1
|
Yu X, Fang Y, Luo Z, Guo X, Fu L, Fan Z, Zhao J, Xie H, Guo M, Cheng B. Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains. J Am Chem Soc 2025; 147:2193-2205. [PMID: 39752277 DOI: 10.1021/jacs.4c16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates. In this study, a series of all-bottlebrush-type block copolymers, poly(octadecyl acrylate)-block-poly(oligoethylene glycol methyl ether methacrylate)s are prepared by living polymerization. Driven by the synergistic crystallization of crystalline side chains and the rapid microphase separation of bottlebrush topology, these polymers can assemble into uniform 2D circular platelet micelles in a few minutes, without being affected by a high assembly concentration. In this process, epitaxial growth of the bottlebrush molecules proceeds with rigid cylindrical molecular conformation at the micelle crystallization sites and eventually provides a sandwich-type micelle according to a head-to-head stacking mode. This is explained as a "crystallization-assisted rapid microphase separation" mechanism. The micelle structures are affected by the assembly solvent and temperature, the size of which shows a linear dependence on the assembly temperature below the melting point of the crystalline block, which can be used to precisely control the morphology of these 2D platelets. This study establishes an efficient and rapid method to prepare 2D polymer nanosoft materials, which are promising candidates for further development, preparation, and application of various nanomaterials.
Collapse
Affiliation(s)
- Xiaoliang Yu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Yuanjian Fang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Zhiruo Luo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xingjian Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Lulu Fu
- Department of Chemistry, School of Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Zhi Fan
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jin Zhao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Hongxiang Xie
- Department of Chemistry, School of Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Minjie Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Rafique MG, Remington JM, Clark F, Bai H, Toader V, Perepichka DF, Li J, Sleiman HF. Two-Dimensional Supramolecular Polymerization of DNA Amphiphiles is Driven by Sequence-Dependent DNA-Chromophore Interactions. Angew Chem Int Ed Engl 2023; 62:e202217814. [PMID: 36939824 PMCID: PMC10239398 DOI: 10.1002/anie.202217814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023]
Abstract
Two-dimensional (2D) assemblies of water-soluble block copolymers have been limited by a dearth of systematic studies that relate polymer structure to pathway mechanism and supramolecular morphology. Here, we employ sequence-defined triblock DNA amphiphiles for the supramolecular polymerization of free-standing DNA nanosheets in water. Our systematic modulation of amphiphile sequence shows the alkyl chain core forming a cell membrane-like structure and the distal π-stacking chromophore block folding back to interact with the hydrophilic DNA block on the nanosheet surface. This interaction is crucial to sheet formation, marked by a chiral "signature", and sensitive to DNA sequence, where nanosheets form with a mixed sequence, but not with a homogeneous poly(thymine) sequence. This work opens the possibility of forming well-ordered, bilayer-like assemblies using a single DNA amphiphile for applications in cell sensing, nucleic acid therapeutic delivery and enzyme arrays.
Collapse
Affiliation(s)
| | - Jacob M. Remington
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Finley Clark
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Haochen Bai
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Violeta Toader
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Dmytro F. Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
3
|
Wang H, Mei H, Li L, Zheng S. Nanocomposites of Epoxy with One-dimensional Fibrous Poly(ε-caprolactam) Nanocrystals via Crystallization-driven Self-assembly. J Colloid Interface Sci 2022; 631:201-213. [DOI: 10.1016/j.jcis.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/16/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
4
|
Mei H, Wang H, Li L, Zheng S. Generation of One-Dimensional Fibrous Polyethylene Nanocrystals in Epoxy Thermosets. Polymers (Basel) 2022; 14:polym14183921. [PMID: 36146068 PMCID: PMC9501422 DOI: 10.3390/polym14183921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The one-dimensional (1D) polyethylene (PE) nanocrystals were generated in epoxy thermosets via crystallization-driven self-assembly. Toward this end, an ABA triblock copolymer composed of PE midblock and poly(ε-caprolactone) (PCL) endblocks was synthesized via the ring opening metathesis polymerization followed by hydrogenation approach. The nanostructured thermosets were obtained via a two-step curing approach, i.e., the samples were cured first at 80 °C and then at 150 °C. Under this condition, the one-dimensional (1D) fibrous PE microdomains with the lengths up to a couple of micrometers were created in epoxy thermosets. In contrast, only the spherical PE microdomains were generated while the thermosets were cured via a one-step curing at 150 °C. By the use of the triblock copolymer, the generation of 1D fibrous PE nanocrystals is attributable to crystallization-driven self-assembly mechanism whereas that of the spherical PE microdomains follows traditional self-assembly mechanism. Compared to the thermosets containing the spherical PE microdomains, the thermosets containing the 1D fibrous PE nanocrystals displayed quite different thermal and mechanical properties. More importantly, the nanostructured thermosets containing the 1D fibrous PE nanocrystals displayed the fracture toughness much higher than those only containing the spherical PE nanocrystals; the KIC value was even three times as that of control epoxy.
Collapse
|
5
|
Bessif B, Pfohl T, Heck B, Alshetwi Y, Khechine E, Xu J, Reiter G. In Situ Dissolution and Swelling of Confined Lamellar Polymer Crystals through Exposure to Humid Air. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brahim Bessif
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Thomas Pfohl
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Barbara Heck
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Yaser Alshetwi
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Emna Khechine
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Jun Xu
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
| | - Günter Reiter
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Lotz B. The structural language of crystalline polymers*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bernard Lotz
- Institut Charles Sadron CNRS and Université de Strasbourg Strasbourg France
| |
Collapse
|
8
|
Yang C, Li Z, Xu J. Single crystals and two‐dimensional crystalline assemblies of block copolymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi‐Xian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
9
|
Ma J, Lu G, Huang X, Feng C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun (Camb) 2021; 57:13259-13274. [PMID: 34816824 DOI: 10.1039/d1cc04825b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Conjugated-polymer-based nanofibers (CPNFs) of controlled length, composition and morphology are promising for a broad range of emerging applications in optoelectronics, biomedicine and catalysis, owing to the morphological merits of fiber-like nanostructures and structural attributes of π-conjugated polymers. Living crystallization-driven self-assembly (CDSA) of π-conjugated-polymer-containing block copolymers (BCPs) has emerged as an efficient strategy to prepare CPNFs with precise dimensional and structural controllability by taking advantage of the crystallinity of π-conjugated polymers. In this review, recent advances in the generation of CPNFs have been highlighted. The influence of the structure of π-conjugated-polymer-containing BCPs and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CDSA of π-conjugated-polymer-containing BCPs. In addition, the properties of CPNFs as well as their potential applications have been illustrated. Finally, we put forward the current challenges and research directions in the field of CPNFs.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
10
|
Song S, Zhou H, Hicks G, Jiang J, Zhang Y, Manners I, Winnik MA. An Amphiphilic Corona-Forming Block Promotes Formation of a Variety of 2D Platelets via Crystallization-Driven Block Copolymer Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yefeng Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
11
|
Wang Z, Ma C, Huang X, Lu G, Feng C. Co‐Self‐Seeding Approach toward Uniform Fiber‐Like Comicelles: Regulating Length and Distribution of Corona‐Forming Chains of Comicelles by Metal Ions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiqin Wang
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules Center for Excellence in Molecular Synthesis Chinese Academy of Sciences Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Chen Ma
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules Center for Excellence in Molecular Synthesis Chinese Academy of Sciences Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules Center for Excellence in Molecular Synthesis Chinese Academy of Sciences Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules Center for Excellence in Molecular Synthesis Chinese Academy of Sciences Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Chun Feng
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules Center for Excellence in Molecular Synthesis Chinese Academy of Sciences Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
12
|
Guerin G, Rupar PA, Winnik MA. In-Depth Analysis of the Effect of Fragmentation on the Crystallization-Driven Self-Assembly Growth Kinetics of 1D Micelles Studied by Seed Trapping. Polymers (Basel) 2021; 13:3122. [PMID: 34578023 PMCID: PMC8472273 DOI: 10.3390/polym13183122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Studying the growth of 1D structures formed by the self-assembly of crystalline-coil block copolymers in solution at elevated temperatures is a challenging task. Like most 1D fibril structures, they fragment and dissolve when the solution is heated, creating a mixture of surviving crystallites and free polymer chains. However, unlike protein fibrils, no new nuclei are formed upon cooling and only the surviving crystallites regrow. Here, we report how trapping these crystallites at elevated temperatures allowed us to study their growth kinetics at different annealing times and for different amounts of unimer added. We developed a model describing the growth kinetics of these crystallites that accounts for fragmentation accompanying the 1D growth process. We show that the growth kinetics follow a stretched exponential law that may be due to polymer fractionation. In addition, by evaluating the micelle growth rate as a function of the concentration of unimer present in solution, we could conclude that the micelle growth occurred in the mononucleation regime.
Collapse
Affiliation(s)
- Gerald Guerin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Paul A. Rupar
- Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
13
|
Wang Z, Ma C, Huang X, Lu G, Winnik MA, Feng C. Self-Seeding of Oligo( p-phenylenevinylene)- b-poly(2-vinylpyridine) Micelles: Effect of Metal Ions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
14
|
Bessif B, Pfohl T, Reiter G. Self-Seeding Procedure for Obtaining Stacked Block Copolymer Lamellar Crystals in Solution. Polymers (Basel) 2021; 13:polym13111676. [PMID: 34064146 PMCID: PMC8196770 DOI: 10.3390/polym13111676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
We examined the formation of self-seeded platelet-like crystals from polystyrene-block-polyethylene oxide (PS-b-PEO) diblock copolymers in toluene as a function of polymer concentration (c), crystallization temperature (TC), and self-seeding temperature (TSS). We showed that the number (N) of platelet-like crystals and their mean lateral size (L) can be controlled through a self-seeding procedure. As (homogeneous) nucleation was circumvented by the self-seeding procedure, N did not depend on TC. N increased linearly with c and decayed exponentially with TSS but was not affected significantly by the time the sample was kept at TSS. The solubility limit of PS-b-PEO in toluene (c*), which was derived from the linear extrapolation of Nc→ 0 and from the total deposited mass of the platelets per area (MCc→0), depended on TC. We have also demonstrated that at low N, stacks consisting of a (large) number (η) of uniquely oriented lamellae can be achieved. At a given TC, L was controlled by N and η as well as by ∆c=c−c∗. Thus, besides being able to predict size and number of platelet-like crystals, the self-seeding procedure also allowed control of the number of stacked lamellae in these crystals.
Collapse
Affiliation(s)
- Brahim Bessif
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany; (B.B.); (T.P.)
| | - Thomas Pfohl
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany; (B.B.); (T.P.)
| | - Günter Reiter
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany; (B.B.); (T.P.)
- Freiburg Materials Research Center (FMF), Albert-Ludwigs-Universität, 79104 Freiburg, Germany
- Correspondence:
| |
Collapse
|
15
|
Zhang Y, Pearce S, Eloi JC, Harniman RL, Tian J, Cordoba C, Kang Y, Fukui T, Qiu H, Blackburn A, Richardson RM, Manners I. Dendritic Micelles with Controlled Branching and Sensor Applications. J Am Chem Soc 2021; 143:5805-5814. [DOI: 10.1021/jacs.1c00770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jean-Charles Eloi
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Cristina Cordoba
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8P 1A1, Canada
| | - Yuetong Kang
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Tomoya Fukui
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Huibin Qiu
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Arthur Blackburn
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8P 1A1, Canada
| | - Robert M. Richardson
- H H Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
16
|
Mueller AJ, Lindsay AP, Jayaraman A, Lodge TP, Mahanthappa MK, Bates FS. Quasicrystals and Their Approximants in a Crystalline–Amorphous Diblock Copolymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andreas J. Mueller
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aaron P. Lindsay
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ashish Jayaraman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021; 12:4661-4682. [PMID: 34163727 PMCID: PMC8179577 DOI: 10.1039/d0sc06878k] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 μm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
Collapse
Affiliation(s)
- Liam MacFarlane
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Jiandong Cai
- Department of Chemistry, University of Victoria British Columbia Canada
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ian Manners
- Department of Chemistry, University of Victoria British Columbia Canada
| |
Collapse
|
18
|
Ellis CE, Fukui T, Cordoba C, Blackburn A, Manners I. Towards scalable, low dispersity, and dimensionally tunable 2D platelets using living crystallization-driven self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00571e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scalable low dispersity platelets were accessed through the self-assembly of crystallizable charge-terminated PFS homopolymers. The use of surfactant counteranions, as well as increasing the self-assembly temperature, improved structure fidelity.
Collapse
Affiliation(s)
| | - Tomoya Fukui
- Department of Chemistry
- University of Victoria
- Canada
| | | | | | - Ian Manners
- Department of Chemistry
- University of Victoria
- Canada
| |
Collapse
|
19
|
|
20
|
He X, Finnegan JR, Hayward DW, MacFarlane LR, Harniman RL, Manners I. Living Crystallization-Driven Self-Assembly of Polymeric Amphiphiles: Low-Dispersity Fiber-like Micelles from Crystallizable Phosphonium-Capped Polycarbonate Homopolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P.R. China
| | - John R. Finnegan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Dominic W. Hayward
- Stranski-Laboratorium für Physikalische und Theoretische Chemie Institut für Chemie Technische, Universität Berlin, Strβe des 17. Juni 124, Berlin 10623, Germany
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Liam R. MacFarlane
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
21
|
Jarrett-Wilkins CN, Pearce S, MacFarlane LR, Davis SA, Faul CFJ, Manners I. Surface Patterning of Uniform 2D Platelet Block Comicelles via Coronal Chain Collapse. ACS Macro Lett 2020; 9:1514-1520. [PMID: 35617078 DOI: 10.1021/acsmacrolett.0c00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of colloids with anisotropically patterned surfaces is of growing interest for the creation of hierarchical structures and the templating of nanoparticles. We have recently shown that well-defined two-dimensional platelets with low areal dispersities can be formed by the seeded growth of a blend of homopolymers and block copolymers. Herein we form rectangular platelets containing two block copolymers with different coronal chemistries. On addition of a solvent that is only able to solvate the corona of one block, we were able to form colloidally stable micelles with patterned surfaces via coronal collapse. Scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy and atomic force microscopy were employed to provide information on the structure and size of the patches decorating the micelle surfaces.
Collapse
Affiliation(s)
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Liam R. MacFarlane
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3 V6, Canada
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3 V6, Canada
| |
Collapse
|
22
|
Zhang TY, Guo XS, Zhang ZK, Xu JT, Fan ZQ. Solution-grown composite single crystals of poly(L-lactic acid)-b-polystyrene block copolymers and poly(L-lactic acid) homopolymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Folgado E, Mayor M, Ladmiral V, Semsarilar M. Evaluation of Self-Assembly Pathways to Control Crystallization-Driven Self-Assembly of a Semicrystalline P(VDF- co-HFP)- b-PEG- b-P(VDF- co-HFP) Triblock Copolymer. Molecules 2020; 25:E4033. [PMID: 32899379 PMCID: PMC7504740 DOI: 10.3390/molecules25174033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
To date, amphiphilic block copolymers (BCPs) containing poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)) copolymers are rare. At moderate content of HFP, this fluorocopolymer remains semicrystalline and is able to crystallize. Amphiphilic BCPs, containing a P(VDF-co-HFP) segment could, thus be appealing for the preparation of self-assembled block copolymer morphologies through crystallization-driven self-assembly (CDSA) in selective solvents. Here the synthesis, characterization by 1H and 19F NMR spectroscopies, GPC, TGA, DSC, and XRD; and the self-assembly behavior of a P(VDF-co-HFP)-b-PEG-b-P(VDF-co-HFP) triblock copolymer were studied. The well-defined ABA amphiphilic fluorinated triblock copolymer was self-assembled into nano-objects by varying a series of key parameters such as the solvent and the non -solvent, the self-assembly protocols, and the temperature. A large range of morphologies such as spherical, square, rectangular, fiber-like, and platelet structures with sizes ranging from a few nanometers to micrometers was obtained depending on the self-assembly protocols and solvents systems used. The temperature-induced crystallization-driven self-assembly (TI-CDSA) protocol allowed some control over the shape and size of some of the morphologies.
Collapse
Affiliation(s)
- Enrique Folgado
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France;
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France;
| | - Matthias Mayor
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France;
| | | | | |
Collapse
|
24
|
Ma C, Wang Z, Huang X, Lu G, Manners I, Winnik MA, Feng C. Water-Dispersible, Colloidally Stable, Surface-Functionalizable Uniform Fiberlike Micelles Containing a π-Conjugated Oligo(p-phenylenevinylene) Core of Controlled Length. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
25
|
Song S, Puzhitsky M, Ye S, Abtahi M, Rastogi CK, Lu E, Hicks G, Manners I, Winnik MA. Crystallization-Driven Self-Assembly of Amphiphilic Triblock Terpolymers With Two Corona-Forming Blocks of Distinct Hydrophilicities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Matthew Puzhitsky
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shuyang Ye
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Elsa Lu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
26
|
Mei S, Wilk JT, Chancellor AJ, Zhao B, Li CY. Fabrication of 2D Block Copolymer Brushes via a Polymer-Single-Crystal-Assisted-Grafting-to Method. Macromol Rapid Commun 2020; 41:e2000228. [PMID: 32608541 DOI: 10.1002/marc.202000228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/25/2020] [Indexed: 11/08/2022]
Abstract
Block copolymer brushes are of great interest due to their rich phase behavior and value-added properties compared to homopolymer brushes. Traditional synthesis involves grafting-to and grafting-from methods. In this work, a recently developed "polymer-single-crystal-assisted-grafting-to" method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)-b-poly(l-lactide)-b-poly(3-(triethoxysilyl)propyl methacrylate) (PEO-b-PLLA-b-PTESPMA) is synthesized with PLLA as the brush morphology-directing component and PTESPMA as the anchoring block. PEO-b-PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm-2 from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well-defined block copolymer brushes.
Collapse
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jeffrey T Wilk
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | | | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Synthesis and crystallization-driven solution self-assembly of PE-b-PMMA: controlling Micellar morphology through crystallization temperature and molar mass. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02124-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Polyolefins based crystalline block copolymers: Ordered nanostructures from control of crystallization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Song S, Yu Q, Zhou H, Hicks G, Zhu H, Rastogi CK, Manners I, Winnik MA. Solvent effects leading to a variety of different 2D structures in the self-assembly of a crystalline-coil block copolymer with an amphiphilic corona-forming block. Chem Sci 2020; 11:4631-4643. [PMID: 34122918 PMCID: PMC8159233 DOI: 10.1039/d0sc01453b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
We describe a polyferrocenyldimethylsilane (PFS) block copolymer (BCP), PFS27-b-P(TDMA65-ran-OEGMA69) (the subscripts refer to the mean degrees of polymerization), in which the corona-forming block is a random brush copolymer of hydrophobic tetradecyl methacrylate (TDMA) and hydrophilic oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Thus, the corona is amphiphilic. This BCP generates a remarkable series of different structures when subjected to crystallization-driven self-assembly (CDSA) in solvents of different polarity. Long ribbon-like micelles formed in isopropanol, and their lengths could be controlled using both self-seeding and seeded growth protocols. In hexanol, the BCP formed more complex structures. These objects consisted of oval platelets connected to long fiber-like micelles that were uniform in width but polydisperse in length. In octane, relatively uniform rectangular platelets formed. Finally, a distinct morphology formed in a mixture of octane/hexanol, namely uniform oval structures, whose height corresponded to the fully extended PFS block. Both long and short axes of these ovals increased with the initial annealing temperature and with the BCP concentration. The self-seeding protocol also afforded uniform two-dimensional structures. Seeded growth experiments, in which a solution of the BCP in THF was added to a colloidal solution of the oval micelles led to a linear increase in area while maintaining the aspect ratio of the ovals. These experiments demonstrate the powerful effect of the amphiphilic corona chains on the CDSA of a core crystalline BCP in solvents of different hydrophilicity.
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Qing Yu
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | - Hu Zhu
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
| | | | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8W 3V6 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON M5S 3E2 Canada
| |
Collapse
|
30
|
Ganda S, Stenzel MH. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101195] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Synthesis and self-assembly of PMMA-b-(u)PE-b-PMMA copolymers: study the aggregate morphology in toluene vapor. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1808-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Tao D, Feng C, Lu Y, Cui Y, Yang X, Manners I, Winnik MA, Huang X. Self-Seeding of Block Copolymers with a π-Conjugated Oligo(p-phenylenevinylene) Segment: A Versatile Route toward Monodisperse Fiber-like Nanostructures. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00046] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daliao Tao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yijie Lu
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada
| | - Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xian Yang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S 3H6, Canada
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
33
|
He X, He Y, Hsiao MS, Harniman RL, Pearce S, Winnik MA, Manners I. Complex and Hierarchical 2D Assemblies via Crystallization-Driven Self-Assembly of Poly(l-lactide) Homopolymers with Charged Termini. J Am Chem Soc 2017; 139:9221-9228. [PMID: 28557444 DOI: 10.1021/jacs.7b03172] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly(l-lactide) (PLLA)-based nanoparticles have attracted much attention with respect to applications in drug delivery and nanomedicine as a result of their biocompatibility and biodegradability. Nevertheless, the ability to prepare PLLA assemblies with well-defined shape and dimensions is limited and represents a key challenge. Herein we report access to a series of monodisperse complex and hierarchical colloidally stable 2D structures based on PLLA cores using the seeded growth, "living-crystallization-driven self-assembly" method. Specifically, we describe the formation of diamond-shaped platelet micelles and concentric "patchy" block co-micelles by using seeds of the charge-terminated homopolymer PLLA24[PPh2Me]I to initiate the sequential growth of either additional PLLA24[PPh2Me]I or a crystallizable blend of the latter with the block copolymer PLLA42-b-P2VP240, respectively. The epitaxial nature of the growth processes used for the creation of the 2D block co-micelles was confirmed by selected area electron diffraction analysis. Cross-linking of the P2VP corona of the peripheral block in the 2D block co-micelles using Pt nanoparticles followed by dissolution of the interior region in good solvent for PLLA led to the formation of novel, hollow diamond-shaped assemblies. We also demonstrate that, in contrast to the aforementioned results, seeded growth of the unsymmetrical PLLA BCPs PLLA42-b-P2VP240 or PLLA20-b-PAGE80 alone from 2D platelets leads to the formation of diamond-fiber hybrid structures.
Collapse
Affiliation(s)
- Xiaoming He
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Yunxiang He
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Ming-Siao Hsiao
- UES, Inc., and Materials & Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson AFB, Ohio 45433, United States
| | - Robert L Harniman
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Sam Pearce
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| |
Collapse
|
34
|
Zheng JX, Van Horn RM, Cheng SZ. “Mobile” polymer brushes with self-adjusting tethering density – A theoretical treatment of thermodynamically stable single crystals of amorphous-crystalline diblock copolymers in various solvents. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Tritschler U, Pearce S, Gwyther J, Whittell GR, Manners I. 50th Anniversary Perspective: Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02767] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ulrich Tritschler
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Sam Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jessica Gwyther
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - George R. Whittell
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
36
|
Nazemi A, He X, MacFarlane LR, Harniman RL, Hsiao MS, Winnik MA, Faul CFJ, Manners I. Uniform “Patchy” Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions. J Am Chem Soc 2017; 139:4409-4417. [DOI: 10.1021/jacs.6b12503] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Nazemi
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Xiaoming He
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Liam R. MacFarlane
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert L. Harniman
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ming-Siao Hsiao
- UES, Inc. and Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Charl F. J. Faul
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
37
|
Agbolaghi S, Zenoozi S, Hosseini Z, Abbasi F. Scrolled/Flat Crystalline Structures of Poly(3-hexylthiophene) and Poly(ethylene glycol) Block Copolymers Subsuming Unseeded Half-Ring-Like and Seeded Cubic, Epitaxial, and Fibrillar Crystals. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02295] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Samira Agbolaghi
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, 5331711111 Tabriz, Iran
| | - Sahar Zenoozi
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, 5331711111 Tabriz, Iran
| | - Zahra Hosseini
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, 5331711111 Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, 5331711111 Tabriz, Iran
| |
Collapse
|
38
|
Gonzalez-Alvarez MJ, Jia L, Guerin G, Kim KS, An Du V, Walker G, Manners I, Winnik MA. How a Small Modification of the Corona-Forming Block Redirects the Self-Assembly of Crystalline–Coil Block Copolymers in Solution. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01616] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Lin Jia
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gerald Guerin
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Kris Sanghyun Kim
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Van An Du
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Gilbert Walker
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
39
|
Guerin G, Rupar P, Molev G, Manners I, Jinnai H, Winnik MA. Lateral Growth of 1D Core-Crystalline Micelles upon Annealing in Solution. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gerald Guerin
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S
3H6, Canada
| | - Paul Rupar
- School
of Chemistry, University of Bristol, Bristol, U.K., BS8 1TS
| | - Gregory Molev
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S
3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol, U.K., BS8 1TS
| | - Hiroshi Jinnai
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
Aoba-ku, Sendai, 980-8577, Japan
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S
3H6, Canada
| |
Collapse
|
40
|
Crystallization and morphology transition of P2VP-b-PEO block copolymer micelles composed of an amorphous core and a crystallizable corona. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-015-1519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Jenczyk J, Coy E, Jurga S. Poly(ethylene oxide)-block-polystyrene thin films morphology controlled by drying conditions and substrate topography. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Nazari M, Agbolaghi S, Abbaspoor S, Gheybi H, Abbasi F. Arrangement of Conductive Rod Nanobrushes via Conductive–Dielectric–Conductive Sandwiched Single Crystals of Poly(ethylene glycol) and Polyaniline Block Copolymers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Maryam Nazari
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Samira Agbolaghi
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Saleheh Abbaspoor
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Homa Gheybi
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials and ‡Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
43
|
Boott CE, Nazemi A, Manners I. Synthetische kovalente und nichtkovalente zweidimensionale Materialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Charlotte E. Boott
- School of Chemistry, University of Bristol, Bristol, BS8 1TS (Großbritannien)
| | - Ali Nazemi
- School of Chemistry, University of Bristol, Bristol, BS8 1TS (Großbritannien)
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol, BS8 1TS (Großbritannien)
| |
Collapse
|
44
|
Synthetic Covalent and Non-Covalent 2D Materials. Angew Chem Int Ed Engl 2015; 54:13876-94. [DOI: 10.1002/anie.201502009] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/18/2015] [Indexed: 11/07/2022]
|
45
|
Mechanisms and kinetics of the crystal thickening of poly(butadiene)-block-poly(ethylene oxide) during annealing within the melting range. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Effects of various polymer brushes on the crystallization of poly(ethylene glycol) in poly(ethylene glycol)-b-polystyrene and poly(ethylene glycol)-b-poly(methyl methacrylate) single crystals. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0493-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Bouchet R, Phan TNT, Beaudoin E, Devaux D, Davidson P, Bertin D, Denoyel R. Charge Transport in Nanostructured PS–PEO–PS Triblock Copolymer Electrolytes. Macromolecules 2014. [DOI: 10.1021/ma500420w] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Bouchet
- Laboratoire
d’Electrochimie et de Physico-chimie des Matériaux et
des Interfaces (LEPMI) UMR CNRS 5279, Grenoble Universités, 1130
rue de la piscine, 38402 St. Martin d’Hères, France
| | - T. N. T. Phan
- Institut
de Chimie Radicalaire - UMR 7273, Chimie Radicalaire Organique et
Polymères de Spécialité, Aix-Marseille Université, Campus Saint Jérôme, Case 542, 13397 Marseille, Cedex 20, France
| | - E. Beaudoin
- Institut
de Chimie Radicalaire - UMR 7273, Chimie Radicalaire Organique et
Polymères de Spécialité, Aix-Marseille Université, Campus Saint Jérôme, Case 542, 13397 Marseille, Cedex 20, France
- Laboratoire
de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Bâtiment 510, 91405 Orsay, Cedex, France
| | - D. Devaux
- Institut
de Chimie Radicalaire - UMR 7273, Chimie Radicalaire Organique et
Polymères de Spécialité, Aix-Marseille Université, Campus Saint Jérôme, Case 542, 13397 Marseille, Cedex 20, France
- MADIREL
- UMR 7246, Matériaux divisés, interfaces, réactivité,
électrochimie, Aix-Marseille Université, Campus saint Jérôme,
Bât. MADIREL, 13397 Marseille, Cedex 20, France
| | - P. Davidson
- Laboratoire
de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Bâtiment 510, 91405 Orsay, Cedex, France
| | - D. Bertin
- Institut
de Chimie Radicalaire - UMR 7273, Chimie Radicalaire Organique et
Polymères de Spécialité, Aix-Marseille Université, Campus Saint Jérôme, Case 542, 13397 Marseille, Cedex 20, France
| | - R. Denoyel
- MADIREL
- UMR 7246, Matériaux divisés, interfaces, réactivité,
électrochimie, Aix-Marseille Université, Campus saint Jérôme,
Bât. MADIREL, 13397 Marseille, Cedex 20, France
| |
Collapse
|
48
|
Hsiao MS, Yusoff SFM, Winnik MA, Manners I. Crystallization-Driven Self-Assembly of Block Copolymers with a Short Crystallizable Core-Forming Segment: Controlling Micelle Morphology through the Influence of Molar Mass and Solvent Selectivity. Macromolecules 2014. [DOI: 10.1021/ma402429d] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ming-Siao Hsiao
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
49
|
Abbaspoor S, Abbasi F, Agbolaghi S. A novel approach to prepare polymer mixed-brushes via single crystal surface patterning. RSC Adv 2014. [DOI: 10.1039/c4ra00086b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single crystals having matrix-dispersed surface morphologies were prepared and characterized.
Collapse
Affiliation(s)
- S. Abbaspoor
- Institute of Polymeric Materials
- Sahand University of Technology
- Tabriz, Iran
| | - F. Abbasi
- Institute of Polymeric Materials
- Sahand University of Technology
- Tabriz, Iran
| | - S. Agbolaghi
- Institute of Polymeric Materials
- Sahand University of Technology
- Tabriz, Iran
| |
Collapse
|
50
|
|