Mallia CM, Smith M, Clejan S, Beckman BS. Erythropoietin stimulates nuclear localization of diacylglycerol and protein kinase C beta II in B6SUt.EP cells.
JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1997;
17:135-50. [PMID:
9524923 DOI:
10.1016/s0929-7855(97)00027-8]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Erythropoietin (EPO) is a hormone, as well as a hematopoietic growth factor, that specifically regulates the proliferation and differentiation of erythroid progenitor cells. Although the membrane-bound receptor for EPO has no intrinsic kinase activity, it triggers the activation of protein kinases via phospholipases A2, C, and D. A cascade of serine and threonine kinases, including Raf-1, MAP kinase and protein kinase C (PKC) is activated following tyrosine phosphorylation. In this study, we have examined whether changes in nuclear PKC and 1,2-diacylglycerol (DAG) are induced following EPO treatment of the murine target cell line, B6SUt.EP. Western blot analysis using isoform-specific antibodies demonstrated the presence of PKC beta II, but not PKC alpha, beta I, gamma, epsilon, delta, eta, or zeta in the nuclei of cells stimulated with EPO. The increase in nuclear beta II levels was accompanied by an immediate rise in DAG mass levels with both of the increases peaking by 1 min. These rapid increases in nuclear DAG and PKC beta II expression suggest a mechanism for EPO-induced changes in gene expression necessary for cell proliferation.
Collapse