1
|
Zeng W, Meng Y, Ma J, Zhang L, Wang W, Pan Y, Zhu X, Chu W. Transcriptome analysis identifies potential molecular mechanisms for growth of fast muscle in Chinese perch juvenile. Gene 2024; 934:149034. [PMID: 39454973 DOI: 10.1016/j.gene.2024.149034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Chinese perch (Siniperca chuatsi) is an important commercial fish species in China. Understanding the molecular mechanisms of growth and development of skeletal muscle is helpful for selection breeding and improving the growth rate of Chinese perch. We analyzed histological and transcriptomic differences in fast muscle of Chinese perch between 30 days post hatching (dph) and 60 dph using histological sections and high-throughput RNA-Seq. The results showed that the diameter of muscle fibers in 30 dph Chinese perch was mainly distributed in range of 30 - 40 μm, and that of 60 dph was primarily in the range of 40 - 50 μm. 34 differentially expressed genes (DEGs) were identified in the fast muscle of Chinese perch between 30 and 60 dph, of which 9 were up-regulated and 25 were down-regulated (60 dph vs 30 dph). The DEGs, including MYH4, ENO3, Bag3, krt13 and krt18, are associated with muscle cell differentiation and fusion in Chinese perch. The analysis of the protein-protein interaction network of DEGs revealed that FOS, junb and EGR1 may involve in the development of fast muscle. KEGG enrichment results showed that the up-regulated genes in the 60 dph were associated with several pathways related to metabolism and protein synthesis, such as glycosphingolipid biosynthesis and aminoacyl-tRNA biosynthesis. The results suggest that the development of fast muscle in Chinese perch from 30 to 60 dph is accompanied by an increase in muscle fiber diameter and changes in gene expression related to muscle cell differentiation and protein synthesis. Abbreviations: DEGs, differentially expressed genes; dph, days post hatching; FC, fold change; FDR, False Discovery Rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MyHCs, Myosin heavy chains; qRT-PCR, quantitative real-time PCR.
Collapse
Affiliation(s)
- Wei Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Yangyang Meng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Junxin Ma
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Linxuan Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Wei Wang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China; Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China
| | - Xin Zhu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China; Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China.
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China; Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China.
| |
Collapse
|
2
|
Dodge JC. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front Mol Neurosci 2017; 10:356. [PMID: 29163032 PMCID: PMC5675881 DOI: 10.3389/fnmol.2017.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Collapse
Affiliation(s)
- James C Dodge
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA, United States
| |
Collapse
|
3
|
Characterisation of equine satellite cell transcriptomic profile response to β-hydroxy-β-methylbutyrate (HMB). Br J Nutr 2016; 116:1315-1325. [PMID: 27691998 PMCID: PMC5082287 DOI: 10.1017/s000711451600324x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a popular ergogenic
aid used by human athletes and as a supplement to sport horses, because of its ability to
aid muscle recovery, improve performance and body composition. Recent findings suggest
that HMB may stimulate satellite cells and affect expressions of genes regulating skeletal
muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in
horses, no previous study has explained the mechanism of action of HMB in this species.
The aim of this study was to reveal the molecular background of HMB action on equine
skeletal muscle by investigating the transcriptomic profile changes induced by HMB in
equine satellite cells in vitro. Upon isolation from the
semitendinosus muscle, equine satellite cells were cultured until the
2nd day of differentiation. Differentiating cells were incubated with HMB for 24 h. Total
cellular RNA was isolated, amplified, labelled and hybridised to microarray slides.
Microarray data validation was performed with real-time quantitative PCR. HMB induced
differential expressions of 361 genes. Functional analysis revealed that the main
biological processes influenced by HMB in equine satellite cells were related to muscle
organ development, protein metabolism, energy homoeostasis and lipid metabolism. In
conclusion, this study demonstrated for the first time that HMB has the potential to
influence equine satellite cells by controlling global gene expression. Genes and
biological processes targeted by HMB in equine satellite cells may support HMB utility in
improving growth and regeneration of equine skeletal muscle; however, the overall role of
HMB in horses remains equivocal and requires further proteomic, biochemical and
pharmacokinetic studies.
Collapse
|
4
|
Singhal N, Martin PT. A role for Galgt1 in skeletal muscle regeneration. Skelet Muscle 2015; 5:3. [PMID: 25699169 PMCID: PMC4333175 DOI: 10.1186/s13395-014-0028-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cell surface glycans are known to play vital roles in muscle membrane stability and muscle disease, but to date, roles for glycans in muscle regeneration have been less well understood. Here, we describe a role for complex gangliosides synthesized by the Galgt1 gene in muscle regeneration. METHODS Cardiotoxin-injected wild type (WT) and Galgt1 (-/-) muscles, and mdx and Galgt1 (-/-) mdx muscles, were used to study regeneration in response to acute and chronic injury, respectively. Muscle tissue was analyzed at various time points for morphometric measurements and for gene expression changes in satellite cell and muscle differentiation markers by quantitative real-time polymerase chain reaction (qRT-PCR). Primary cell cultures were used to measure growth rate and myotube formation and to identify Galgt1 expression changes after cardiotoxin by fluorescence-activated cell sorting (FACS). Primary cell culture and tissue sections were also used to quantify satellite cell apoptosis. RESULTS A query of a microarray data set of cardiotoxin-induced mouse muscle gene expression changes identified Galgt1 as the most upregulated glycosylation gene immediately after muscle injury. This was validated by qRT-PCR as a 23-fold upregulation in Galgt1 expression 1 day after cardiotoxin administration and a 16-fold upregulation in 6-week-old mdx muscles. These changes correlated with increased expression of Galgt1 protein and GM1 ganglioside in mononuclear muscle cells. In the absence of Galgt1, cardiotoxin-induced injury led to significantly reduced myofiber diameters after 14 and 28 days of regeneration. Myofiber diameters were also significantly reduced in Galgt1-deficient mdx mice compared to age-matched mdx controls, and this was coupled with a significant increase in the loss of muscle tissue. Cardiotoxin-injected Galgt1 (-/-) muscles showed reduced gene expression of the satellite cell marker Pax7 and increased expression of myoblast markers MyoD, Myf5, and Myogenin after injury along with a tenfold increase in apoptosis of Pax7-positive muscle cells. Cultured primary Galgt1 (-/-) muscle cells showed a normal growth rate but demonstrated premature fusion into myofibers, resulting in an overall impairment of myofiber formation coupled with a threefold increase in muscle cell apoptosis. CONCLUSIONS These experiments demonstrate a role for Galgt1 in skeletal muscle regeneration and suggest that complex gangliosides made by Galgt1 modulate the survival and differentiation of satellite cells.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, USA
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, USA ; Department of Pediatrics, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205 USA ; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205 USA
| |
Collapse
|
5
|
Ganglioside GM3 levels are altered in a mouse model of HIBM: GM3 as a cellular marker of the disease. PLoS One 2010; 5:e10055. [PMID: 20383336 PMCID: PMC2850932 DOI: 10.1371/journal.pone.0010055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/18/2022] Open
Abstract
Objective HIBM (Hereditary Inclusion Body Myopathy) is a recessive hereditary disease characterized by adult-onset, slowly progressive muscle weakness sparing the quadriceps. It is caused by a single missense mutation of each allele of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, a bifunctional enzyme catalyzing the first two steps of sialic acid synthesis in mammals. However, the mechanisms and cellular pathways affected by the GNE mutation and causing the muscle weakness could not be identified so far. Based on recent evidence in literature, we investigated a new hypothesis, i.e. the involvement in the disease of the GM3 ganglioside, a specific glycolipid implicated in muscle cell proliferation and differentiation. Methods qRT-PCR analysis of St3gal5 (GM3 synthase) gene expression and HPLC quantification of GM3 ganglioside were conducted on muscle tissue from a mouse model of HIBM harboring the M712T mutation of GNE (GneM712T/M712T mouse) vs control mice (Gne+/+ mouse). Results St3gal5 mRNA levels were significantly lower in GneM712T/M712T mouse muscles vs Gne+/+ mouse muscles (64.41%±10% of Gne+/+ levels). GM3 ganglioside levels showed also a significant decrease in GneM712T/M712T mouse muscle compared to Gne+/+ mouse muscle (18.09%±5.33% of Gne+/+ levels). Although these GneM712T/M712T mice were described to suffer severe glomerular proteinuria, no GM3 alterations were noted in kidneys, highlighting a tissue specific alteration of gangliosides. Conclusion The M712T mutation of GNE hampers the muscle ability to synthesize normal levels of GM3. This is the first time that a mutation of GNE can be related to the molecular pathological mechanism of HIBM.
Collapse
|
6
|
Janot M, Audfray A, Loriol C, Germot A, Maftah A, Dupuy F. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates. BMC Genomics 2009; 10:483. [PMID: 19843320 PMCID: PMC2772862 DOI: 10.1186/1471-2164-10-483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries), providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis.
Collapse
Affiliation(s)
- Mathilde Janot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A, Thomas, 87060 Limoges, France.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Cytosolic sialidase Neu2 has been implicated in myoblast differentiation. Here we observed a significant upregulation of Neu2 expression during differentiation of murine C2C12 myoblasts. This was evidenced both as an increase in Neu2 mRNA steady-state levels and in the cytosolic sialidase enzymatic activity. To understand the biological significance of Neu2 upregulation in myoblast differentiation, C2C12 cells were stably transfected with the rat cytosolic sialidase Neu2 cDNA. Neu2 overexpressing clones were characterized by a marked decrement of cell proliferation and by the capacity to undergo spontaneous myoblast differentiation also when maintained under standard growth conditions. This was evidenced by the formation of myogenin-positive myotubes and by a significant decrease in the nuclear levels of cyclin D1 protein. No differentiation was on the contrary observed in parental and mock-transfected cells under the same experimental conditions. The results indicate that Neu2 upregulation per se is sufficient to trigger myoblast differentiation in C2C12 cells.
Collapse
|
8
|
Chatterjee S. Assay of lactosylceramide synthase and comments on its potential role in signal transduction. Methods Enzymol 1999; 311:73-81. [PMID: 10563312 DOI: 10.1016/s0076-6879(00)11068-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- S Chatterjee
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287-3654, USA
| |
Collapse
|
9
|
Marks DL, Wu K, Paul P, Kamisaka Y, Watanabe R, Pagano RE. Oligomerization and topology of the Golgi membrane protein glucosylceramide synthase. J Biol Chem 1999; 274:451-6. [PMID: 9867864 DOI: 10.1074/jbc.274.1.451] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucosylceramide synthase (GCS) catalyzes the transfer of glucose from UDP-glucose to ceramide to form glucosylceramide, the precursor of most higher order glycosphingolipids. Recently, we characterized GCS activity in highly enriched fractions from rat liver Golgi membranes (Paul, P., Kamisaka, Y., Marks, D. L., and Pagano, R. E. (1996) J. Biol. Chem. 271, 2287-2293), and human GCS was cloned by others (Ichikawa, S., Sakiyama, H., Suzuki, G., Hidari, K. I.-P. J., and Hirabayashi, Y. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 4638-4643). However, the polypeptide responsible for GCS activity has never been identified or characterized. In this study, we made polyclonal antibodies against peptides based on the predicted amino acid sequence of human GCS and used these antibodies to characterize the GCS polypeptide in rat liver Golgi membranes. Western blotting of rat liver Golgi membranes, human cells, and recombinant rat GCS expressed in bacteria showed that GCS migrates as an approximately 38-kDa protein on SDS-polyacrylamide gels. Trypsinization and immunoprecipitation studies with Golgi membranes showed that both the C terminus and a hydrophilic loop near the N terminus of GCS are accessible from the cytosolic face of the Golgi membrane. Treatment of Golgi membranes with N-hydroxysuccinimide ester-based cross-linking reagents yielded an approximately 50-kDa polypeptide recognized by anti-GCS antibodies; however, treatment of approximately 10,000-fold purified Golgi GCS with the same reagents did not yield cross-linked GCS forms. These results suggest that GCS forms a dimer or oligomer with another protein in the Golgi membrane. The migration of solubilized Golgi GCS in glycerol gradients was also consistent with a predominantly oligomeric organization of GCS.
Collapse
Affiliation(s)
- D L Marks
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
10
|
Müthing J, Cacić M. Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography. Glycoconj J 1997; 14:19-28. [PMID: 9076510 DOI: 10.1023/a:1018552729572] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study the comparative TLC immunostaining investigation of neutral GSLs and gangliosides from human skeletal and heart muscle is described. A panel of specific polyclonal and monoclonal antibodies as well as the GM1-specific choleragenoid were used for the overlay assays, combined with preceding neuraminidase treatment of gangliosides on TLC plates. This approach proved homologies but also quantitative and qualitative differences in the expression of ganglio-, globo- and neolacto-series neutral GSLs and gangliosides in these two types of striated muscle tissue within the same species. The main neutral GSL in skeletal muscle was LacCer, followed by GbOse3Cer, GbOse4Cer, nLcOse4Cer and monohexosylceramide, whereas in heart muscle GbOse3Cer and GbOse4Cer were the predominant neutral GSLs beside small quantities of LacCer, nLcOse4Cer and monohexosylceramide. No ganglio-series neutral GSLs and no Forssman GSL were found in either muscle tissue. GM3(Neu5Ac) was the major ganglioside, comprising almost 70% in skeletal and about 50% in cardiac muscle total gangliosides. GM2 was found in skeletal muscle only, while GD3 and GM1b-type gangliosides (GM1b and GD1 alpha) were undetectable in both tissues. GM1a-core gangliosides (GM1, GD1a, GD1b and GT1b) showed somewhat quantitative differences in each muscle; lactosamine-containing IV3Neu5Ac-nLcOse4Cer was detected in both specimens. Neutral GSLs were identified in TLC runs corresponding to e.g. 0.1 g muscle wet weight (GbOse3Cer, GbOse4Cer), and gangliosides GM3 and GM2 were elucidated in runs which corresponded to 0.2 g muscle tissue. Only 0.02 g and 0.004 g wet weight aliquots were necessary for unequivocal identification of neolacto-type and GM1-core gangliosides, respectively. Muscle is known for the lowest GSL concentration from all vertebrate tissues studied so far. Using the overlay technique, reliable GSL composition could be revealed, even from small muscle probes on a sub-orcinol and sub-resorcinol detection level.
Collapse
Affiliation(s)
- J Müthing
- Institute of Cell Culture Technology, University of Bielefeld, Germany
| | | |
Collapse
|