1
|
Hassim A, Lekota KE. Isolation of Bacteriophages from Soil Samples in a Poorly Equipped Field Laboratory in Kruger National Park. Methods Mol Biol 2024; 2738:91-103. [PMID: 37966593 DOI: 10.1007/978-1-0716-3549-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are viruses that infect bacteria. Bacteriophages are ubiquitous and are the most abundant organisms on the planet. Despite this, very little is known about the influence and effect of bacteriophages within terrestrial environments. Additionally, the natural soil microbiome profiles remain largely unexplored. Here we describe protocols that can be used, in field or rural laboratories containing only basic equipment, to make bacteriophage isolation more accessible and to facilitate such research.
Collapse
Affiliation(s)
- Ayesha Hassim
- Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management, Microbiology, North West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Yahara K, Lehours P, Vale FF. Analysis of genetic recombination and the pan-genome of a highly recombinogenic bacteriophage species. Microb Genom 2019; 5. [PMID: 31310202 PMCID: PMC6755498 DOI: 10.1099/mgen.0.000282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are the most prevalent biological entities impacting on the ecosystem and are characterized by their extensive diversity. However, there are two aspects of phages that have remained largely unexplored: genetic flux by recombination between phage populations and characterization of specific phages in terms of the pan-genome. Here, we examined the recombination and pan-genome in Helicobacter pylori prophages at both the genome and gene level. In the genome-level analysis, we applied, for the first time, chromosome painting and fineSTRUCTURE algorithms to a phage species, and showed novel trends in inter-population genetic flux. Notably, hpEastAsia is a phage population that imported a higher proportion of DNA fragments from other phages, whereas the hpSWEurope phages showed weaker signatures of inter-population recombination, suggesting genetic isolation. The gene-level analysis showed that, after parameter tuning of the prokaryote pan-genome analysis program, H. pylori phages have a pan-genome consisting of 75 genes and a soft-core genome of 10 genes, which includes genes involved in the lytic and lysogenic life cycles. Quantitative analysis of recombination events of the soft-core genes showed no substantial variation in the intensity of recombination across the genes, but rather equally frequent recombination among housekeeping genes that were previously reported to be less prone to recombination. The signature of frequent recombination appears to reflect the host–phage evolutionary arms race, either by contributing to escape from bacterial immunity or by protecting the host by producing defective phages.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Philippe Lehours
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,University of Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33076 Bordeaux, France
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Eyer L, Pantůcek R, Zdráhal Z, Konecná H, Kaspárek P, Růzicková V, Hernychová L, Preisler J, Doskar J. Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics 2007; 7:64-72. [PMID: 17154272 DOI: 10.1002/pmic.200600280] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phage 812 is a polyvalent phage with a very broad host range in the genus Staphylococcus, which makes it a suitable candidate for phage therapy of staphylococcal infections. This proteomic study, combining the results of both 1-DE and 2-DE followed by PMF, led to the identification of 24 virion proteins. Twenty new proteins, not yet identified by proteome analysis of closely related staphylococcal phages K and G1 were identified using this approach. Fifteen proteins were assigned unambiguously to the head-tail genome module; the remaining nine proteins are encoded by genes of the left or right arms of the phage genome. As expected, the most abundant proteins in the electrophoretic patterns are the major capsid protein, the major tail sheath protein and proteins identical to ORF 50 and ORF 95 of phage K, although their function is only putative. Identification of these 20 new proteins contributes substantially to a detailed characterization of phage virions, knowledge of which is necessary for rational phage therapy.
Collapse
Affiliation(s)
- Ludek Eyer
- Department of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Kotlárská 2, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Freiberg A, Morona R, Van den Bosch L, Jung C, Behlke J, Carlin N, Seckler R, Baxa U. The tailspike protein of Shigella phage Sf6. A structural homolog of Salmonella phage P22 tailspike protein without sequence similarity in the beta-helix domain. J Biol Chem 2003; 278:1542-8. [PMID: 12424253 DOI: 10.1074/jbc.m205294200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage Sf6 tailspike protein is functionally equivalent to the well characterized tailspike of Salmonella phage P22, mediating attachment of the viral particle to host cell-surface polysaccharide. However, there is significant sequence similarity between the two 70-kDa polypeptides only in the N-terminal putative capsid-binding domains. The major, central part of P22 tailspike protein, which forms a parallel beta-helix and is responsible for saccharide binding and hydrolysis, lacks detectable sequence homology to the Sf6 protein. After recombinant expression in Escherichia coli as a soluble protein, the Sf6 protein was purified to homogeneity. As shown by circular dichroism and Fourier transform infrared spectroscopy, the secondary structure contents of Sf6 and P22 tailspike proteins are very similar. Both tailspikes are thermostable homotrimers and resist denaturation by SDS at room temperature. The specific endorhamnosidase activities of Sf6 tailspike protein toward fluorescence-labeled dodeca-, deca-, and octasaccharide fragments of Shigella O-antigen suggest a similar active site topology of both proteins. Upon deletion of the N-terminal putative capsid-binding domain, the protein still forms a thermostable, SDS-resistant trimer that has been crystallized. The observations strongly suggest that the tailspike of phage Sf6 is a trimeric parallel beta-helix protein with high structural similarity to its functional homolog from phage P22.
Collapse
Affiliation(s)
- Alexander Freiberg
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Dokar J, Pallová P, Pantucek R, Rosypal S, Ruzicková V, Pantucková P, Kailerová J, Klepárník K, Malá Z, Bocek P. Genomic relatedness ofStaphylococcus aureusphages of the International Typing Set and detection of serogroup A, B, and F prophages in lysogenic strains. Can J Microbiol 2000. [DOI: 10.1139/w00-097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
On the basis of HindIII-restriction digest analysis of genomic DNAs, the S. aureus bacteriophages of the International Typing Set were divided into five clusters designated as A, F, Ba, Bb, and Bc. The clusters A and F include all the phages of serogroups A and F and correspond to species 3A and 77 proposed by Ackermann and DuBow (1987). On the other hand, the phages of serogroup B were divided into three clusters designated as Ba, Bb, and Bc that differ significantly each from the other in their restriction patterns. The clusters Ba and Bb may represent two separate species, while the cluster Bc may include more than one phage species. For each of the phage serogroups A, B, and F, common HindIII-restriction fragments of phage 3A (1700 bp), of 53 (4060 bp), and of 77 (8300 bp) were used for the preparation of probes specific to the phages of serogroups A, B, and F. These probes were very effective, making it possible to detect up to three different prophages in a given lysogenic strain at the same time. Restriction enzyme maps of phages 3A, 53, and 77, each representing a different serogroup, were constructed. The restriction maps of phage 3A and that of phage 77 are linear, whereas that of phage 53 is circular and exhibits a circular permutation. DNAs of the phages of serogroups A and F have cohesive ends. On each restriction map, the sites corresponding to specific probes are indicated. The size of intact genomic DNA of all phages estimated by PFGE varies within the range of 41.5-46.2 kb.Key words: Staphylococcus aureus, bacteriophages, prophage specific probes, restriction endonuclease maps.
Collapse
|
6
|
Fuller NJ, Wilson WH, Joint IR, Mann NH. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques. Appl Environ Microbiol 1998; 64:2051-60. [PMID: 9603813 PMCID: PMC106277 DOI: 10.1128/aem.64.6.2051-2060.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viruses are ubiquitous components of marine ecosystems and are known to infect unicellular phycoerythrin-containing cyanobacteria belonging to the genus Synechococcus. A conserved region from the cyanophage genome was identified in three genetically distinct cyanomyoviruses, and a sequence analysis revealed that this region exhibited significant similarity to a gene encoding a capsid assembly protein (gp20) from the enteric coliphage T4. The results of a comparison of gene 20 sequences from three cyanomyoviruses and T4 allowed us to design two degenerate PCR primers, CPS1 and CPS2, which specifically amplified a 165-bp region from the majority of cyanomyoviruses tested. A competitive PCR (cPCR) analysis revealed that cyanomyovirus strains could be accurately enumerated, and it was demonstrated that quantification was log-linear over ca. 3 orders of magnitude. Different calibration curves were obtained for each of the three cyanomyovirus strains tested; consequently, cPCR performed with primers CPS1 and CPS2 could lead to substantial inaccuracies in estimates of phage abundance in natural assemblages. Further sequence analysis of cyanomyovirus gene 20 homologs would be necessary in order to design primers which do not exhibit phage-to-phage variability in priming efficiency. It was demonstrated that PCR products of the correct size could be amplified from seawater samples following 100x concentration and even directly without any prior concentration. Hence, the use of degenerate primers in PCR analyses of cyanophage populations should provide valuable data on the diversity of cyanophages in natural assemblages. Further optimization of procedures may ultimately lead to a sensitive assay which can be used to analyze natural cyanophage populations both quantitatively (by cPCR) and qualitatively following phylogenetic analysis of amplified products.
Collapse
Affiliation(s)
- N J Fuller
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | | | | |
Collapse
|
7
|
Abstract
Tailed bacteriophages have a common origin and constitute an order with three families, named Caudovirales. Their structured tail is unique. Tailed phages share a series of high-level taxonomic properties and show many facultative features that are unique or rare in viruses, for example, tail appendages and unusual bases. They share with other viruses, especially herpesviruses, elements of morphogenesis and life-style that are attributed to convergent evolution. Tailed phages present three types of lysogeny, exemplified by phages lambda, Mu, and P1. Lysogeny appears as a secondary property acquired by horizontal gene transfer. Amino acid sequence alignments (notably of DNA polymerases, integrases, and peptidoglycan hydrolases) indicate frequent events of horizontal gene transfer in tailed phages. Common capsid and tail proteins have not been detected. Tailed phages possibly evolved from small protein shells with a few genes sufficient for some basal level of productive infection. This early stage can no longer be traced. At one point, this precursor phage became perfected. Some of its features were perfect enough to be transmitted until today. It is tempting to list major present-day properties of tailed phages in the past tense to construct a tentative history of these viruses: 1. Tailed phages originated in the early Precambrian, long before eukaryotes and their viruses. 2. The ur-tailed phage, already a quite evolved virus, had an icosahedral head of about 60 nm in diameter and a long non-contractile tail with sixfold symmetry. The capsid contained a single molecule of dsDNA of about 50 kb, and the tail was probably provided with a fixation apparatus. Head and tail were held together by a connector. a. The particle contained no lipids, was heavier than most viruses to come, and had a high DNA content proportional to its capsid size (about 50%). b. Most of its DNA coded for structural proteins. Morphopoietic genes clustered at one end of the genome, with head genes preceding tail genes. Lytic enzymes were probably coded for. A part of the phage genome was nonessential and possibly bacterial. Were tailed phages general transductants since the beginning? 3. The virus infected its host from the outside, injecting its DNA. Replication involved transcription in several waves and formation of DNA concatemers. Novel phages were released by burst of the infected cell after lysis of host membranes by a peptidoglycan hydrolase (and a holin?). a. Capsids were assembled from a starting point, the connector, and around a scaffold. They underwent an elaborate maturation process involving protein cleavage and capsid expansion. Heads and tails were assembled separately and joined later. b. The DNA was cut to size and entered preformed capsids by a headful mechanism. 4. Subsequently, tailed phages diversified by: a. Evolving contractile or short tails and elongated heads. b. Exchanging genes or gene fragments with other phages. c. Becoming temperate by acquiring an integrase-excisionase complex, plasmid parts, or transposons. d. Acquiring DNA and RNA polymerases and other replication enzymes. e. Exchanging lysin genes with their hosts. f. Losing the ability to form concatemers as a consequence of acquiring transposons (Mu) or proteinprimed DNA polymerases (phi 29). Present-day tailed phages appear as chimeras, but their monophyletic origin is still inscribed in their morphology, genome structure, and replication strategy. It may also be evident in the three-dimensional structure of capsid and tail proteins. It is unlikely to be found in amino acid sequences because constitutive proteins must be so old that relationships were obliterated and most or all replication-, lysogeny-, and lysis-related proteins appear to have been borrowed. However, the sum of tailed phage properties and behavior is so characteristic that tailed phages cannot be confused with other viruses.
Collapse
Affiliation(s)
- H W Ackermann
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
8
|
Gadaleta P, Zorzópulos J. Kluyvera bacteriophage Kvp1: a new member of the Podoviridae family phylogenetically related to the coliphage T7. Virus Res 1997; 51:43-52. [PMID: 9381794 DOI: 10.1016/s0168-1702(97)00078-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A DNA containing bacteriophage, Kvp1, was isolated from the water of a very polluted river, the Matanza river, near the central district of Buenos Aires City. This bacteriophage infects bacteria belonging to the Kluyvera cryocrescens species (strain 21 g) isolated from the same river. Kvp1 is a lytic bacteriophage and its propagation characteristics are: burst size 30, latent period 13 min and rise period 10 min. Morphologically, Kvp1 is a small icosahedral bacteriophage, 59.1 nm in diameter, which possesses a short wedge-shaped tail. Its buoyant density in ClCs is 1.517 g/cm3. Kvp1 DNA is linear, double stranded and approximately 40,000 bp in size. The viral particle is composed of at least nine proteins. SDS-PAGE patterns of these proteins and of those produced during the host infection, in addition to its morphological and genomic characteristics, suggested that Kvp1 is similar to the coliphage T7. Molecular cloning, sequencing and computer-assisted analysis of Kvp1 DNA fragments confirmed the relationship to the coliphage. Taking this into account, the partial sequence of the phage RNA polymerase was used to construct phylogenetic relationships between Kvp1 and other related phages. To our knowledge, Kvp1 is the first bacteriophage described which uses as host a member of the Kluyvera bacterial genus.
Collapse
Affiliation(s)
- P Gadaleta
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | | |
Collapse
|