1
|
Palazzo A, Lorusso P, Miskey C, Walisko O, Gerbino A, Marobbio CMT, Ivics Z, Marsano RM. Transcriptionally promiscuous "blurry" promoters in Tc1/ mariner transposons allow transcription in distantly related genomes. Mob DNA 2019; 10:13. [PMID: 30988701 PMCID: PMC6446368 DOI: 10.1186/s13100-019-0155-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/26/2019] [Indexed: 12/04/2022] Open
Abstract
Background We have recently described a peculiar feature of the promoters in two Drosophila Tc1-like elements, Bari1 and Bari3. The AT-richness and the presence of weak core-promoter motifs make these promoters, that we have defined “blurry”, able to activate transcription of a reporter gene in cellular systems as diverse as fly, human, yeast and bacteria. In order to clarify whether the blurry promoter is a specific feature of the Bari transposon family, we have extended this study to promoters isolated from three additional DNA transposon and from two additional LTR retrotransposons. Results Here we show that the blurry promoter is also a feature of two vertebrate transposable elements, Sleeping Beauty and Hsmar1, belonging to the Tc1/mariner superfamily. In contrast, this feature is not shared by the promoter of the hobo transposon, which belongs to the hAT superfamily, nor by LTR retrotransposon-derived promoters, which, in general, do not activate transcription when introduced into non-related genomes. Conclusions Our results suggest that the blurry promoter could be a shared feature of the members of the Tc1/mariner superfamily with possible evolutionary and biotechnological implications. Electronic supplementary material The online version of this article (10.1186/s13100-019-0155-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Palazzo
- 1Department of Biology, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.,Present address: Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy
| | - Patrizio Lorusso
- 1Department of Biology, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Csaba Miskey
- 2Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Oliver Walisko
- 2Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Andrea Gerbino
- 3Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | | | - Zoltán Ivics
- 2Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | |
Collapse
|
2
|
Kharrat I, Mezghani M, Casse N, Denis F, Caruso A, Makni H, Capy P, Rouault JD, Chénais B, Makni M. Characterization of mariner-like transposons of the mauritiana Subfamily in seven tree aphid species. Genetica 2015; 143:63-72. [PMID: 25555688 DOI: 10.1007/s10709-014-9814-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/26/2014] [Indexed: 11/26/2022]
Abstract
Mariner-like elements (MLEs) are Class II transposons present in all eukaryotic genomes in which MLEs have been searched for. This article reports the detection of MLEs in seven of the main fruit tree aphid species out of eight species studied. Deleted MLE sequences of 916-919 bp were characterized, using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana Subfamily as primers. All the sequences detected were deleted copies of full-length elements that included the 3'- and 5'-TIRs but displayed internal deletions affecting Mos1 activity. Networks based on the mtDNA cytochrome oxidase subunit-I (CO-I) and MLE sequences were incongruent, suggesting that mutations in transposon sequences had accumulated before speciation of tree aphid species occurred, and that they have been maintained in this species via vertical transmissions. This is the first evidence of the widespread occurrence of MLEs in aphids.
Collapse
Affiliation(s)
- Imen Kharrat
- Faculté des Sciences de Tunis, Université de Tunis El Manar, UR11ES10 Génomique des insectes ravageurs, 2092, Manar II, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wallau GL, Capy P, Loreto E, Hua-Van A. Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics 2014; 15:727. [PMID: 25163909 PMCID: PMC4161770 DOI: 10.1186/1471-2164-15-727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes. RESULTS We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies. CONCLUSIONS This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all "life cycle" stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós-Graduaíão em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brasil.
| | | | | | | |
Collapse
|
4
|
Schneider CH, Gross MC, Terencio ML, do Carmo EJ, Martins C, Feldberg E. Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evol Biol 2013; 13:152. [PMID: 23865932 PMCID: PMC3728117 DOI: 10.1186/1471-2148-13-152] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 07/15/2013] [Indexed: 01/27/2023] Open
Abstract
Background Transposable elements (TEs) have the potential to produce broad changes in the genomes of their hosts, acting as a type of evolutionary toolbox and generating a collection of new regulatory and coding sequences. Several TE classes have been studied in Neotropical cichlids; however, the information gained from these studies is restricted to the physical chromosome mapping, whereas the genetic diversity of the TEs remains unknown. Therefore, the genomic organization of the non-LTR retrotransposons Rex1, Rex3, and Rex6 in five Amazonian cichlid species was evaluated using physical chromosome mapping and DNA sequencing to provide information about the role of TEs in the evolution of cichlid genomes. Results Physical mapping revealed abundant TE clusters dispersed throughout the chromosomes. Furthermore, several species showed conspicuous clusters accumulation in the centromeric and terminal portions of the chromosomes. These TE chromosomal sites are associated with both heterochromatic and euchromatic regions. A higher number of Rex1 clusters were observed among the derived species. The Rex1 and Rex3 nucleotide sequences were more conserved in the basal species than in the derived species; however, this pattern was not observed in Rex6. In addition, it was possible to observe conserved blocks corresponding to the reverse transcriptase fragment of the Rex1 and Rex3 clones and to the endonuclease of Rex6. Conclusion Our data showed no congruence between the Bayesian trees generated for Rex1, Rex3 and Rex6 of cichlid species and phylogenetic hypothesis described for the group. Rex1 and Rex3 nucleotide sequences were more conserved in the basal species whereas Rex6 exhibited high substitution rates in both basal and derived species. The distribution of Rex elements in cichlid genomes suggests that such elements are under the action of evolutionary mechanisms that lead to their accumulation in particular chromosome regions, mostly in heterochromatins.
Collapse
Affiliation(s)
- Carlos Henrique Schneider
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Petrópolis, 69011-970, Manaus, Amazonas, Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Pujolar JM, Astolfi L, Boscari E, Vidotto M, Barbisan F, Bruson A, Congiu L. Tana1, a new putatively active Tc1-like transposable element in the genome of sturgeons. Mol Phylogenet Evol 2012; 66:223-32. [PMID: 23032571 DOI: 10.1016/j.ympev.2012.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/21/2012] [Accepted: 09/23/2012] [Indexed: 01/05/2023]
Abstract
We report the discovery of a new putatively active Tc1-like transposable element (Tana1) in the genome of sturgeons, an ancient group of fish considered as living fossils. The complete sequence of Tana1 was first characterized in the 454-sequenced transcriptome of the Adriatic sturgeon (Acipenser naccarii) and then isolated from the genome of the same species and from 12 additional sturgeons including three genera of the Acipenseridae (Acipenser, Huso, Scaphirhynchus). The element has a total length of 1588bp and presents inverted repeats of 210bp, one of which partially overlapping the 3' region of the transposase gene. The spacing of the DDE motif within the catalytic domain in Tana1 is unique (DD38E) and indicates that Tana1 can be considered as the first representative of a new Tc1 subfamily. The integrity of the native form (with no premature termination codons within the transposase), the presence of all expected functional domains and its occurrence in the sturgeon transcriptome suggest a current or recent activity of Tana1. The presence of Tana1 in the genome of the 13 sturgeon species in our study points to an ancient origin of the element that existed before the split of the group 170 million years ago. The dissemination of Tana1 across sturgeon genomes could be interpreted by postulating vertical transmission from an ancestral Tana1 with a particularly slow evolutionary rate Horizontal transmission might have also played a role in the dissemination of Tana1 as evidenced by the presence of a complete copy in the genome of Atlantic salmon. Vertical and horizontal transmission are not mutually exclusive and may have concurred in shaping the evolution of Tana1.
Collapse
|
6
|
Sormacheva I, Smyshlyaev G, Mayorov V, Blinov A, Novikov A, Novikova O. Vertical Evolution and Horizontal Transfer of CR1 Non-LTR Retrotransposons and Tc1/mariner DNA Transposons in Lepidoptera Species. Mol Biol Evol 2012; 29:3685-702. [DOI: 10.1093/molbev/mss181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
7
|
Abstract
The DNA polymorphisms caused by insertion and excision of transposable elements (TEs) are applicable in studying genome dynamics, genetic diversity, and molecular evolution, generating genome-wide molecular maps and investigating functional attributes of transposons in epigenetics and diseases. Identification of individual mutations caused by TEs using the principles of amplified fragment length polymorphism assay is a reliable and cost-effective approach. The method relies upon selective polymerase chain reaction (PCR) of flanking regions of TE insertion sites in the genome. A detailed procedure is described in this chapter that outlines each step starting from the preparation of PCR template to identification and isolation of the polymorphic bands. The approach outlined in this protocol can be adopted to identify individual polymorphisms caused by any transposon in any organism.
Collapse
|
8
|
Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC, Nowosielska A, Li C, Zamore PD, Weng Z, Theurkauf WE. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 2012; 147:1551-63. [PMID: 22196730 DOI: 10.1016/j.cell.2011.11.042] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/29/2011] [Accepted: 11/17/2011] [Indexed: 01/03/2023]
Abstract
Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.
Collapse
Affiliation(s)
- Jaspreet S Khurana
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vidal NM, Ludwig A, Loreto ELS. Evolution of Tom, 297, 17.6 and rover retrotransposons in Drosophilidae species. Mol Genet Genomics 2009; 282:351-62. [PMID: 19585148 DOI: 10.1007/s00438-009-0468-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 06/21/2009] [Indexed: 11/24/2022]
Abstract
LTR retrotransposons are the most abundant transposable elements in Drosophila and are believed to have contributed significantly to genome evolution. Different reports have shown that many LTR retrotransposon families in Drosophila melanogaster emerged from recent evolutionary episodes of transpositional activity. To contribute to the knowledge of the evolutionary history of Drosophila LTR retrotransposons and the mechanisms that control their abundance, distribution and diversity, we conducted analyses of four related families of LTR retrotransposons, 297, 17.6, rover and Tom. Our results show that these elements seem to be restricted to species from the D. melanogaster group, except for 17.6, which is also present in D. virilis and D. mojavensis. Genetic divergences and phylogenetic analyses of a 1-kb fragment region of the pol gene illustrate that the evolutionary dynamics of Tom, 297, 17.6 and rover retrotransposons are similar in several aspects, such as low codon bias, the action of purifying selection and phylogenies that are incongruent with those of the host species. We found an extremely complex association among the retrotransposon sequences, indicating that different processes shaped the evolutionary history of these elements, and we detected a very high number of possible horizontal transfer events, corroborating the importance of lateral transmission in the evolution and maintenance of LTR retrotransposons.
Collapse
Affiliation(s)
- Newton Medeiros Vidal
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | | | | |
Collapse
|
10
|
Bui QT, Casse N, Leignel V, Nicolas V, Chénais B. Widespread occurence of mariner transposons in coastal crabs. Mol Phylogenet Evol 2008; 47:1181-9. [DOI: 10.1016/j.ympev.2008.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
11
|
Abstract
Mariner transposable elements are widespread and diverse in insects. We screened 10 species of fig wasps (Hymenoptera: Agaonidae) for mariner elements. All 10 species harbour a large diversity of mariner elements, most of which have interrupted reading frames in the transposase gene region, suggesting that they are inactive and ancient. We sequenced two full-length mariner elements and found evidence to suggest that they are inserted in the genome at a conserved region shared by other hymenopteran taxa. The association between mariner elements and fig wasps is old and dominated by vertical transmission, suggesting that these 'selfish genetic elements' have evolved to impart only very low costs to their hosts.
Collapse
Affiliation(s)
- E R Haine
- Division of Biology, Imperial College London, Silwood Park, Ascot, Berkshire, UK.
| | | | | |
Collapse
|
12
|
Abstract
Bacterial insertion sequences (ISs) are the simplest kinds of bacterial mobile DNA. Evolutionary studies need consistent IS annotation across many different genomes. We have developed an open-source software package, IScan, to identify bacterial ISs and their sequence elements—inverted and target direct repeats—in multiple genomes using multiple flexible search parameters. We applied IScan to 438 completely sequenced bacterial genomes and 20 IS families. The resulting data show that ISs within a genome are extremely similar, with a mean synonymous divergence of Ks = 0.033. Our analysis substantially extends previously available information, and suggests that most ISs have entered bacterial genomes recently. By implication, their population persistence may depend on horizontal transfer. We also used IScan's ability to analyze the statistical significance of sequence similarity among many IS inverted repeats. Although the inverted repeats of insertion sequences are evolutionarily highly flexible parts of ISs, we show that this ability can be used to enrich a dataset for ISs that are likely to be functional. Applied to the thousands of genomes that will soon be available, IScan could be used for many purposes, such as mapping the evolutionary history and horizontal transfer patterns of different ISs.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 27-J-54, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
13
|
Bui QT, Delaurière L, Casse N, Nicolas V, Laulier M, Chénais B. Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus. Gene 2007; 396:248-56. [PMID: 17490833 DOI: 10.1016/j.gene.2007.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 03/01/2007] [Accepted: 03/12/2007] [Indexed: 11/17/2022]
Abstract
Mariner-like elements (MLEs) are class-II transposable elements that move within the genome of their hosts by means of a DNA-mediated "cut and paste" mechanism. MLEs have been identified in several organisms, from most of the phyla. Nevertheless, only a few of the sequences characterized contain an intact open reading frame. Investigation of the genome of a coastal crab, Pachygrapsus marmoratus, has identified nine Pacmmar elements, two of which have an open reading frame encoding a putatively functional transposase. Nucleic acid analyses and comparison with the previous data showed that the GC contents of MLEs derived from coastal organisms such as P. marmoratus are significantly higher than those of terrestrial MLEs and significantly lower than those of hydrothermal ones. Furthermore, molecular phylogeny analyses have shown that Pacmmar elements constitute a new lineage of the irritans subfamily within the mariner family.
Collapse
Affiliation(s)
- Quynh-Trang Bui
- Laboratoire de Biologie et Génétique Evolutive (EA3265), Avenue Olivier Messiaen, 72085 Le Mans cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Brillet B, Benjamin B, Bigot Y, Yves B, Augé-Gouillou C, Corinne AG. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 2006; 130:105-20. [PMID: 16912840 DOI: 10.1007/s10709-006-0025-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/02/2006] [Indexed: 01/20/2023]
Abstract
In this review, we focus on the assembly of DNA/protein complexes that trigger transposition in eukaryotic members of the IS630-Tc1-mariner (ITm) super-family, the Tc1- and mariner-like elements (TLEs and MLEs). Elements belonging to this super-family encode transposases with DNA binding domains of different origins, and recent data indicate that the chimerization of functional domains has been an important evolutionary aspect in the generation of new transposons within the ITm super-family. These data also reveal that the inverted terminal repeats (ITRs) at the ends of transposons contain three kinds of motif within their sequences. The first two are well known and correspond to the cleavage site on the outer ITR extremities, and the transposase DNA binding site. The organization of ITRs and of the transposase DNA binding domains implies that differing pathways are used by MLEs and TLEs to regulate transposition initiation. These differences imply that the ways ITRs are recognized also differ leading to the formation of differently organized synaptic complexes. The third kind of motif is the transposition enhancers, which have been found in almost all the functional MLEs and TLEs analyzed to date. Finally, in vitro and in vivo assays of various elements all suggest that the transposition initiation complex is not formed randomly, but involves a mechanism of oriented transposon scanning.
Collapse
Affiliation(s)
- Benjamin Brillet
- Laboratoire d'Etudes des Parasites Génétiques, Université François Rabelais, FRE CNRS 2969, UFR Sciences & Techniques, Parc Grandmont, 37200, Tours, France
| | | | | | | | | | | |
Collapse
|
15
|
Wagner A. Periodic Extinctions of Transposable Elements in Bacterial Lineages: Evidence from Intragenomic Variation in Multiple Genomes. Mol Biol Evol 2005; 23:723-33. [PMID: 16373392 DOI: 10.1093/molbev/msj085] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most previous work on the evolution of mobile DNA was limited by incomplete sequence information. Whole genome sequences allow us to overcome this limitation. I study the nucleotide diversity of prominent members of five insertion sequence families whose transposition activity is encoded by a single transposase gene. Eighteen among 376 completely sequenced bacterial genomes and plasmids carry between 3 and 20 copies of a given insertion sequence. I show that these copies generally show very low DNA divergence. Specifically, more than 68% of the transposase genes are identical within a genome. The average number of amino acid replacement substitutions at amino acid replacement sites is Ka = 0.013, that at silent sites is Ks = 0.1. This low intragenomic diversity stands in stark contrast to a much higher divergence of the same insertion sequences among distantly related genomes. Gene conversion among protein-coding genes is unlikely to account for this lack of diversity. The relation between transposition frequencies and silent substitution rates suggests that most insertion sequences in a typical genome are evolutionarily young and have been recently acquired. They may undergo periodic extinction in bacterial lineages. By implication, they are detrimental to their host in the long run. This is also suggested by the highly skewed and patchy distribution of insertion sequences among genomes. In sum, one can think of insertion sequences as slow-acting infectious diseases of cell lineages.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biology, The University of New Mexico, USA.
| |
Collapse
|
16
|
Mandrioli M. Identification and chromosomal localization of mariner-like elements in the cabbage moth Mamestra brassicae (Lepidoptera). Chromosome Res 2004; 11:319-22. [PMID: 12906127 DOI: 10.1023/a:1024035706192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A complete mariner-like element has been identified in the lepidopteran Mamestra brassicae. This element, called Mbmar, represents a new type of mariner transposon. It has a transposase similar to that of other insect mariner coding sequences but its inverted terminal repeats differ from typical mariner ones. This observation is unique since generally both mariner coding region and ITRs are evolutionarily conserved in insects. Mbmar is detectable by FISH only in the heterochromatic regions of both the sex chromosomes.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Dipartimento di Biologia Animale, Università di Modena, Campi 213/D, 41100 Modena, Italy.
| |
Collapse
|
17
|
Krieger MJB, Ross KG. Molecular evolutionary analyses of mariners and other transposable elements in fire ants (Hymenoptera: Formicidae). INSECT MOLECULAR BIOLOGY 2003; 12:155-165. [PMID: 12653937 DOI: 10.1046/j.1365-2583.2003.00397.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Screens of a library of genomic DNA made during a recent study of the fire ant Solenopsis invicta revealed the presence of three distinct types of transposable elements (TEs). Two of the recovered sequences showed a high similarity to long-terminal repeat (LTR) retrotransposons, while the third showed a high homology to mariner elements. To investigate the distribution and relationships of mariners in related ants, we PCR-amplified these elements from additional Solenopsis species. Phylogenetic analyses showed that they form a single group within the mauritiana subfamily that is part of a larger clade derived from hymenopteran species. We also present partial sequence data for the two LTR-retrotransposons and describe their phylogenetic affinities.
Collapse
Affiliation(s)
- M J B Krieger
- Department of Entomology, University of Georgia, Athens GA 30602, USA.
| | | |
Collapse
|
18
|
Dawson A, Finnegan DJ. Excision of the Drosophila mariner transposon Mos1. Comparison with bacterial transposition and V(D)J recombination. Mol Cell 2003; 11:225-35. [PMID: 12535535 DOI: 10.1016/s1097-2765(02)00798-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been proposed that the modern immune system has evolved from a transposon in an ancient vertebrate. While much is known about the mechanism by which bacterial transposable elements catalyze double-strand breaks at their ends, less is known about how eukaryotic transposable elements carry out these reactions. We have examined the mechanism by which mariner, a eukaryotic transposable element, performs DNA cleavage. We show that the nontransferred strand is cleaved initially, unlike prokaryotic transposons which cleave the transferred strand first. First strand cleavage is not tightly coupled to second strand cleavage and can occur independently of synapsis, as happens in V(D)J recombination but not in transposition of prokaryotic transposons. Unlike V(D)J recombination, however, second strand cleavage of mariner does not occur via a hairpin intermediate.
Collapse
Affiliation(s)
- Angela Dawson
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom.
| | | |
Collapse
|
19
|
Atkinson PW, James AA. Germline transformants spreading out to many insect species. ADVANCES IN GENETICS 2002; 47:49-86. [PMID: 12000097 DOI: 10.1016/s0065-2660(02)47002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The past 5 years have witnessed significant advances in our ability to introduce genes into the genomes of insects of medical and agricultural importance. A number of transposable elements now exist that are proving to be sufficiently robust to allow genetic transformation of species within three orders of insects. In particular all of these transposable elements can be used genetically to transform mosquitoes. These developments, together with the use of suitable genes as genetic markers, have enabled several genes and promoters to be transferred between insect species and their effects on the phenotype of the transgenic insect determined. Within a very short period of time, insights into the function of insect promoters in homologous and heterologous insect species are being gained. Furthermore, strategies aimed at ameliorating the harmful effects of pest insects, such as their ability to vector human pathogens, are now being tested in the pest insects themselves. We review the progress that has been made in the development of transgenic technology in pest insect species and conclude that the repertoire of transposable element-based genetic tools, long available to Drosophila geneticists, can now be applied to other insect species. In addition, it is likely that these developments will lead to the generation of pest insects that display a significantly reduced ability to transmit pathogens in the near future.
Collapse
Affiliation(s)
- Peter W Atkinson
- Department of Entomology, University of California, Riverside 92521, USA
| | | |
Collapse
|
20
|
Turcotte K, Bureau T. Phylogenetic analysis reveals stowaway-like elements may represent a fourth family of the IS630-Tc1-mariner superfamily. Genome 2002; 45:82-90. [PMID: 11908672 DOI: 10.1139/g01-127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomes of plants, like virtually all other eukaryotic organisms, harbor a diverse array of mobile elements, or transposons. In terms of numbers, the predominant type of transposons in many plants is the miniature inverted-repeat transposable element (MITE). There are three archetypal MITEs, known as Tourist, Stowaway, and Emigrant, each of which can be defined by a specific terminal inverted-repeat (TIR) sequence signature. Although their presence was known for over a decade, only recently have open reading frames (ORFs) been identified that correspond to putative transposases for each of the archetypes. We have identified two Stowaway elements that encode a putative transposase and are similar to members of the previously characterized IS630-Tc1-mariner superfamily. In this report, we provide a high-resolution phylogenetic analysis of the evolutionary relationship between Stowaway, Emigrant, and members of the IS630-Tc1-mariner superfamily. We show that although Emigrant is closely related to the pogo-like family of elements, Stowaway may represent a novel family. Integration of our results with previously published data leads to the conclusion that the three main types of MITEs have different evolutionary histories despite similarity in structure.
Collapse
Affiliation(s)
- Kime Turcotte
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
21
|
Rosewich UL, Kistler HC. Role of Horizontal Gene Transfer in the Evolution of Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:325-363. [PMID: 11701846 DOI: 10.1146/annurev.phyto.38.1.325] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although evidence for horizontal gene transfer (HGT) in eukaryotes remains largely anecdotal, literature on HGT in fungi suggests that it may have been more important in the evolution of fungi than in other eukaryotes. Still, HGT in fungi has not been widely accepted because the mechanisms by which it may occur are unknown, because it is usually not directly observed but rather implied as an outcome, and because there are often equally plausible alternative explanations. Despite these reservations, HGT has been justifiably invoked for a variety of sequences including plasmids, introns, transposons, genes, gene clusters, and even whole chromosomes. In some instances HGT has also been confirmed under experimental conditions. It is this ability to address the phenomenon in an experimental setting that makes fungi well suited as model systems in which to study the mechanisms and consequences of HGT in eukaryotic organisms.
Collapse
Affiliation(s)
- U Liane Rosewich
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| | - H Corby Kistler
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, Minnesota 55108; e-mail: ,
| |
Collapse
|
22
|
Tosi LR, Beverley SM. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 2000; 28:784-90. [PMID: 10637331 PMCID: PMC102556 DOI: 10.1093/nar/28.3.784] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1999] [Revised: 12/04/1999] [Accepted: 12/04/1999] [Indexed: 11/13/2022] Open
Abstract
Mos1 and other mariner / Tc1 transposons move horizon-tally during evolution, and when transplanted into heterologous species can transpose in organisms ranging from prokaryotes to protozoans and vertebrates. To further develop the Drosophila Mos1 mariner system as a genetic tool and to probe mechanisms affecting the regulation of transposition activity, we developed an in vitro system for Mos1 transposition using purified transposase and selectable Mos1 derivatives. Transposition frequencies of nearly 10(-3)/target DNA molecule were obtained, and insertions occurred at TA dinucleotides with little other sequence specificity. Mos1 elements containing only the 28 bp terminal inverted repeats were inactive in vitro, while elements containing a few additional internal bases were fully active, establishing the minimal cis -acting requirements for transposition. With increasing transposase the transposition frequency increased to a plateau value, in contrast to the predictions of the protein over-expression inhibition model and to that found recently with a reconstructed Himar1 transposase. This difference between the 'natural' Mos1 and 'reconstructed' Himar1 transposases suggests an evolutionary path for down-regulation of mariner transposition following its introduction into a naïve population. The establishment of the cis and trans requirements for optimal mariner transposition in vitro provides key data for the creation of vectors for in vitro mutagenesis, and will facilitate the development of in vivo systems for mariner transposition.
Collapse
MESH Headings
- Animals
- DNA Transposable Elements/genetics
- DNA Transposable Elements/physiology
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- Drosophila/enzymology
- Drosophila/genetics
- Evolution, Molecular
- Genome
- Magnesium/metabolism
- Manganese/metabolism
- Mutagenesis, Insertional/methods
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Protein Folding
- Protein Renaturation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombination, Genetic/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Deletion/genetics
- Substrate Specificity
- Terminal Repeat Sequences/genetics
- Trans-Activators/physiology
- Transposases/chemistry
- Transposases/genetics
- Transposases/isolation & purification
- Transposases/metabolism
Collapse
Affiliation(s)
- L R Tosi
- Department of Molecular Microbiology, Washington University Medical School, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
23
|
Auge-Gouillou, Bigot, Periquet. Mariner-like sequences are present in the genome of the fruitfly, Drosophila melanogaster. J Evol Biol 1999. [DOI: 10.1046/j.1420-9101.1999.00068.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Abstract
Mariner elements, a family of DNA-mediated transposable elements with short, inverted terminal repeats, have been reported in a wide variety of arthropods, as well as planarians, nematodes, and humans. No such element has been reported in a plant. Here we report a mariner element in the plant soybean (Glycine max (L.) Merr.). Although this sequence belongs to the mariner family, it is clearly distinct from previously reported mariner-like elements, as well as from the Tc1 transposon family. Novel aspects of its sequence could be useful as a starting point to identify mariner-like elements in new organisms, and it may prove useful in creating a transformation vector for plants.
Collapse
Affiliation(s)
- T Jarvik
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
25
|
Gueiros-Filho FJ, Beverley SM. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 1997; 276:1716-9. [PMID: 9180085 DOI: 10.1126/science.276.5319.1716] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transposable elements of the mariner/Tc1 family are postulated to have spread by horizontal transfer and be relatively independent of host-specific factors. This was tested by introducing the Drosophila mauritiana element mariner into the human parasite Leishmania major, a trypanosomatid protozoan belonging to one of the most ancient eukaryotic lineages. Transposition in Leishmania was efficient, occurring in more than 20 percent of random transfectants, and proceeded by the same mechanism as in Drosophila. Insertional inactivation of a specific gene was obtained, and a modified mariner element was used to select for gene fusions, establishing mariner as a powerful genetic tool for Leishmania and other organisms. These experiments demonstrate the evolutionary range of mariner transposition in vivo and underscore the ability of this ubiquitous DNA to parasitize the eukaryotic genome.
Collapse
Affiliation(s)
- F J Gueiros-Filho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
26
|
Abstract
Over a third of the human genome consists of interspersed repetitive sequences which are primarily degenerate copies of transposable elements. In the past year, the identities of many of these transposable elements were revealed. The emerging concept is that only three mechanisms of amplification are responsible for the vast majority of interspersed repeats and that with each autonomous element a number of dependent non-autonomous sequences have co-amplified.
Collapse
Affiliation(s)
- A F Smit
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA.
| |
Collapse
|
27
|
Brunet F, Godin F, Bazin C, David JR, Capy P. The mariner transposable element in natural populations of Drosophila teissieri. J Mol Evol 1996; 42:669-75. [PMID: 8662019 DOI: 10.1007/bf02338800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mariner transposable elements of several natural populations of Drosophila teissieri, a rainforest species endemic to tropical Africa, were studied. Natural populations trapped along a transect from Zimbabwe to the Ivory Coast were analyzed by Southern blotting, in situ hybridization, cloning, and sequencing of PCR products. The Brazzaville population had some full-length elements, while the remaining populations had mainly deleted elements. The main class of deleted elements lacked a 500-bp segment. A mechanism is proposed that could generate such elements rapidly. In situ hybridizations showed that there are no mariner elements in pericentromeric heterochromatin. Finally, the phylogeny of the Mos1-like mariner full-length elements is consistent with vertical transmission from the ancestor of the melanogaster subgroup.
Collapse
Affiliation(s)
- F Brunet
- Laboratoire Populations, Génétique et Evolution, CNRS, 91198 Gif sur Yvette, Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Capy P, Vitalis R, Langin T, Higuet D, Bazin C. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 1996; 42:359-68. [PMID: 8661997 DOI: 10.1007/bf02337546] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The integrase domain of RNA-mediated elements (class I) and the transposase domain of DNA-mediated transposable elements (class II) were compared. A number of elements contain the DDE signature, which plays an important role in their integration. The possible relationships between mariner-Tc1 and IS elements, retrotransposons, and retroviruses were analyzed from an alignment of this region. The mariner-Tc1 superfamily, and LTR retrotransposons and retroviruses were found to be monophyletic groups. However, the IS elements of bacteria were found in several groups. These results were used to propose an evolutionary history that suggests a common ancestor for some integrases and transposases.
Collapse
Affiliation(s)
- P Capy
- Laboratoire Populations, Génétique et Evolution, CNRS, 91198 Gif/Yvette Cedex, France
| | | | | | | | | |
Collapse
|
29
|
Coates CJ, Turney CL, Frommer M, O'Brochta DA, Warren WD, Atkinson PW. The transposable element mariner can excise in non-drosophilid insects. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:246-52. [PMID: 7500947 DOI: 10.1007/bf00290372] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plasmid-based excision assays performed in embryos of two non-drosophilid species using the mariner transposable element from Drosophila mauritiana resulted in empty excision sites identical to those observed after the excision of mariner from D. mauritiana chromosomes. In the presence of the autonomous mariner element Mos1, excision products were recovered from D. melanogaster, D. mauritiana and the blowfly Lucilia cuprina. When a hsp82 heat shock promoter-Mos1 construct was used to supply mariner transposase, excision products were also recovered from the Queensland fruitfly Bactrocera tryoni. Analysis of DNA sequences at empty excision sites led us to hypothesise that the mariner excision/repair process involves the formation of a heteroduplex at the excision breakpoint. The success of these assays suggests that they will provide a valuable tool for assessing the ability of mariner and mariner-like elements to function in non-drosophilid insects and for investigating the basic mechanisms of mariner excision and repair.
Collapse
Affiliation(s)
- C J Coates
- Commonwealth Scientific and Industrial Research Organisation, Division of Entomology, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Auge-Gouillou C, Bigot Y, Pollet N, Hamelin MH, Meunier-Rotival M, Periquet G. Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett 1995; 368:541-6. [PMID: 7635217 DOI: 10.1016/0014-5793(95)00735-r] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Internal fragments of the putative transposase gene of mariner-like elements (MLEs) were amplified from human, mouse, rat, chinese hamster, sheep and bovine genomic DNAs by polymerase chain reaction (PCR). The sequences identified in human, ovine and bovine genomes correspond to ancient degenerate transposons. Screening mammalian sequence libraries identified a truncated element in the human ABL gene and the sequence of its 5'-ITR was determined. This ITR sequences were used in PCR experiments with DNA from six mammalian species and detected full-sized and deleted MLEs. The presence of MLE in mammalian genomes demonstrates that they are ubiquitous mobile elements found from fungi to man. This observation strongly raises the possibility that MLE could constitute tools for the modification of eucaryotic genomes.
Collapse
Affiliation(s)
- C Auge-Gouillou
- Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences, Tours, France
| | | | | | | | | | | |
Collapse
|