438.2006.00393.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, microarray analyses were performed to determine the time course of gene expression profiles in SiHa cells after infection with an adenovirus-expressing p53 (Adp53). We then investigated the consequences of Adp53 gene transfer on the expression level of six genes associated with cell cycle control and on apoptosis and cell cycle arrest in SiHa cells and compared these results with those from CaSki and HeLa cells. Gene expression profiling of the p53-targeted genes in SiHa cells revealed that p21, p53, and mdm2 protein expression was significantly upregulated at 24 and 48 h. Western blot results revealed that p21 and p53 expression levels had significantly increased after Adp53 infection. Cyclin-dependent kinase 4 levels were decreased 48 h after treatment in SiHa and CaSki cells. Proliferating cell nuclear antigen levels were unchanged after Adp53 infection. Only SiHa cells exhibited significant cell death. Cell cycle arrest at the G1 phase was induced in the SiHa and HeLa cells but was not induced at the G2/M and S phases in the CaSki cells. These data support the notion that the understanding of p53-dependent apoptosis and cell growth arrest could be applicable to advanced strategies in the development of preferential tumor cell-specific delivery.
Collapse
Affiliation(s)
- H-S Jin
- Catholic Research Institutes of Medical Science and Department of Obstetrics and Gynecology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|