1
|
Li H, Yao S, Xia W, Ma X, Shi L, Ju H, Li Z, Zhong Y, Xie B, Tao Y. Targeted metabolome and transcriptome analyses reveal changes in gibberellin and related cell wall-acting enzyme-encoding genes during stipe elongation in Flammulina filiformis. Front Microbiol 2023; 14:1195709. [PMID: 37799602 PMCID: PMC10548271 DOI: 10.3389/fmicb.2023.1195709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Flammulina filiformis, a typical agaric fungus, is a widely cultivated and consumed edible mushroom. Elongation of its stipe (as the main edible part) is closely related to its yield and commercial traits; however, the endogenous hormones during stipe elongation and their regulatory mechanisms are not well understood. Gibberellin (GA) plays an important role in the regulation of plant growth, but little has been reported in macro fungi. In this study, we first treated F. filiformis stipes in the young stage with PBZ (an inhibitor of GA) and found that PBZ significantly inhibited elongation of the stipe. Then, we performed GA-targeted metabolome and transcriptome analyses of the stipe at both the young and elongation stages. A total of 13 types of GAs were detected in F. filiformis; the contents of ten of them, namely, GA3, GA4, GA8, GA14, GA19, GA20, GA24, GA34, GA44, and GA53, were significantly decreased, and the contents of three (GA5, GA9, and GA29) were significantly increased during stipe elongation. Transcriptome analysis showed that the genes in the terpenoid backbone biosynthesis pathway showed varying expression patterns: HMGS, HMGR, GPS, and FPPS were significantly upregulated, while CPS/KS had no significant difference in transcript level during stipe elongation. In total, 37 P450 genes were annotated to be involved in GA biosynthesis; eight of them were upregulated, twelve were downregulated, and the rest were not differentially expressed. In addition, four types of differentially expressed genes involved in stipe elongation were identified, including six signal transduction genes, five cell cycle-controlling genes, twelve cell wall-related enzymes and six transcription factors. The results identified the types and content of GAs and the expression patterns of their synthesis pathways during elongation in F. filiformis and revealed the molecular mechanisms by which GAs may affect the synthesis of cell wall components and the cell cycle of the stipe through the downstream action of cell wall-related enzymes, transcription factors, signal transduction and cell cycle control, thus regulating stipe elongation. This study is helpful for understanding the roles of GAs in stipe development in mushrooms and lays the foundation for the rational regulation of stipe length in agaric mushrooms during production.
Collapse
Affiliation(s)
- Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sen Yao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Weiwei Xia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinbin Ma
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huimin Ju
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ziyan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingli Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Reactive Oxygen Species Distribution Involved in Stipe Gradient Elongation in the Mushroom Flammulina filiformis. Cells 2022; 11:cells11121896. [PMID: 35741023 PMCID: PMC9221348 DOI: 10.3390/cells11121896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The mushroom stipe raises the pileus above the substrate into a suitable position for dispersing spores. The stipe elongates at different speeds along its length, with the rate of elongation decreasing in a gradient from the top to the base. However, the molecular mechanisms underlying stipe gradient elongation are largely unknown. Here, we used the model basidiomycete mushroom Flammulina filiformis to investigate the mechanism of mushroom stipe elongation and the role of reactive oxygen species (ROS) signaling in this process. Our results show that O2- and H2O2 exhibit opposite gradient distributions in the stipe, with higher O2- levels in the elongation region (ER), and higher H2O2 levels in the stable region (SR). Moreover, NADPH-oxidase-encoding genes are up-regulated in the ER, have a function in producing O2-, and positively regulate stipe elongation. Genes encoding manganese superoxide dismutase (MnSOD) are up-regulated in the SR, have a function in producing H2O2, and negatively regulate stipe elongation. Altogether, our data demonstrate that ROS (O2-/H2O2) redistribution mediated by NADPH oxidase and MnSODs is linked to the gradient elongation of the F. filiformis stipe.
Collapse
|
3
|
Li J, Shao Y, Yang Y, Xu C, Jing Z, Li H, Xie B, Tao Y. The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8050477. [PMID: 35628733 PMCID: PMC9147824 DOI: 10.3390/jof8050477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022] Open
Abstract
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier gene containing the JmjC domain in stipe elongation. First, we identified a JmjC domain family gene (FfJmhy) with a 3684 bp length open reading frame (ORF) in F. filiformis. FfJmhy was predicted to have a histone H3K9 demethylation function, and was specifically upregulated during stipe rapid elongation. Further investigation revealed that the silencing of FfJmhy inhibited the mycelial growth, while overexpression of this gene had no effect on the mycelial growth. Comparative analysis revealed that the stipe elongation rate in FfJmhy overexpression strains was significantly increased, while it was largely reduced when FfJmhy was silenced. Taken together, these results suggest that FfJmhy positively regulates the mycelial growth and controls the elongation speed and the length of the stipe. Moreover, cell wall-related enzymes genes, including three exo-β-1,3-glucanases, one β-1,6-glucan synthase, four chitinases, and two expansin proteins, were found to be regulated by FfJmhy. Based on the putative functions of FfJmhy, we propose that this gene enhances the transcription of cell wall-related enzymes genes by demethylating histone H3K9 sites to regulate remodeling of the cell wall in rapid stipe elongation. This study provides new insight into the mechanism of rapid stipe elongation, and it is important to regulate the commodity quality of agaric fungi.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanping Shao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China;
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
4
|
Liu C, Bi J, Kang L, Zhou J, Liu X, Liu Z, Yuan S. The molecular mechanism of stipe cell wall extension for mushroom stipe elongation growth. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Glucanase-Induced Stipe Wall Extension Shows Distinct Differences from Chitinase-Induced Stipe Wall Extension of Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.01345-19. [PMID: 31444203 DOI: 10.1128/aem.01345-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 11/20/2022] Open
Abstract
This study reports that a high concentration of the endo-β-1,3-glucanase ENG (200 μg ml-1) induced heat-inactivated stipe wall extension of Coprinopsis cinerea, whereas a high concentration of the extracellular β-glucosidase BGL2 (1,000 μg ml-1) did not; however, in combination, low concentrations of ENG (25 μg ml-1) and BGL2 (260 μg ml-1) induced heat-inactivated stipe cell wall extension. In contrast to the previously reported chitinase-reconstituted stipe wall extension, β-1,3-glucanase-reconstituted heat-inactivated stipe cell wall extension initially exhibited a fast extension rate that quickly decreased to zero after approximately 60 min; the stipe cell wall extension induced by a high concentration of β-1,3-glucanase did not result in stipe breakage during measurement, and the inner surfaces of glucanase-reconstituted extended cell walls still remained as amorphous matrices that did not appear to have been damaged. These distinctive features of the β-1,3-glucanase-reconstituted wall extension may be because chitin chains are cross-linked not only to the nonreducing termini of the side chains and the backbones of β-1,6 branched β-1,3-glucans but also to other polysaccharides. Remarkably, a low concentration of either the β-1,3-glucanase ENG or of chitinase ChiE1 did not induce heat-inactivated stipe wall extension, but a combination of these two enzymes, each at a low concentration, showed stipe cell wall extension activity that exhibited a steady and continuous wall extension profile. Therefore, we concluded that the stipe cell wall extension is the result of the synergistic actions of glucanases and chitinases.IMPORTANCE We previously reported that the chitinase could induce stipe wall extension and was involved in stipe elongation growth of the mushroom Coprinopsis cinerea In this study, we explored that β-1,3-glucanase also induced stipe cell wall extension. Interestingly, the extension profile and extended ultra-architecture of β-1,3-glucanase-reconstituted stipe wall were different from those of chitinase-reconstituted stipe wall. However, β-1,3-glucanase cooperated with chitinase to induce stipe cell wall extension. The significance of this synergy between glucanases and chitinases is that it enables a low concentration of active enzymes to induce wall extension, and the involvement of β-1,3-glucanases is necessary for the cell wall remodeling and the addition of new β-glucans during stipe elongation growth.
Collapse
|
6
|
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.00532-19. [PMID: 31126941 DOI: 10.1128/aem.00532-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension.IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.
Collapse
|
7
|
Vetchinkina E, Kupryashina M, Gorshkov V, Ageeva M, Gogolev Y, Nikitina V. Alteration in the ultrastructural morphology of mycelial hyphae and the dynamics of transcriptional activity of lytic enzyme genes during basidiomycete morphogenesis. J Microbiol 2017; 55:280-288. [PMID: 28124773 DOI: 10.1007/s12275-017-6320-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.
Collapse
Affiliation(s)
- Elena Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences IBPPM RAS, 13 Prospekt Entuziastov, Saratov, 410049, Russian Federation.
| | - Maria Kupryashina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences IBPPM RAS, 13 Prospekt Entuziastov, Saratov, 410049, Russian Federation
| | - Vladimir Gorshkov
- Laboratory of Molecular Biology, Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, 2/31 Lobachevsky street, Kazan, 420111, Russian Federation
- Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russian Federation
| | - Marina Ageeva
- Laboratory of Molecular Biology, Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, 2/31 Lobachevsky street, Kazan, 420111, Russian Federation
| | - Yuri Gogolev
- Laboratory of Molecular Biology, Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, 2/31 Lobachevsky street, Kazan, 420111, Russian Federation
- Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russian Federation
| | - Valentina Nikitina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences IBPPM RAS, 13 Prospekt Entuziastov, Saratov, 410049, Russian Federation
| |
Collapse
|
8
|
Niu X, Liu Z, Zhou Y, Wang J, Zhang W, Yuan S. Stipe cell wall architecture varies with the stipe elongation of the mushroom Coprinopsis cinerea. Fungal Biol 2015; 119:946-956. [PMID: 26399189 DOI: 10.1016/j.funbio.2015.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
A large amount of granular protrusions overlie the outer cell wall surfaces in both elongating and non-elongating stipe regions but overlie the inner cell wall surfaces only in non-elongating stipe regions. Removal of granular protrusions using alkali, amorphous materials overlying on both the inner and outer cell wall surfaces were explored in the non-elongating stipe regions. β-1,3-Glucanase treatment not only removed above those granular protrusions and underlying amorphous materials on the wall surfaces but also removed wall matrices embedding chitin microfibrils on the cell walls of most stipe regions, except for the outer cell wall surfaces of the non-elongating stipe regions where most of the wall matrices remained. The chitin microfibrils were closely and transversely arranged on both the inner and outer cell wall surfaces in the elongating apical stipe region, whereas they were loosely and transversely arranged on the inner cell wall surfaces and further became sparser and even randomly arranged on the outer cell wall surface in the non-elongating stipe regions. We propose that the surface deposition of granular protrusions and amorphous materials and the change of microfibril architecture and wall matrices may cause loss of wall plasticity and cessation of stipe elongation.
Collapse
Affiliation(s)
- Xin Niu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yajun Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jun Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenming Zhang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Zhou Y, Zhang W, Liu Z, Wang J, Yuan S. Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies. MICROBIOLOGY-SGM 2015. [PMID: 26199012 DOI: 10.1099/mic.0.000143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using a combined chromatography method, we simultaneously purified three protein fractions (II-2, II-3 and II-4) with 1,3-β-glucanase activity from extraction of pilei of Coprinopsis cinerea fruiting bodies. MALDI-TOF/TOF amino acid sequencing showed that these three fractions matched a putative exo-1,3-β-glucanase, a putative glucan 1,3-β-glucosidase and a putative glycosyl hydrolase family 16 protein annotated in the C. cinerea genome, respectively; however, they were characterized as a 1,3-β-glucosidase, an exo-1,3-β-glucanase and an endo-1,3-β-glucanase, respectively, by analysis of their substrate specificities and modes of action. This study explored how these three 1,3-β-glucoside hydrolases synergistically acted on laminarin: the endo-1,3-β-glucanase hydrolysed internal glycosidic bonds of laminarin to generate 1,3-β-oligosaccharides of various lengths, the exo-1,3-β-glucanase cleaved the longer-chain laminarioligosaccharides into short-chain disaccharides, laminaribiose and gentiobiose, and the 1,3-β-glucosidase further hydrolysed laminaribiose to glucose. The remaining gentiobiose must be hydrolysed by other 1,6-β-glucosidases. Therefore, the endo-1,3-β-glucanase, exo-1,3-β-glucanase and 1,3-β-glucosidase may act synergistically to completely degrade the 1,3-β-glucan backbone of the C. cinerea cell wall during fruiting body autolysis. These three 1,3-β-glucoside hydrolases share a similar optimum pH and optimum temperature, supporting the speculation that these enzymes work together under the same conditions to degrade 1,3-β-glucan in the C. cinerea cell wall during fruiting body autolysis.
Collapse
Affiliation(s)
- Yajun Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenming Zhang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jun Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
10
|
Vetchinkina EP, Gorshkov VY, Ageeva MV, Gogolev YV, Nikitina VE. Activity and expression of laccase, tyrosinase, glucanase, and chitinase genes during morphogenesis of Lentinus edodes. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Zhang W, Wu X, Zhou Y, Liu Z, Zhang W, Niu X, Zhao Y, Pei S, Zhao Y, Yuan S. Characterization of stipe elongation of the mushroom Coprinopsis cinerea. MICROBIOLOGY-SGM 2014; 160:1893-1902. [PMID: 24996826 DOI: 10.1099/mic.0.079418-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, we observed an acid-induced short-term wall extension in Flammulina velutipes apical stipes during a 15 min period after a change from a neutral to an acidic pH. This acid-induced stipe wall extension was eliminated by heating and reconstituted by a snail expansin-like protein, although we failed to isolate any endogenous expansin-like protein from F. velutipes because of its limited 1 mm fast elongation region. In this study, we report that Coprinopsis cinerea stipes possess a 9 mm fast elongation apical region, which is suitable as a model material for wall extension studies. The elongating apical stipe showed two phases of acid-induced wall extension, an initial quick short-term wall extension during the first 15 min and a slower, gradually decaying long-term wall extension over the subsequent 2 h. After heating or protein inactivation pretreatment, apical stipes lost the long-term wall extension, retaining a slower short-term wall extension, which was reconstituted by an expansin-like snail protein. In contrast, the non-elongating basal stipes showed only a weaker short-term wall extension. We propose that the long-term wall extension is a protein-mediated process involved in stipe elongation, whereas the short-term wall extension is a non-protein mediated process not involved in stipe elongation.
Collapse
Affiliation(s)
- Wenming Zhang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiuxiu Wu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yajun Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen Zhang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin Niu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Zhao
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Siyu Pei
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yang Zhao
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
12
|
Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa. Fungal Biol 2013; 118:1-11. [PMID: 24433673 DOI: 10.1016/j.funbio.2013.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 11/22/2022]
Abstract
Expansin proteins extend plant cell walls by a hydrolysis-free process that disrupts hydrogen bonding between cell wall polysaccharides. However, it is unknown if this mechanism is operative in mushrooms. Herein we report that the native wall extension activity was located exclusively in the 10 mm apical region of 30 mm Flammulina velutipes stipes. The elongation growth was restricted also to the 9 mm apical region of the stipes where the elongation growth of the 1st millimetre was 40-fold greater than that of the 5th millimetre. Therefore, the wall extension activity represents elongation growth of the stipe. The low concentration of expansin-like protein in F. velutipes stipes prevented its isolation. However, we purified an expansin-like protein from snail stomach juice which reconstituted heat-inactivated stipe wall extension without hydrolytic activity. So the previous hypotheses that stipe wall extension was resulted from hydrolysis of wall polymers by enzymes or disruption of hydrogen bonding of wall polymers exclusively by turgor pressure are challenged. We suggest that stipe wall extension may be mediated by endogenous expansin-like proteins that facilitate cell wall polymer slippage by disrupting noncovalent bonding between glucan chains or chitin chains.
Collapse
|
13
|
Kawai R, Igarashi K, Samejima M. Gene Cloning and Heterologous Expression of Glycoside Hydrolase Family 55 β-1,3-Glucanase from the Basidiomycete Phanerochaete Chrysosporium. Biotechnol Lett 2006; 28:365-71. [PMID: 16614901 DOI: 10.1007/s10529-005-6179-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 12/12/2005] [Indexed: 10/24/2022]
Abstract
The basidiomycete Phanerochaete chrysosporium produces several beta-1,3-glucanases when grown on laminarin, a beta-1,3/1,6-glucan, as the sole carbon source. To characterize one of the major unknown beta-1, 3-glucanases with a molecular mass of 83 kDa, identification, cloning, and heterologous over-expression were carried out using the total genomic information of P. chrysosporium. The cDNA encoding this enzyme included an ORF of 2337 bp and the deduced amino acid sequence contains a predicted signal peptide of 26 amino acids and the mature protein of 752 amino acids. The amino acid sequence showed a significant similarity with glycoside hydrolase family 55 enzymes from filamentous fungi and was named Lam55A. Since the recombinant Lam55A expressed in the methylotrophic yeast Pichia pastoris degraded branched beta-1,3/1,6-glucan as well as linear beta-1,3-glucan, the kinetic features of the enzyme were compared with those of other beta-1,3-glucanases.
Collapse
Affiliation(s)
- Rie Kawai
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
14
|
Kawai R, Igarashi K, Yoshida M, Kitaoka M, Samejima M. Hydrolysis of beta-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-beta-glucanase from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2005; 71:898-906. [PMID: 16374635 DOI: 10.1007/s00253-005-0214-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
When Phanerochaete chrysosporium was grown with laminarin (a beta-1,3/1,6-glucan) as the sole carbon source, a beta-1,3-glucanase with a molecular mass of 36 kDa was produced as a major extracellular protein. The cDNA encoding this enzyme was cloned, and the deduced amino acid sequence revealed that this enzyme belongs to glycoside hydrolase family 16; it was named Lam16A. Recombinant Lam16A, expressed in the methylotrophic yeast Pichia pastoris, randomly hydrolyzes linear beta-1,3-glucan, branched beta-1,3/1,6-glucan, and beta-1,3-1,4-glucan, suggesting that the enzyme is a typical endo-1,3(4)-beta-glucanase (EC 3.2.1.6) with broad substrate specificity for beta-1,3-glucans. When laminarin and lichenan were used as substrates, Lam16A produced 6-O-glucosyl-laminaritriose (beta-D-Glcp-(1->6)-beta-D-Glcp-(1->3)-beta-D-Glcp-(1->3)-D-Glc) and 4-O-glucosyl-laminaribiose (beta-D-Glcp-(1->4)-beta-D-Glcp-(1->3)-D-Glc), respectively, as one of the major products. These results suggested that the enzyme strictly recognizes beta-D-Glcp-(1->3)-D-Glcp at subsites -2 and -1, whereas it permits 6-O-glucosyl substitution at subsite +1 and a beta-1,4-glucosidic linkage at the catalytic site. Consequently, Lam16A generates non-branched oligosaccharide from branched beta-1,3/1,6-glucan and, thus, may contribute to the effective degradation of such molecules in combination with other extracellular beta-1,3-glucanases.
Collapse
Affiliation(s)
- Rie Kawai
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
15
|
Kulminskaya AA, Thomsen KK, Shabalin KA, Sidorenko IA, Eneyskaya EV, Savel'ev AN, Neustroev KN. Isolation, enzymatic properties, and mode of action of an exo-1,3-beta-glucanase from Trichoderma viride. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6123-31. [PMID: 11733006 DOI: 10.1046/j.0014-2956.2001.02558.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An exo-1,3-beta-glucanase has been isolated from cultural filtrate of T. viride AZ36. The N-terminal sequence of the purified enzyme (m = 61 +/- 1 kDa) showed no significant homology to other known glucanases. The 1,3-beta-glucanase displayed high activity against laminarins, curdlan, and 1,3-beta-oligoglucosides, but acted slowly on 1,3-1,4-beta-oligoglucosides. No significant activity was detected against high molecular mass 1,3-1,4-beta-glucans. The enzyme carried out hydrolysis with inversion of the anomeric configuration. Whereas only glucose was released from the nonreducing terminus during hydrolysis of 1,3-beta-oligoglucosides, transient accumulation of gentiobiose was observed during hydrolysis of laminarins. The gentiobiose was subsequently degraded to glucose. The Michaelis constants Km and Vmax have been determined for the hydrolysis of 1,3-beta-oligoglucosides with degrees of polymerization ranging from 2 to 6. Based on these data, binding affinities for subsites were calculated. Substrate binding site contained at least five binding sites for sugar residues.
Collapse
Affiliation(s)
- A A Kulminskaya
- Petersburg Nuclear Physics Institute, Russian Academy of Science, St Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Coprinus cinereus has two main types of mycelia, the asexual monokaryon and the sexual dikaryon, formed by fusion of compatible monokaryons. Syngamy (plasmogamy) and karyogamy are spatially and temporally separated, which is typical for basidiomycetous fungi. This property of the dikaryon enables an easy exchange of nuclear partners in further dikaryotic-monokaryotic and dikaryotic-dikaryotic mycelial fusions. Fruiting bodies normally develop on the dikaryon, and the cytological process of fruiting-body development has been described in its principles. Within the specialized basidia, present within the gills of the fruiting bodies, karyogamy occurs in a synchronized manner. It is directly followed by meiosis and by the production of the meiotic basidiospores. The synchrony of karyogamy and meiosis has made the fungus a classical object to study meiotic cytology and recombination. Several genes involved in these processes have been identified. Both monokaryons and dikaryons can form multicellular resting bodies (sclerotia) and different types of mitotic spores, the small uninucleate aerial oidia, and, within submerged mycelium, the large thick-walled chlamydospores. The decision about whether a structure will be formed is made on the basis of environmental signals (light, temperature, humidity, and nutrients). Of the intrinsic factors that control development, the products of the two mating type loci are most important. Mutant complementation and PCR approaches identified further genes which possibly link the two mating-type pathways with each other and with nutritional regulation, for example with the cAMP signaling pathway. Among genes specifically expressed within the fruiting body are those for two galectins, beta-galactoside binding lectins that probably act in hyphal aggregation. These genes serve as molecular markers to study development in wild-type and mutant strains. The isolation of genes for potential non-DNA methyltransferases, needed for tissue formation within the fruiting body, promises the discovery of new signaling pathways, possibly involving secondary fungal metabolites.
Collapse
Affiliation(s)
- U Kües
- ETH Zürich, Institut für Mikrobiologie, CH-8092 Zürich, Switzerland
| |
Collapse
|
17
|
Fontaine T, Hartland RP, Beauvais A, Diaquin M, Latge JP. Purification and characterization of an endo-1,3-beta-glucanase from Aspergillus fumigatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:315-21. [PMID: 9030754 DOI: 10.1111/j.1432-1033.1997.0315a.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An endo-1,3-beta-glucanase was purified from a cell wall autolysate of Aspergillus fumigatus. This beta-glucanase activity was associated with a glycosylated 74-kDa protein. Using a sensitive colorimetric assay and a high-performance anion-exchange chromatography with a pulsed electrochemical detector for product analysis, it was shown that the endoglucanase hydrolysed exclusively linear 1,3-beta-glucan chains, had an optimum pH of 7.0 and an optimum temperature of 60 degrees C. A substrate kinetic study gave a Km value of 0.3 mg/ml for soluble (laminarin and laminari-oligosaccharides) and 1.18 mg/ml for insoluble (curdlan) 1,3-beta-glucan. Laminari-oligosaccharide degradation, analysed by HPLC, showed that the endoglucanase bind to the subtrate at several positions and suggested that the active site of the enzyme recognized five glucose units linked by a 1,3-beta bond. The association of the present endo-1,3-beta-glucanase with the cell wall of A. fumigatus suggests a putative role for this enzyme during cell-wall morphogenesis.
Collapse
Affiliation(s)
- T Fontaine
- Institut Pasteur, Laboratoire des Aspergillus, Paris, France
| | | | | | | | | |
Collapse
|
18
|
Rapp P. Formation, separation and characterization of three beta-1,3-glucanases from Sclerotium glucanicum. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1117:7-14. [PMID: 1627595 DOI: 10.1016/0304-4165(92)90155-n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The appearance of beta-1,3-glucanases in supernatants of Sclerotium glucanicum cultures was followed by SDS-PAGE and shown to be dependent on cultivation time. Three beta-1,3-glucanases were isolated and purified. Glucanase I and III appeared homogeneous on SDS-PAGE with molecular masses of 85 and 33.5 kDa, respectively. Enzyme I was an endo-splitting beta-1,3-glucanase. In hydrolyzing laminarin it released glucose, laminaritriose and laminaribiose as major endproducts and smaller amounts of higher oligosaccharides. Enzyme III was an exo-beta-1,3-glucanase removing glucose from laminarin and gentiobiose and glucose from scleroglucan. For laminarin as substrate the Km of enzyme I and III was 2.5 and 3.33 mg/ml, respectively. Enzyme II was only partially purified and found to be also an exo-beta-1,3-glucanase, releasing glucose as the only hydrolysis product from laminarin. It did not attack scleroglucan. Its molecular weight was determined to be 78 kDa. Optimum pH and temperature of the three enzymes were determined. The three activities were significantly inhibited by 1 mM Hg2+.
Collapse
Affiliation(s)
- P Rapp
- Institut für Biochemie und Biotechnologie, Technischen Universität Braunschweig, Germany
| |
Collapse
|