1
|
Yoshikawa T. Third-generation smallpox vaccine strain-based recombinant vaccines for viral hemorrhagic fevers. Vaccine 2021; 39:6174-6181. [PMID: 34521550 DOI: 10.1016/j.vaccine.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Vaccinia virus has been used as a smallpox vaccine. Now that smallpox has been eradicated, the vaccinia virus is expected to be used as a bioterrorism countermeasure and a recombinant vaccine vector for other infectious diseases, such as viral hemorrhagic fevers. Many vaccinia virus strains were used as smallpox vaccines in the smallpox eradication campaign coordinated by the World Health Organization. These strains can be classified into generations, according to the history of improving production methods and efforts to reduce the adverse reactions. Significantly, the third-generation of smallpox vaccine strains, which include modified vaccinia Ankara (MVA) and LC16m8, are currently popular as recombinant vaccine vectors due to their well-balanced safety and immunogenicity profiles. The present review firstly focuses on the characteristics of the smallpox vaccine generations. The historical background of the development of the third-generation smallpox vaccine strains is detailed, along with the history of the transition of the vaccinia virus generation used as vectors for hemorrhagic fever vaccines to the third generation. Among the vaccinia viruses, MVA is currently the most commonly used vector for developing hemorrhagic fever vaccines, including dengue fever, yellow fever, Ebola viral disease, Lassa fever, Rift Valley fever, and Crimean-Congo hemorrhagic fever. LC16m8 is a vaccine candidate for severe fever with thrombocytopenia syndrome. The current status and recent advances in the development of these hemorrhagic fever vaccines using third-generation vaccinia strains are discussed.
Collapse
Affiliation(s)
- Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|
2
|
Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8. PLoS One 2018; 13:e0192725. [PMID: 29474493 PMCID: PMC5825015 DOI: 10.1371/journal.pone.0192725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
LC16m8 (m8), a highly attenuated vaccinia virus (VAC) strain, was developed as a smallpox vaccine, and its safety and immunogenicity have been confirmed. Here, we aimed to develop a system that recovers infectious m8 from a bacterial artificial chromosome (BAC) that retains the full-length viral genomic DNA (m8-BAC system). The infectious virus was successfully recovered from a VAC-BAC plasmid, named pLC16m8-BAC. Furthermore, the bacterial replicon-free virus was generated by intramolecular homologous recombination and was successfully recovered from a modified VAC-BAC plasmid, named pLC16m8.8S-BAC. Also, the growth of the recovered virus was indistinguishable from that of authentic m8. The full genome sequence of the plasmid, which harbors identical inverted terminal repeats (ITR) to that of authentic m8, was determined by long-read next-generation sequencing (NGS). The ITR contains x 18 to 32 of the 70 and x 30 to 45 of 54 base pair tandem repeats, and the number of tandem repeats was different between the ITR left and right. Since the virus recovered from pLC16m8.8S-BAC was expected to retain the identical viral genome to that of m8, including the ITR, a reference-based alignment following a short-read NGS was performed to validate the sequence of the recovered virus. Based on the pattern of coverage depth in the ITR, no remarkable differences were observed between the virus and m8, and the other region was confirmed to be identical as well. In summary, this new system can recover the virus, which is geno- and phenotypically indistinguishable from authentic m8.
Collapse
|
3
|
Abstract
Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.
Collapse
Affiliation(s)
- Emily A Voigt
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
4
|
Mumps Virus Is Released from the Apical Surface of Polarized Epithelial Cells, and the Release Is Facilitated by a Rab11-Mediated Transport System. J Virol 2015; 89:12026-34. [PMID: 26378159 DOI: 10.1128/jvi.02048-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) is an airborne virus that causes a systemic infection in patients. In vivo, the epithelium is a major replication site of MuV, and thus, the mode of MuV infection of epithelial cells is a subject of interest. Our data in the present study showed that MuV entered polarized epithelial cells via both the apical and basolateral surfaces, while progeny viruses were predominantly released from the apical surface. In polarized cells, intracellular transport of viral ribonucleoprotein (vRNP) complexes was dependent on Rab11-positive endosomes, and vRNP complexes were transported to the apical membrane. Expression of a dominant negative form of Rab11 (Rab11S25N) reduced the progeny virus release in polarized cells but not in nonpolarized cells. Although in this way these effects were correlated with cell polarity, Rab11S25N did not modulate the direction of virus release from the apical surface. Therefore, our data suggested that Rab11 is not a regulator of selective apical release of MuV, although it acts as an activator of virus release from polarized epithelial cells. In addition, our data and previous studies on Sendai virus, respiratory syncytial virus, and measles virus suggested that selective apical release from epithelial cells is used by many paramyxoviruses, even though they cause either a systemic infection or a local respiratory infection. IMPORTANCE Mumps virus (MuV) is the etiological agent of mumps and causes a systemic infection. However, the precise mechanism by which MuV breaks through the epithelial barriers and achieves a systemic infection remains unclear. In the present study, we show that the entry of MuV is bipolar, while the release is predominantly from the apical surface in polarized epithelial cells. In addition, the release of progeny virus was facilitated by a Rab11-positive recycling endosome and microtubule network. Our data provide important insights into the mechanism of transmission and pathogenesis of MuV.
Collapse
|
5
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
6
|
Kidokoro M, Shida H. Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications. Vaccines (Basel) 2014; 2:755-71. [PMID: 26344890 PMCID: PMC4494248 DOI: 10.3390/vaccines2040755] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R) from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID) mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV), Modified Vaccinia Ankara (MVA), at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8⁺ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs). Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8⁺ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors.
Collapse
Affiliation(s)
- Minoru Kidokoro
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan.
| |
Collapse
|
7
|
Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1261-6. [PMID: 24990910 DOI: 10.1128/cvi.00199-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Freeze-dried live attenuated smallpox vaccine LC16m8 prepared in cell culture has been the sole smallpox vaccine licensed in Japan since 1975 and was recently recommended as a WHO stockpile vaccine. We evaluated the safety of recently remanufactured lots of LC16m8 using a series of immunodeficient mouse models. These models included suckling mice, severe combined immunodeficiency disease (SCID) mice, and wild-type mice treated with cyclosporine. LC16m8 showed extremely low virulence in each of the three mouse models compared with that of its parental strains, Lister and LC16mO. These results provide further evidence that LC16m8 is one of the safest replication-competent smallpox vaccines in the world and may be considered for use in immunodeficient patients.
Collapse
|
8
|
Levenbook I. The role of non-human primates in the neurological safety of live viral vaccines (review). Biologicals 2010; 39:1-8. [PMID: 21183358 DOI: 10.1016/j.biologicals.2010.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 10/21/2010] [Accepted: 11/22/2010] [Indexed: 11/17/2022] Open
Abstract
This review covers comprehensive data accumulated during the long history of using monkeys in the determination of neurovirulence activity and safety of live poliomyelitis, flaviviral, smallpox and mumps vaccines, as well as newly developed transgenic mouse and molecular-biological tests. The review also analyzes processes caused by some of these viruses in infant rodents (mice, rats) and evaluates the role of these processes in vaccine safety control. Recommendations resulting from this analysis are presented.
Collapse
|
9
|
Yoshino N, Kanekiyo M, Hagiwara Y, Okamura T, Someya K, Matsuo K, Ami Y, Sato S, Yamamoto N, Honda M. Intradermal delivery of recombinant vaccinia virus vector DIs induces gut-mucosal immunity. Scand J Immunol 2010; 72:98-105. [PMID: 20618768 DOI: 10.1111/j.1365-3083.2010.02416.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antigen-specific mucosal immunity is generally induced by the stimulation of inductive mucosal sites. In this study, we found that the replication-deficient vaccinia virus vector, DIs, generates antigen-specific mucosal immunity and systemic responses. Following intradermal injection of recombinant DIs expressing simian immunodeficiency virus gag (rDIsSIVgag), we observed increased levels of SIV p27-specific IgA and IgG antibodies in faecal extracts and plasma samples, and antibody-forming cells in the intestinal mucosa and spleen of C57BL/6 mice. Antibodies against p27 were not detected in nasal washes, saliva, and vaginal washes. The enhanced mucosal and systemic immunity persisted for 1 year of observation. Induction of Gag-specific IFN-gamma spot-forming CD8(+) T cells in the spleen, small intestinal intraepithelial lymphocytes, and submandibular lymph nodes was observed in the intradermally injected mice. Heat-inactivated rDIsSIVgag rarely induced antigen-specific humoral and T-helper immunity. Moreover, rDIsSIVgag was detected in MHC class II IA antigen-positive (IA(+)) cells at the injection site. Consequently, intradermal delivery of rDIs effectively induces antigen-specific humoral and cellular immunity in gut-mucosal tissues of mice. Our data suggest that intradermal injection of an rDIs vaccine may be useful against mucosally transmitted pathogens.
Collapse
Affiliation(s)
- N Yoshino
- Department of Microbiology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A mouse-based assay for the pre-clinical neurovirulence assessment of vaccinia virus-based smallpox vaccines. Biologicals 2009; 38:278-83. [PMID: 19896867 DOI: 10.1016/j.biologicals.2009.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/18/2009] [Accepted: 09/29/2009] [Indexed: 11/24/2022] Open
Abstract
Post-vaccinal encephalitis, although relatively uncommon, is a known adverse event associated with many live, attenuated smallpox vaccines. Although smallpox vaccination ceased globally in 1980, vaccine manufacture has resumed in response to concerns over the possible use of smallpox virus as an agent of bioterrorism. To better support the production of safer smallpox vaccines, we previously reported the development of a mouse model in which a relatively attenuated vaccine strain (Dryvax) could be discerned from a more virulent laboratory strain (WR). Here we have further tested the performance of this assay by evaluating the neurovirulence of several vaccinia virus-based smallpox vaccines spanning a known range in neurovirulence for humans. Our data indicate that testing of 10-100 pfu of virus in mice following intracranial inoculation reliably assesses the virus's neurovirulence potential for humans.
Collapse
|
11
|
Kennedy JS, Greenberg RN. IMVAMUNE: modified vaccinia Ankara strain as an attenuated smallpox vaccine. Expert Rev Vaccines 2009; 8:13-24. [PMID: 19093767 PMCID: PMC9709931 DOI: 10.1586/14760584.8.1.13] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Smallpox vaccines based on replicating vaccinia virus are known to elicit rare yet serious adverse events, particularly in human populations with immune deficiency, atopic dermatitis and at the extremes of age. A vaccine that induces protective immune responses equivalent to first-generation smallpox vaccines while reducing the risk for severe adverse events is critical for a national stockpile of smallpox vaccines. Modified vaccinia Ankara (MVA) has been proposed as an immediate solution for vaccination of high-risk individuals. Bavarian Nordic's vaccine MVA-BN (IMVAMUNE) is a MVA strain that is replication incompetent in mammalian cell lines. IMVAMUNE has been administered to more than 1900 human subjects to date, including high-risk populations (e.g., people diagnosed with atopic dermatitis or infected with HIV) in which standard replicating vaccines are contraindicated. We review the Phase I clinical trial safety profile and immune responses and compare them with other smallpox vaccines, including ACAM2000 and Dryvax.
Collapse
Affiliation(s)
- Jeffrey S Kennedy
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, Biggs Laboratory, C606, PO Box 509, Albany, NY 12201-0509, USA.
| | - Richard N Greenberg
- VA Staff Physician, Lexington VA Medical Center and Professor of Medicine, The Belinda Mason Carden and Paul Mason Professor of HIV/AIDS Research and Education, University of Kentucky School of Medicine, Department of Medicine, Room MN-672, 800 Rose Street, Lexington, KY 40536-0084, USA.
| |
Collapse
|
12
|
Okamura T, Someya K, Matsuo K, Hasegawa A, Yamamoto N, Honda M. Recombinant vaccinia DIs expressing simian immunodeficiency virus gag and pol in mammalian cells induces efficient cellular immunity as a safe immunodeficiency virus vaccine candidate. Microbiol Immunol 2007; 50:989-1000. [PMID: 17179668 DOI: 10.1111/j.1348-0421.2006.tb03867.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly attenuated vaccinia virus substrain of Dairen-I (DIs) shows promise as a candidate vector for eliciting positive immunity against immune deficiency virus. DIs was randomly obtained by serial 1-day egg passages of a chorioarantoic membrane-adapted Dairen strain (DIE), resulting in substantial genomic deletion, including various genes regulating the virus-host-range. To investigate the impact of that deletion and of the subsequent insertion of a foreign gene into that region of DIs on the ability of the DIs recombinant to induce antigen-specific immunity, we generated a recombinant vaccinia DIs expressing fulllength gag and pol genes of simian immunodeficiency virus (SIV) (rDIsSIV gag/pol) and studied the biological and immunological characteristics of the recombinant natural mutant. The rDIsSIV gag/pol developed a tiny plaque on the chick embryo fibroblast (CEF). Viral particles of rDIsSIV gag/pol as well as SIV Gag-like particles were electromicroscopically detected in the cytoplasm. Interestingly, the recombinant DIs strain grows well in CEF cells but not in mammalian cells. While rDIsSIV gag/pol produces SIV proteins in mammalian HeLa and CV-1 cells, recombinant modified vaccinia Ankara strain (MVA) expressing SIV gag and pol genes (MVA/SIV239 gag/pol) clearly replicates in HeLa and CV-1 cell lines under synchronized growth conditions and produces the SIV protein in all cell lines. Moreover, intradermal administration of rDIsSIV gag/pol or of MVA/SIV239 gag/pol elicited similar levels of IFN-gamma spot-forming cells specific for SIV Gag. If the non-productive infection characteristically induced by recombinant DIs is sufficient to trigger immune induction, as we believe it is, then a human immunodeficiency virus vaccine employing the DIs recombinant would have the twin advantages of being both effective and safe.
Collapse
Affiliation(s)
- Tomotaka Okamura
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Kretzschmar M, Wallinga J, Teunis P, Xing S, Mikolajczyk R. Frequency of adverse events after vaccination with different vaccinia strains. PLoS Med 2006; 3:e272. [PMID: 16933957 PMCID: PMC1551910 DOI: 10.1371/journal.pmed.0030272] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 04/28/2006] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH) strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus. METHODS AND FINDINGS We analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect that showed decreasing incidences of adverse events over several decades. To estimate death rates, we then restricted our analysis to more-recent studies. We estimated that vaccination with the NYCBH strain leads to an average of 1.4 deaths per million vaccinations (95% credible interval, 0-6) and that vaccination with Lister vaccine leads to an average of 8.4 deaths per million vaccinations (95% credible interval, 0-31). We combined age-dependent estimates of the frequency of death after vaccination and revaccination with demographic data to obtain estimates of the expected number of deaths in present societies due to vaccination with the NYCBH and Lister vaccinia strains. CONCLUSIONS Previous analyses of smallpox vaccination policies, which rely on the commonly assumed value of one death per million vaccinations, may give serious underestimates of the number of deaths resulting from vaccination. Moreover, because there are large, strain-dependent differences in the frequency of adverse events due to smallpox vaccination, it is difficult to extrapolate from predictions for the NYCBH-derived vaccines (stockpiled in countries such as the US) to predictions for the Lister-derived vaccines (stockpiled in countries such as Germany). In planning for an effective response to a possible smallpox outbreak, public-health decision makers should reconsider their strategies of when to opt for ring vaccination and when to opt for mass vaccination.
Collapse
Affiliation(s)
- Mirjam Kretzschmar
- Department of Infectious Diseases Epidemiology, Rijksinstituut voor Volksgezondheid en Milieu/National Institute for Public Health and the Environment, Bilthoven, Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Shinoda K, Xin KQ, Kojima Y, Saha S, Okuda K, Okuda K. Robust HIV-specific immune responses were induced by DNA vaccine prime followed by attenuated recombinant vaccinia virus (LC16m8 strain) boost. Clin Immunol 2006; 119:32-7. [PMID: 16458074 DOI: 10.1016/j.clim.2005.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/05/2005] [Accepted: 12/12/2005] [Indexed: 11/16/2022]
Abstract
Recombinant vaccinia virus-based vaccine combined with DNA vaccine has produced a protective immune response against HIV infection in non-human primates. In this study, we explored the immunogenicity of a recombinant vaccinia virus (LC16m8 strain), which has been used in children without severe side effects. The vaccinia virus expressing an HIV(89.6)env gene (vLC-Env) alone or combined with a DNA vaccine expressing the HIV(89.6)env gene (pCAG-Env) was characterized in BALB/c mice. Vaccination of vLC-Env induced much higher HIV-specific humoral and cell-mediated immune responses than that of pCAG-Env. Priming with pCAG-Env further enhanced vLC-Env induced immune responses, especially cell-mediated immune response. Moreover, efficient expression of Env protein was achieved following infection of bone marrow dendritic cells by vLC-Env in vitro. Administration of vLC-Env-infected dendritic cells to mice generated a high cell-mediated immune response. These results demonstrate that priming with pCAG-Env and boosting with vLC-Env represents a logical candidate for vaccination against HIV infection.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Female
- Gene Expression/genetics
- Gene Products, rev/genetics
- Gene Products, rev/immunology
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp160/genetics
- HIV Envelope Protein gp160/immunology
- HIV-1/immunology
- Immunity, Cellular/immunology
- Immunization, Secondary/methods
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred BALB C
- Recombination, Genetic
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Vaccination/methods
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Kaori Shinoda
- Department of Molecular Biodefense Research, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Someya K, Ami Y, Nakasone T, Izumi Y, Matsuo K, Horibata S, Xin KQ, Yamamoto H, Okuda K, Yamamoto N, Honda M. Induction of Positive Cellular and Humoral Immune Responses by a Prime-Boost Vaccine Encoded with Simian Immunodeficiency Virusgag/pol. THE JOURNAL OF IMMUNOLOGY 2006; 176:1784-95. [PMID: 16424209 DOI: 10.4049/jimmunol.176.3.1784] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is believed likely that immune responses are responsible for controlling viral load and infection. In this study, when macaques were primed with plasmid DNA encoding SIV gag and pol genes (SIVgag/pol DNA) and then boosted with replication-deficient vaccinia virus DIs recombinant expressing the same genes (rDIsSIVgag/pol), this prime-boost regimen generated higher levels of Gag-specific CD4+ and CD8+ T cell responses than did either SIVgag/pol DNA or rDIsSIVgag/pol alone. When the macaques were i.v. challenged with pathogenic simian/HIV, the prime-boost group maintained high CD4+ T cell counts and reduced plasma viral loads up to 30 wk after viral challenge, whereas the rDIsSIVgag/pol group showed only a partial attenuation of the viral infection, and the group immunized with SIVgag/pol DNA alone showed none at all. The protection levels were better correlated with the levels of virus-specific T cell responses than the levels of neutralization Ab responses. These results demonstrate that a vaccine regimen that primes with DNA and then boosts with a replication-defective vaccinia virus DIs generates anti-SIV immunity, suggesting that it will be a promising vaccine regimen for HIV-1 vaccine development.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Female
- Flow Cytometry
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genetic Vectors
- Immunity, Cellular
- Immunization, Secondary
- Interferon-gamma/metabolism
- Kinetics
- Macaca fascicularis
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus
Collapse
Affiliation(s)
- Kenji Someya
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Morikawa S, Sakiyama T, Hasegawa H, Saijo M, Maeda A, Kurane I, Maeno G, Kimura J, Hirama C, Yoshida T, Asahi-Ozaki Y, Sata T, Kurata T, Kojima A. An attenuated LC16m8 smallpox vaccine: analysis of full-genome sequence and induction of immune protection. J Virol 2005; 79:11873-91. [PMID: 16140764 PMCID: PMC1212643 DOI: 10.1128/jvi.79.18.11873-11891.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential threat of smallpox bioterrorism has made urgent the development of lower-virulence vaccinia virus vaccines. An attenuated LC16m8 (m8) vaccine was developed in 1975 from the Lister strain used in the World Health Organization smallpox eradication program but was not used against endemic smallpox. Today, no vaccines can be tested with variola virus for efficacy in humans, and the mechanisms of immune protection against the major intracellular mature virion (IMV) and minor extracellular enveloped virion (EEV) populations of poxviruses are poorly understood. Here, we determined the full-genome sequences of the m8, parental LC16mO (mO), and grandparental Lister (LO) strains and analyzed their evolutionary relationships. Sequence data and PCR analysis indicated that m8 was a progeny of LO and that m8 preserved almost all of the open reading frames of vaccinia virus except for the disrupted EEV envelope gene B5R. In accordance with this genomic background, m8 induced 100% protection against a highly pathogenic vaccinia WR virus in mice by a single vaccination, despite the lack of anti-B5R and anti-EEV antibodies. The immunogenicity and priming efficacy with the m8 vaccine consisting mainly of IMV were as high as those with the intact-EEV parental mO and grandparental LO vaccines. Thus, mice vaccinated with 10(7) PFU of m8 produced low levels of anti-B5R antibodies after WR challenge, probably because of quick clearance of B5R-expressing WR EEV by strong immunity induced by the vaccination. These results suggest that priming with m8 IMV provides efficient protection despite undetectable levels of immunity against EEV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Base Sequence
- Bioterrorism
- Cell Line
- Chromosome Mapping
- DNA, Viral/genetics
- Female
- Genes, env
- Genome, Viral
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Open Reading Frames
- Point Mutation
- Rabbits
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Smallpox/immunology
- Smallpox/pathology
- Smallpox/prevention & control
- Smallpox/virology
- Smallpox Vaccine/genetics
- Smallpox Vaccine/immunology
- Smallpox Vaccine/pharmacology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/pharmacology
- Variola virus/genetics
- Variola virus/immunology
- Variola virus/pathogenicity
Collapse
Affiliation(s)
- Shigeru Morikawa
- Department of Virology, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Smallpox vaccine was the most important tool in the successful eradication of smallpox. In 1980, this achievement made it possible for all nations to cease smallpox vaccination. However, the threat of smallpox bioterrorism has made it necessary to reconsider the need for vaccination. Over the past 3 years, many nations have set up action plans for use in the event of such an attack. The setting up of these plans was not simple. Several factors needed to be considered, including the judgement of risk, vaccine complications, conventional vaccines versus new vaccines, optimal stockpile of smallpox vaccine, and its use for different target populations in different emergency situations. Here, I review measures taken by the USA, Japan, and other nations, and discuss likely national and global efforts in 2005 and subsequently, in view of the fact that half of the world's population is now apparently unvaccinated and that this proportion will increase with time.
Collapse
Affiliation(s)
- Isao Arita
- Agency for Cooperation in International Health (ACIH), Kumamoto City, Kumamoto, Japan.
| |
Collapse
|
18
|
Kidokoro M, Tashiro M, Shida H. Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8. Proc Natl Acad Sci U S A 2005; 102:4152-7. [PMID: 15753319 PMCID: PMC554788 DOI: 10.1073/pnas.0406671102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Indexed: 11/18/2022] Open
Abstract
A highly attenuated LC16m8 (m8) smallpox vaccine has been licensed in Japan because of its extremely low neurovirulence profile, which is comparable to that of replication incompetent strains of vaccinia virus. From 1973 to 1975, m8 was administrated to >100,000 infants where it induced levels of immunity similar to that of the originating Lister strain, without any serious side effects. Recently, we observed that m8 reverts spontaneously to large plaque forming clones that possess virulence equivalent to that of LC16mO, a parental virus strain of m8. Here, we report that the B5R gene is responsible for the reversion, and that we could construct a more genetically stable virus by deleting B5R from m8. The protective immunogenicity of the vaccine candidate proved to be equivalent to that of the U.S.-licensed product Dryvax, and much superior to modified vaccinia Ankara in a mouse model. Furthermore, the vaccine strain never elicited any symptoms in severe combined immunodeficiency disease mice, even at a dose 1,000-fold greater than that used in the immune protection experiments, which is in contrast to the lethal pathogenicity induced by Dryvax inoculation of severe combined immunodeficiency disease mice. Our results suggest that this vaccine strain is a good candidate as a suitable smallpox vaccine and a vector virus, and that B5R is not essential for protective immunity against smallpox.
Collapse
Affiliation(s)
- Minoru Kidokoro
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | | | | |
Collapse
|
19
|
Someya K, Xin KQ, Matsuo K, Okuda K, Yamamoto N, Honda M. A consecutive priming-boosting vaccination of mice with simian immunodeficiency virus (SIV) gag/pol DNA and recombinant vaccinia virus strain DIs elicits effective anti-SIV immunity. J Virol 2004; 78:9842-53. [PMID: 15331719 PMCID: PMC515009 DOI: 10.1128/jvi.78.18.9842-9853.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To evaluate immunity induced by a novel DNA prime-boost regimen, we constructed a DNA plasmid encoding the gag and pol genes from simian immunodeficiency virus (SIV) (SIVgag/pol DNA), in addition to a replication-deficient vaccinia virus strain DIs recombinant expressing SIV gag and pol genes (rDIsSIVgag/pol). In mice, priming with SIVgag/pol DNA, followed by rDIsSIVgag/pol induced an SIV-specific lymphoproliferative response that was mediated by a CD4+-T-lymphocyte subset. Immunization with either vaccine alone was insufficient to induce high levels of proliferation or Th1 responses in the animals. The prime-boost regimen also induced SIV Gag-specific cellular responses based on gamma interferon secretion, as well as cytotoxic-T-lymphocyte responses. Thus, the regimen of DNA priming and recombinant DIs boosting induced Th1-type cell-mediated immunity, which was associated with resistance to viral challenge with wild-type vaccinia virus expressing SIVgag/pol, suggesting that this new regimen may hold promise as a safe and effective vaccine against human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Kenji Someya
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Concern regarding the use of smallpox for bioterrorism has led to the reintroduction of smallpox vaccination. The historic background leading to protective methods against smallpox disease, the adverse reactions and contraindications associated with vaccination, and the ongoing development of potentially safer smallpox vaccines are reviewed here.
Collapse
Affiliation(s)
- Wynnis L Tom
- Department of Internal Medicine, San Diego School of Medicine, University of California, 200 West Arbor Drive, Mail Code 8422, San Diego, CA 92103, USA
| | | | | |
Collapse
|
21
|
Izumi Y, Ami Y, Matsuo K, Someya K, Sata T, Yamamoto N, Honda M. Intravenous inoculation of replication-deficient recombinant vaccinia virus DIs expressing simian immunodeficiency virus gag controls highly pathogenic simian-human immunodeficiency virus in monkeys. J Virol 2004; 77:13248-56. [PMID: 14645581 PMCID: PMC296093 DOI: 10.1128/jvi.77.24.13248-13256.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To be effective, a vaccine against human immunodeficiency virus type 1 (HIV-1) must induce virus-specific T-cell responses and it must be safe for use in humans. To address these issues, we developed a recombinant vaccinia virus DIs vaccine (rDIsSIVGag), which is nonreplicative in mammalian cells and expresses the full-length gag gene of simian immunodeficiency virus (SIV). Intravenous inoculation of 10(6) PFU of rDIsSIVGag in cynomologus macaques induced significant levels of gamma interferon (IFN-gamma) spot-forming cells (SFC) specific for SIV Gag. Antigen-specific lymphocyte proliferative responses were also induced and were temporally associated with the peak of IFN-gamma SFC activity in each macaque. In contrast, macaques immunized with a vector control (rDIsLacZ) showed no significant induction of antigen-specific immune responses. After challenge with a highly pathogenic simian-human immunodeficiency virus (SHIV), CD4(+) T lymphocytes were maintained in the peripheral blood and lymphoid tissues of the immunized macaques. The viral set point in plasma was also reduced in these animals, which may be related to the enhancement of virus-specific intracellular IFN-gamma(+) CD8(+) cell numbers and increased antibody titers after SHIV challenge. These results demonstrate that recombinant DIs has potential for use as an HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Yasuyuki Izumi
- AIDS Research Center. Division of Experimental Animal Research. Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640. Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Ishii K, Ueda Y, Matsuo K, Matsuura Y, Kitamura T, Kato K, Izumi Y, Someya K, Ohsu T, Honda M, Miyamura T. Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. Virology 2002; 302:433-44. [PMID: 12441087 DOI: 10.1006/viro.2002.1622] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DIs is a restrictive host range mutant of vaccinia virus strain DIE that grows well only in chick embryo fibroblast cells but is unable to grow in most mammalian cells. In this study, we identified one major deletion (15.4 kbp) which results in the loss of 19 putative open reading frames in the left end of the genome. We then established a system to express foreign genes by inserting them into the deleted region of DIs. We constructed rDIs to express the bacteriophage T7 polymerase (T7pol) gene and showed the expression in various mammalian cell lines by reporter luciferase gene expression under the T7 promoter. We also expressed the full-length human immunodeficiency virus (HIV)-1 NL432 gag gene. The expressed gag gene product induced high levels of cytotoxic T lymphocytes in immunized mice. These data suggest that DIs is useful as an efficient, transient replication-deficient viral vector.
Collapse
Affiliation(s)
- Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Altenburger W, Süter CP, Altenburger J. Partial deletion of the human host range gene in the attenuated vaccinia virus MVA. Arch Virol 1989; 105:15-27. [PMID: 2719552 DOI: 10.1007/bf01311113] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genome of a strongly attenuated vaccinia virus strain, MVA, was investigated by Southern blot and sequence analyses. Three major deletions, relative to the WR strain, were localized in MVA DNA. The deletions occurred near both ends of the viral genome and one of them affected a 55 K as well as the 32 K human host range gene. Although more than two thirds of the host range gene were eliminated from the MVA, the virus could still multiply in certain human cells.
Collapse
Affiliation(s)
- W Altenburger
- Central Research Units, F. Hoffmann-La Roche & Co., Basel, Switzerland
| | | | | |
Collapse
|
24
|
Esposito JJ, Murphy FA. Infectious recombinant vectored virus vaccines. ADVANCES IN VETERINARY SCIENCE AND COMPARATIVE MEDICINE 1989; 33:195-247. [PMID: 2648774 DOI: 10.1016/b978-0-12-039233-9.50010-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J J Esposito
- Division of Viral Diseases, Centers for Disease Control, Atlanta, Georgia
| | | |
Collapse
|
25
|
Edwards KM, Andrews TC, Van Savage J, Palmer PS, Moyer RW. Poxvirus deletion mutants: virulence and immunogenicity. Microb Pathog 1988; 4:325-33. [PMID: 2853813 DOI: 10.1016/0882-4010(88)90060-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Post-vaccinial encephalitis and disseminated vaccinia are major concerns with the use of vaccinia virus recombinants as immunization vectors in man. To identify and characterize possible attenuated poxvirus vectors, rabbitpox virus (RPV) (closely related to vaccinia) and four deletion mutants of RPV were studied for organ tropism, neurovirulence, and protection from wild-type challenge in BALB/c mice. Intraperitoneal (IP) inoculation with 10(7) PFU wild-type (wt) RPV or with two mutants 8 sm and 28 (containing approximately 12 kilobase deletions) showed titers of greater than 10(3) PFU/g tissue in multiple organs. In contrast, IP inoculation of 10(7) PFU of mutants 31 or 23 (containing approximately 30 kilobase deletions) showed markedly reduced growth in all organs. Neurovirulence of wt and mutant RPV was determined by intracerebral (IC) inoculation of mice. Wt and mutants 8 sm, and 28 RPV had LD50 less than 10(2) PFU; in contrast, 31 and 23 had LD50 greater than 10(5) PFU. Finally, 10(6) PFU of mutants 31 or 23, were administered to mice by scarification, the normal route of vaccinia immunization. Both 31 and 23 grew locally in the skin and protected mice challenged IC at 21 days with 100 LD50 of wt RPV, while all unimmunized controls died. We conclude that deletion mutants 31 and 23 demonstrate markedly reduced invasiveness and neurovirulence while retaining immunogenicity. Similar deletion mutations in vaccinia may create avirulent, but effective vaccine vectors for man.
Collapse
Affiliation(s)
- K M Edwards
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | | | |
Collapse
|
26
|
Morita M, Suzuki K, Yasuda A, Kojima A, Sugimoto M, Watanabe K, Kobayashi H, Kajima K, Hashizume S. Recombinant vaccinia virus LC16m0 or LC16m8 that expresses hepatitis B surface antigen while preserving the attenuation of the parental virus strain. Vaccine 1987; 5:65-70. [PMID: 3554809 DOI: 10.1016/0264-410x(87)90012-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thymidine kinase-negative recombinant vaccinia virus LC16m0 or LC16m8 expressing hepatitis B surface antigen preserved almost the same pathogenicity as their parental thymidine kinase-positive attenuated virus strains. The results demonstrate the potential for using the LC16m0 or LC16m8 virus strain as a vector for recombinant vaccine.
Collapse
|
27
|
Sugimoto M, Yasuda A, Miki K, Morita M, Suzuki K, Uchida N, Hashizume S. Gene structures of low-neurovirulent vaccinia virus LC16m0, LC16m8, and their Lister original (LO) strains. Microbiol Immunol 1985; 29:421-8. [PMID: 2993828 DOI: 10.1111/j.1348-0421.1985.tb00843.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vaccinia viruses LC16m0 and LC16m8 are temperature-sensitive and low-neurovirulent variants derived from the Lister (Elstree) (LO) strain. Analyses of genome DNAs by digestion with restriction endonucleases and cross-hybridization of the digested fragments revealed that LC16m0 and LC16m8 possess a new XhoI site in addition to the 14 XhoI sites of LO. This new site is located at about 12 X 10(6) daltons from the right terminal end. There was no significant difference in the genome structures between the LC16 variants and LO except the new XhoI site and their terminal fragments which were not identified in LO owing to their heterogeneity. With HindIII digested fragments, there was no difference among the three viruses. This complete mapping raised the possibility that the putative gene responsible for temperature sensitivity and neurovirulence is located at the region of the XhoI site found in LC16m0 and LC16m8.
Collapse
|
28
|
Kurata T, Aoyama Y, Kitamura T. Pathogenicity of a vaccine strain of vaccina virus in rabbits administered by intravenous route. JAPANESE JOURNAL OF MEDICAL SCIENCE & BIOLOGY 1977; 30:283-96. [PMID: 24130 DOI: 10.7883/yoken1952.30.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenicity of the Lister (Elstree) strain, a vaccinia virus, in rabbits after intravenous injection was studied by histopathological and immunofluorescent methods. Inoculation of 1 X 10(7) PFU (pock-forming unit) virus into weanling and young adult rabbits caused severe emaciation and high mortality within 2 weeks. Pathological findings were characterized by vesicular lesions along muco-cutaneous junction areas of the eyes, nose and mouth and by inflammatory changes in the brain, mainly in the meninges and choroid plexus. Immunofluorescent staining of the tissues of animals sacrificed at intervals demonstrated the accumulation of vaccinia viral antigen (s) in the loci of pathological changes. The suitability of this model system for the study of pathogenesis of human postvaccinal meningoencephalitis is discussed.
Collapse
|
29
|
Blinzinger K, Hochstein-Mintzel V, Anzil AP. Experimental vaccinia virus meningoencephalitis in adult albino mice: virological, light microscopic and ultrastructural studies. Acta Neuropathol 1977; 40:193-205. [PMID: 602682 DOI: 10.1007/bf00691954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Morita M, Arita M, Komatsu T, Amano H, Hashizume S. A comparison of neurovirulence of vaccinia virus by intrathalamic and/or intracisternal inoculations into cynomolgus monkeys. Microbiol Immunol 1977; 21:417-8. [PMID: 409906 DOI: 10.1111/j.1348-0421.1977.tb00306.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|