Saha BC, Bothast RJ. Purification and characterization of a novel thermostable alpha-L-arabinofuranosidase from a color-variant strain of Aureobasidium pullulans.
Appl Environ Microbiol 1998;
64:216-20. [PMID:
9435077 PMCID:
PMC124696 DOI:
10.1128/aem.64.1.216-220.1998]
[Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1997] [Accepted: 10/29/1997] [Indexed: 02/05/2023] Open
Abstract
A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced alpha-L-arabinofuranosidase (alpha-L-AFase) when grown in liquid culture on oat spelt xylan. An extracellular alpha-L-AFase was purified 215-fold to homogeneity from the culture supernatant by ammonium sulfate treatment, DEAE Bio-Gel A agarose column chromatography, gel filtration on a Bio-Gel A-0.5m column, arabinan-Sepharose 6B affinity chromatography, and SP-Sephadex C-50 column chromatography. The purified enzyme had a native molecular weight of 210,000 and was composed of two equal subunits. It had a half-life of 8 h at 75 degrees C, displayed optimal activity at 75 degrees C and pH 4.0 to 4.5, and had a specific activity of 21.48 mumol min-1. mg-1 of protein against p-nitrophenyl-alpha-L-arabinofuranoside (pNP alpha AF). The purified alpha-L-AFase readily hydrolyzed arabinan and debranched arabinan and released arabinose from arabinoxylans but was inactive against arabinogalactan. The K(m) values of the enzyme for the hydrolysis of pNP alpha AF, arabinan, and debranched arabinan at 75 degrees C and pH 4.5 were 0.26 mM, 2.14 mg/ml, and 3.25 mg/ml, respectively. The alpha-L-AFase activity was not inhibited at all by L-arabinose (1.2 M). The enzyme did not require a metal ion for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM).
Collapse