1
|
Meier WA, Linn MJ, Davis WP, Sutherland JE, Sharma AK. Incidental Ultrastructural Findings in the Sural Nerve and Dorsal Root Ganglion of Aged Control Sprague Dawley Rats in a Nonclinical Carcinogenicity Study. Toxicol Pathol 2019; 48:132-143. [DOI: 10.1177/0192623319873319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Xenobiotic-induced peripheral nerve damage is a growing concern. Identifying relative risks that a new drug may cause peripheral nerve injury over long periods of administration is gathering importance in the evaluation of animal models. Separating out age-related changes in peripheral nerves of rats caused by compression injury from drug-induced effects has been difficult. Biopsy of the sural nerve is utilized in humans for investigations of peripheral neuropathy, because it is largely removed from the effects of nerve compression. This study used transmission electron microscopy to identify incidental findings in the sural nerves and dorsal root ganglia of aged control rats over time. The goal was to establish a baseline understanding of the range of possible changes that could be noted in controls compared to rats treated with any new investigative drug. In this evaluation, most sural nerve fibers from aged control rats had few ultrastructural abnormalities of pathologic significance. However, glycogenosomes, polyglucosan bodies, swollen mitochondria, autolysosomes, split myelin, Schwann cell processes, and endoneural macrophages with phagocytosed debris (considered an indication of ongoing degenerative changes) were occasionally noted.
Collapse
|
2
|
Abstract
Diffuse axonal injury (DAI) remains a prominent feature of human traumatic brain injury (TBI) and a major player in its subsequent morbidity. The importance of this widespread axonal damage has been confirmed by multiple approaches including routine postmortem neuropathology as well as advanced imaging, which is now capable of detecting the signatures of traumatically induced axonal injury across a spectrum of traumatically brain-injured persons. Despite the increased interest in DAI and its overall implications for brain-injured patients, many questions remain about this component of TBI and its potential therapeutic targeting. To address these deficiencies and to identify future directions needed to fill critical gaps in our understanding of this component of TBI, the National Institute of Neurological Disorders and Stroke hosted a workshop in May 2011. This workshop sought to determine what is known regarding the pathogenesis of DAI in animal models of injury as well as in the human clinical setting. The workshop also addressed new tools to aid in the identification of this axonal injury while also identifying more rational therapeutic targets linked to DAI for continued preclinical investigation and, ultimately, clinical translation. This report encapsulates the oral and written components of this workshop addressing key features regarding the pathobiology of DAI, the biomechanics implicated in its initiating pathology, and those experimental animal modeling considerations that bear relevance to the biomechanical features of human TBI. Parallel considerations of alternate forms of DAI detection including, but not limited to, advanced neuroimaging, electrophysiological, biomarker, and neurobehavioral evaluations are included, together with recommendations for how these technologies can be better used and integrated for a more comprehensive appreciation of the pathobiology of DAI and its overall structural and functional implications. Lastly, the document closes with a thorough review of the targets linked to the pathogenesis of DAI, while also presenting a detailed report of those target-based therapies that have been used, to date, with a consideration of their overall implications for future preclinical discovery and subsequent translation to the clinic. Although all participants realize that various research gaps remained in our understanding and treatment of this complex component of TBI, this workshop refines these issues providing, for the first time, a comprehensive appreciation of what has been done and what critical needs remain unfulfilled.
Collapse
Affiliation(s)
- Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramona Hicks
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Wang J, Hamm RJ, Povlishock JT. Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback, and reorganization. J Neurotrauma 2011; 28:1185-98. [PMID: 21506725 DOI: 10.1089/neu.2011.1756] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traumatic axonal injury (TAI) is a major feature of traumatic brain injury (TBI) and is associated with much of its morbidity. To date, significant insight has been gained into the initiating pathogenesis of TAI. However, the nature of TAI within the injured brain precludes the consistent evaluation of its specific anterograde and retrograde sequelae. To overcome this limitation, we used the relatively organized optic nerve in a central fluid percussion injury (cFPI) model. To improve the visualization of TAI, we utilized mice expressing yellow fluorescent protein (YFP) in their visual pathways. Through this approach, we consistently generated TAI in the optic nerve and qualitatively and quantitatively evaluated its progression over a 48-h period in YFP axons via confocal microscopy and electron microscopy. In this model, delayed axonal swelling with subsequent disconnection were the norm, together with the fact that once disconnected, both the proximal and distal axonal segments revealed significant dieback, with the proximal swellings showing regression and reorganization, while the distal swellings persisted, although showing signs of impending degeneration. When antibodies targeting the C-terminus of amyloid precursor protein (APP), a routine marker of TAI were employed, they mapped exclusively to the proximal axonal segments without distal targeting, regardless of the survival time. Concomitant with this evolving axonal pathology, focal YFP fluorescence quenching occurred and mapped precisely to immunoreactive loci positive for Texas-Red-conjugated-IgG, indicating that blood-brain barrier disruption and its attendant edema contributed to this phenomenon. This was confirmed through the use of antibodies targeting endogenous YFP, which demonstrated the retention of intact immunoreactive axons despite YFP fluorescence quenching. Collectively, the results of this study within the injured optic nerve provide unprecedented insight into the evolving pathobiology associated with TAI.
Collapse
Affiliation(s)
- Jiaqiong Wang
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | |
Collapse
|
4
|
Dombro RS, Bender AS, Norenberg MD. Association between cell swelling and glycogen content in cultured astrocytes. Int J Dev Neurosci 2000; 18:161-9. [PMID: 10715570 DOI: 10.1016/s0736-5748(99)00084-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Treatment of cultured rat astrocytes with hypotonic media or with 1 mM glutamate for 90 min caused cell swelling and a significant increase in glycogen content. Conversely, treatment with hypertonic media caused cell shrinkage with a corresponding decrease in astrocyte glycogen, which was proportional to the increasing osmolality of the hypertonic media. The glutamate receptor antagonist, MK-801, lowered both the glutamate-induced swelling and glycogen increase. These findings demonstrate a correlation between changes in cell volume and astrocyte glycogen content. This may explain the increased astrocytic glycogen observed in many neuropathological conditions where astrocyte swelling occurs. Because glycogen represents the largest energy reserve in the central nervous system, a swelling-induced disturbance in glycogen metabolism may lead to abnormal glial-neuronal interactions resulting in impaired brain bioenergetics.
Collapse
Affiliation(s)
- R S Dombro
- Veterans Administration Medical Center, Miami, FL, USA
| | | | | |
Collapse
|
5
|
Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma 1997; 14:419-40. [PMID: 9257661 DOI: 10.1089/neu.1997.14.419] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Axons are particularly at risk in human diffuse head injury. Use of immunocytochemical labeling techniques has recently demonstrated that axonal injury (AI) and the ensuing reactive axonal change is, probably, more widespread and occurs over a longer posttraumatic time in the injured brain than had previously been appreciated. But the characterization of morphologic or reactive changes occurring after nondisruptive AI has largely been defined from animal models. The comparability of AI in animal models to human diffuse AI (DAI) is discussed and the conclusion drawn that, although animal models allow the analysis of morphologic changes, the spatial distribution within the brain and the time course of reactive axonal change differs to some extent both between species and with the mode of brain injury. Thus, the majority of animal models do not reproduce exactly the extent and time course of AI that occurs in human DAI. Nonetheless, these studies provide good insight into reactive axonal change. In addition, there is developing in the literature considerable variance in the terminology applied to injured axons or nerve fibers. We explain our current understanding of a number of terms now present in the literature and suggest the adoption of a common terminology. Recent work has provided a consensus that reactive axonal change is linked to pertubation of the axolemma resulting in disruption of ionic homeostatic mechanisms within injured nerve fibers. But quantitative data for changes for different ion species is lacking and is required before a better definition of this homeostatic disruption may be provided. Recent studies of responses by the axonal cytoskeleton after nondisruptive AI have demonstrated loss of axonal microtubules over a period up to 24 h after injury. The biochemical mechanisms resulting in loss of microtubules are, hypothetically, mediated both by posttraumatic influx of calcium and activation of calmodulin. This loss results in focal accumulation of membranous organelles in parts of the length of damaged axons where the axonal diameter is greater than normal to form axonal swellings. We distinguish, on morphologic grounds, between axonal swellings and axonal bulbs. There is also a growing consensus regarding responses by neurofilaments after nondisruptive AI. Initially, and rapidly after injury, there is reduced spacing or compaction of neurofilaments. This compaction is stable over at least 6 h and results from the loss or collapse of neurofilament sidearms but retention of the filamentous form of the neurofilaments. We posit that sidearm loss may be mediated either through proteolysis of sidearms via activation of microM calpain or sidearm dephosphorylation via posttraumatic, altered interaction between protein phosphatases and kinase(s), or a combination of these two, after calcium influx, which occurs, at least in part, as a result of changes in the structure and functional state of the axolemma. Evidence for proteolysis of neurofilaments has been obtained recently in the optic nerve stretch injury model and is correlated with disruption of the axolemma. But the earliest posttraumatic interval at which this was obtained was 4 h. Clearly, therefore, no evidence has been obtained to support the hypothesis that there is rapid, posttraumatic proteolysis of the whole axonal cytoskeleton mediated by calpains. Rather, we hypothesize that such proteolysis occurs only when intra-axonal calcium levels allow activation of mM calpain and suggest that such proteolysis, resulting in the loss of the filamentous structure of neurofilaments occurs either when the amount of deformation of the axolemma is so great at the time of injury to result in primary axotomy or, more commonly, is a terminal degenerative change that results in secondary axotomy or disconnection some hours after injury.
Collapse
Affiliation(s)
- W L Maxwell
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, United Kingdom
| | | | | |
Collapse
|
6
|
Abstract
While the brain readily deforms when exposed to rotational loads as experienced in violent movements of the head, axons are able only to sustain tensile loads. Two discrete classes of axonal injury have been posited: disruptive axonal injury, where axons are physically torn or fragmented at the time of the insult, and nondisruptive axonal injury, where there is a hypothesised "perturbation" of the axolemma which leads to a cascade of pathobiological changes which result in axotomy over a period between 2 and 24 h after the initial insult. In the latter, it is posited that the node of Ranvier is that part of the axon which is the initial locus of axonal damage/ histopathological change. This paper describes the ultrastructure of nodal blebs, axolemma limited protrusions of the nodal axoplasm into the perinodal space, in which the nodal dense undercoating has been lost and aggregates of membranous profiles occur within the axoplasm. In addition, this paper provides novel data for disruption of the axonal cytoskeleton in nodes where blebs occur within 15 min of stretch-injury. The cytoskeletal disruption is visualised in thin sections as an almost total loss of microtubules together with a reduced density of neurofilaments within the nodal axoplasm. The loss of microtubules is posited to result in a disruption of fast axonal transport which results in the focal accumulation of membranous organelles in adjacent paranodal regions of the axon to form so-called "axonal swellings." Cytochemical and freeze-fracture studies provide evidence for structural reorganisation of the nodal axolemma after stretch-injury, and it is posited that these changes provide a route for uncontrolled influx of calcium which leads to loss of axonal integrity which potentiates axotomy. It is suggested that increased understanding of regulatory mechanisms that control ion channel activity will greatly increase our understanding of responses of neurones to trauma.
Collapse
Affiliation(s)
- W L Maxwell
- Laboratory of Human Anatomy, University of Glasgow, United Kingdom
| |
Collapse
|
7
|
Fabricius C, Berthold CH, Rydmark M. Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat. JOURNAL OF NEUROCYTOLOGY 1993; 22:941-54. [PMID: 7507976 DOI: 10.1007/bf01218352] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The occurrence and distribution of axoplasmic organelles in large myelinated axons of the ventral, the lateral and the dorsal funiculi of L7 spinal cord segments of the cat have been studied using electron microscopy (EM). Most organelles were found to be concentrated to the paranode-node-paranode (pnp)-regions and they showed their highest relative concentration in the constricted part of these regions, i.e. at the nodes of Ranvier. In the paranode-node-paranode-regions of the lateral and dorsal funiculi, large dense bodies predominated distal to the nodal mid-level and vesiculo-tubular membranous organelles proximal to it. This pattern of organelle distribution, a proximo-distal (with reference to the neuron soma) segregation of the organelles, was only faintly indicated in the paranode-node-paranode-regions of the alpha motor axons of the ventral funiculus. These paranode-node-paranode-regions were, apart from a weak proximo-distal segregation of a few organelles, characterized by deposits of electron dense granules and clusters of large round mitochondria. We conclude that there are two types of organelle accumulation and distribution in the paranode-node-paranode-regions of large spinal cord nerve fibres of the cat. One type is found in the lateral and dorsal funiculi, i.e. in axons with terminal (synaptic) fields inside the blood-brain-barrier. The other type is found in the alpha motor axons of the ventral funiculus, i.e. in axons with their terminal field in the PNS and thus outside the blood-brain barrier. It should be noted that retrogradely transported material in the alpha motor axons has passed through a long sequence of paranode-node-paranode-regions equipped with Schwann cells before it reaches the CNS, while material transported retrogradely in the axons of the dorsal and lateral funiculi has not. The following discussion includes a comparison of the organelle accumulation and distribution in these two types of CNS paranode-node-paranode-regions with the organelle accumulation and distribution observed in the paranode-node-paranode-regions of PNS axons.
Collapse
Affiliation(s)
- C Fabricius
- Department of Anatomy, University of Göteborg, Sweden
| | | | | |
Collapse
|
8
|
Berthold CH, Fabricius C, Rydmark M, Andersén B. Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. JOURNAL OF NEUROCYTOLOGY 1993; 22:925-40. [PMID: 7507975 DOI: 10.1007/bf01218351] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using light microscopy (LM) and electron microscopy (EM) we have examined the occurrence and distribution of axoplasmic organelles in large myelinated nerve fibres of the L7 ventral and dorsal spinal roots of the cat with special reference to the paranode-node-paranode (pnp)-regions. Ninety-eight percent of the 550 Toluidine Blue-stained paranode-node-paranode-regions examined in the light microscope contained dark-blue bodies accumulated distal to the midlevel of the paranode-node-paranode-region. Further, a veil of Toluidine Blue positive material was observed in about 50% of the paranode-node paranode-regions. In about 25% of these paranode-node-paranode-regions the veil lay distal to the midlevel of the paranode-node-paranode-region and in the remainder it lay proximally. Electron microscopy suggested that the ultrastructural equivalents of the dark-blue bodies and of the veil were dense lamellar bodies and a diffuse granular material, respectively. Our calculations indicate that from 70% to more than 90% of some organelles (dense lamellar bodies, multivesicular bodies and vesiculo-tubular membranous organelles) present in an axon are accumulated in the paranode-node-paranode-regions. The occurrence of these organelles in the individual paranode-node-paranode-regions varied within wide limits also in adjacent fibres. The dense lamellar and multivesicular bodies dominated the distal part of the paranode-node-paranode-regions while the vesiculo-tubular membranous organelles dominated the proximal part, i.e. the organelles showed a mutual proximo-distal segregation with reference to the midlevel of the paranode-node-paranode-region. Of seventeen paranode-node-paranode-regions analyzed ultrastructurally, seven were classified as 'fully segregated', that is 67% or more of the lamellar and multivescular bodies, present in the whole paranode-node-paranode-region, lay distal to the mid-level, and 67% or more of the vesiculo-tubular membranous organelles lay proximal to it.
Collapse
Affiliation(s)
- C H Berthold
- Department of Anatomy, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
9
|
Gallyas F, Zoltay G, Balás I. An immediate light microscopic response of neuronal somata, dendrites and axons to contusing concussive head injury in the rat. Acta Neuropathol 1992; 83:394-401. [PMID: 1374205 DOI: 10.1007/bf00713531] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thirty-four rats were killed by transcardial perfusion fixation 1 min after a contusing concussive head injury, and 17 rats 1 day later. From the results obtained with a new silver method demonstrating traumatically damaged neuronal somata, dendrites and axons the following conclusions were drawn: (1) outside the contused territories all features of traumatically induced neuronal argyrophilia are similar to those found in non-contusing concussive head injury, as reported in an accompanying paper; (2) within contused territories the neuronal argyrophilia is abolished by some substance released either from damaged blood vessels or damage parenchymal cells, while the neuronal damage otherwise underlying the induction of argyrophilia is present; (3) different phenotypes of neurons are vulnerable to different values of the parameters of the intracranial pressure wave generated by the trauma; (4) some of the neurons may recover from the traumatically induced argyrophilic damage; (5) traumatically induced inundation of neurons with extracellular tracers, as reported by other authors, and somato-dendritic argyrophilia may be different manifestations of one and the same phenomenon; and (6) diffuse primary traumatic axonal injury in human neuropathology may be closely correlated to axonal argyrophilia.
Collapse
Affiliation(s)
- F Gallyas
- Department of Neurosurgery, University of Pćs, Hungary
| | | | | |
Collapse
|
10
|
Maxwell WL, Irvine A, Graham, Adams JH, Gennarelli TA, Tipperman R, Sturatis M. Focal axonal injury: the early axonal response to stretch. JOURNAL OF NEUROCYTOLOGY 1991; 20:157-64. [PMID: 1709964 DOI: 10.1007/bf01186989] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of a model for axonal injury in the optic nerve of the guinea pig has allowed analysis of early morphological changes within damaged axons. We provide evidence that the initial site of damage after stretch is the nodes of Ranvier, some of which develop 'nodal blebs'. The development of nodel blebs is correlated with the loss of subaxolemmal density, disruption of the neurofilament cytoskeleton and aggregation of membranous profiles of smooth endoplasmic reticulum. Nodal blebs are numerous 15 min after injury but less so at later survivals. The glial-axonal junction is intact at early survivals in damaged nodes. Marked accumulation of membranous organelles occurs in the paranodal and internodal regions adjacent to damaged nodes between two and six hours and is correlated with disruption of the myelin sheath. Axotomy and the formation of degeneration bulbs occurs between 24 and 72 h. The area of axonal injury is invaded by phagocytic cells by 72 h and large numbers of myelin figures occur within the neuropil until 14 days. The results are compared with those of other studies of diffuse axonal injury and other neuropathies. The time course of axonal changes is more rapid than during Wallerian degeneration. Our data from longer surviving animals is exactly comparable with published data. We are confident that the principal site of axonal injury is the node of Ranvier. We suggest that damage at the node results in disruption of axonal transport, which in turn leads to a cascade of events, culminating in axotomy between 24 and 72 h after the initial insult.
Collapse
Affiliation(s)
- W L Maxwell
- Department of Anatomy, University of Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Maxwell WL, Irvine A, Watt C, Graham DI, Adams JH, Gennarelli TA. The microvascular response to stretch injury in the adult guinea pig visual system. J Neurotrauma 1991; 8:271-9. [PMID: 1803035 DOI: 10.1089/neu.1991.8.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In a variety of brain injury models, both reactive axonal change and microvascular abnormalities occur. Development of a stretch injury model in the guinea pig optic nerve has allowed for the characterization of the early axonal response to injury. In this same model, we have now attempted to characterize those morphologic changes occurring in the visual system microvasculature after injury. Thirty adult guinea pigs were subjected to axonal stretch injury and killed at posttraumatic survival periods ranging from 10 minutes to 14 days. Twenty animals were examined by scanning electron microscopy (SEM) for the detection of posttraumatic changes in the surface morphology of the microvasculature, and 10 animals were processed for transmission electron microscopy (TEM) analysis. Through this approach, increased pit vesicle activity and formation of endothelial microvilli were recognized within 10 minutes of injury. Pit vesicle activity returned to control levels by 2 hours. The formation of endothelial microvilli was widespread, affecting the microvessels in both the stretched and unstretched optic nerves and in the chiasm. The greatest response developed most slowly in the stretched nerve, and it was faster but less marked in the unstretched nerve and chiasm. Microvilli were more numerous in larger vessels. Related astrocytic swelling/lucency was not apparent until 6 hours after injury. The astrocyte response was less marked than that documented after brain injury. The results of this investigation demonstrate a widespread microvascular response to stretch injury of the guinea pig optic nerve. Comparison with the documented responses to traumatic brain injury indicates different rates of response to different types of insult.
Collapse
Affiliation(s)
- W L Maxwell
- Department of Anatomy, University of Glasgow, U.K
| | | | | | | | | | | |
Collapse
|