1
|
Peron S, Zordan MA, Magnabosco A, Reggiani C, Megighian A. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:173-83. [PMID: 19427393 DOI: 10.1016/j.cbpa.2009.04.626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
Abstract
The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies.
Collapse
Affiliation(s)
- Samantha Peron
- Department of Anatomy and Physiology, University of Padua, Italy
| | | | | | | | | |
Collapse
|
2
|
Hamilton J, Dillaman RM, Worden MK. Neuromuscular synapses on the dactyl opener muscle of the lobster Homarus americanus. Cell Tissue Res 2006; 326:823-34. [PMID: 16788836 DOI: 10.1007/s00441-006-0221-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
Abstract
The crustacean dactyl opener neuromuscular system has been studied extensively as a model system that exhibits several forms of synaptic plasticity. We report the ultrastructural features of the synapses on dactyl opener of the lobster (Homarus americanus) as determined by examination of serial thin sections. Several innervation sites supplied by an inhibitory motoneuron have been observed without nearby excitatory innervation, indicating that excitatory and inhibitory inputs to the muscle are not always closely matched. The ultrastructural features of the lobster synapses are generally similar to those described previously for the homologous crayfish muscle, with one major distinction: few dense bars are seen at the presynaptic membranes of these lobster synapses. The majority of the lobster neuromuscular synapses lack dense bars altogether, and the mean number of dense bars per synapse is relatively low. In view of the finding that the physiology of the lobster dactyl opener synapses is similar to that reported for crayfish, these ultrastructural observations suggest that the structural complexity of the synapses may not be a critical factor determining synaptic plasticity.
Collapse
Affiliation(s)
- Jonna Hamilton
- Department of Neuroscience, University of Virginia, P.O. Box 801392, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
3
|
Govind CK, Coulthard R, Pearce J. Allotransplanted nerves regenerate inhibitory synapses on a crayfish muscle: Possible postsynaptic specification. JOURNAL OF NEUROBIOLOGY 2002; 53:80-9. [PMID: 12360585 DOI: 10.1002/neu.10104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Donor nerves of different origins, when transplanted onto a previously denervated adult crayfish abdominal superficial flexor muscle (SFM), regenerate excitatory synaptic connections. Here we report that an inhibitory axon in these nerves also regenerates synaptic connections based on observation of nerve terminals with irregular to elliptically shaped synaptic vesicles characteristic of the inhibitory axon in aldehyde fixed tissue. Inhibitory terminals were found at reinnervated sites in all 12 allotransplanted-SFMs, underscoring the fact that the inhibitory axon regenerates just as reliably as the excitatory axons. At sites with degenerating nerve terminals and at sparsely reinnervated sites, we observe densely stained membranes, reminiscent of postsynaptic membranes, but occurring as paired, opposing membranes, extending between extracellular channels of the subsynaptic reticulum. These structures are not found at richly innervated sites in allotransplanted SFMs, in control SFMs, or at several other crustacean muscles. Although their identity is unknown, they are likely to be remnant postsynaptic membranes that become paired with collapse of degenerated nerve terminals of excitatory and inhibitory axons. Because these two axons have uniquely different receptor channels and intramembrane structure, their remnant postsynaptic membranes may therefore attract regenerating nerve terminals to form synaptic contacts selectively by excitatory or inhibitory axons, resulting in postsynaptic specification.
Collapse
Affiliation(s)
- C K Govind
- Life Sciences Division, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4 Canada.
| | | | | |
Collapse
|
4
|
Affiliation(s)
- C K Govind
- Life Sciences Division, University of Toronto at Scarborough, Scarborough, Ontario, Canada.
| | | |
Collapse
|
5
|
Kirk MD, Meyer JS, Miller MW, Govind CK. Dichotomy in phasic-tonic neuromuscular structure of crayfish inhibitory axons. J Comp Neurol 2001; 435:283-90. [PMID: 11406812 DOI: 10.1002/cne.1030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Crustacean muscles are unique in their innervation by both excitatory and inhibitory neurons; therefore, they exhibit polyneuronal and multiterminal innervation. Because excitatory motoneurons are broadly divided into phasic and tonic types, we hypothesized that inhibitory neurons would follow a similar dichotomy. The abdominal extensor muscles in crayfish are separated into parallel deep and superficial bundles; the former has fast muscle fibers innervated by phasic excitatory motoneurons, and the latter has slow fibers supplied by tonic excitatory motoneurons. Each muscle also is innervated by a single, separate inhibitory neuron that uses gamma-aminobutyric acid (GABA) as the inhibitory neurotransmitter. The pattern of axonal branching by the separate inhibitory axons in phasic and tonic abdominal extensor muscles was visualized with confocal microscopy in preparations labeled for GABA-like immunoreactivity. Initial observations indicated that the phasic muscle was covered by extensive GABAergic, filiform axon terminals, whereas innervation of the tonic muscle was comprised of more localized and varicose terminals. With quantitative analyses, we found that the phasic axon has a more highly branched nature than the tonic in first- and second-order branches. The phasic axon branches also were significantly longer than the tonic branches in the second- and third-order branches. Synaptic varicosities in the phasic branches were smaller and less frequent than those in the tonic branches. The fine structure of the inhibitory nerve terminals near synaptic contacts examined with thin-serial-section electron microscopy revealed distinct differences between the phasic system and the tonic system. The phasic terminals were smaller in cross-sectional area than the tonic terminals, and they had smaller synapses and fewer mitochondria. The presynaptic active zone dense bodies were similar in length and number between phasic and tonic synapses. However, their number per synaptic area was two-fold higher in phasic synapses compared with tonic synapses because of the smaller size of the phasic synapses. Thus, within the same neuromuscular system, inhibitory synaptic terminals revealed unique phasic and tonic identities similar to those observed for the excitatory axons.
Collapse
Affiliation(s)
- M D Kirk
- Department of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
6
|
Hirji R, Coulthard R, Govind CK. Regenerated synaptic terminals on a crayfish slow muscle identify with transplanted phasic or tonic axons. JOURNAL OF NEUROBIOLOGY 2000; 45:185-93. [PMID: 11074464 DOI: 10.1002/1097-4695(20001115)45:3<185::aid-neu6>3.0.co;2-g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phasic or tonic nerves transplanted onto a denervated slow superficial flexor muscle in adult crayfish regenerated synaptic connections that displayed large or small excitatory postsynaptic potentials (EPSPs), respectively, suggesting that the neuron specifies the type of synapse that forms (Krause et al., J Neurophysiol 80:994-997, 1998). To test the hypothesis that such neuronal specification would extend to the synaptic structure as well, we examined the regenerated synaptic terminals with thin serial section electron microscopy. There are distinct differences in structure between regenerated phasic and tonic innervation. The phasic nerve provides more profuse innervation because innervation sites occurred more frequently and contained larger numbers of synaptic terminals than the tonic nerve. Preterminal axons of the phasic nerve also had many more sprouts than those of the tonic nerve. Phasic terminals were thinner and had a lower mitochondrial volume than their tonic counterparts. Phasic synapses were half the size of tonic ones, although their active zone-dense bars were similar in length. The density of active zones was higher in the phasic compared with the tonic innervation, based on estimates of the number of dense bars per synapse, per synaptic area, and per nerve terminal volume. Because these differences mirror those seen between phasic and tonic axons in crayfish muscle in situ, we conclude that the structure of the regenerated synaptic terminals identify with their transplanted axons rather than with their target muscle. Therefore, during neuromuscular regeneration in adult crayfish, the motoneuron appears to specify the identity of synaptic connections.
Collapse
Affiliation(s)
- R Hirji
- Life Sciences Division, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada
| | | | | |
Collapse
|
7
|
Sharman A, Hirji R, Birmingham JT, Govind CK. Crab stomach pyloric muscles display not only excitatory but inhibitory and neuromodulatory nerve terminals. J Comp Neurol 2000; 425:70-81. [PMID: 10940943 DOI: 10.1002/1096-9861(20000911)425:1<70::aid-cne7>3.0.co;2-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Movements of the foregut in crustaceans are produced by striated muscles that are innervated by motor neurons in the stomatogastric ganglion (STG). Firing of the STG motor neurons generates excitatory junctional potentials (EJPs) in the stomach muscles. We now provide evidence for the existence of separate inhibitory and neuromodulatory innervations of some pyloric muscles in the foregut of several crabs, Callinectes sapidus, Cancer magister, and Cancer borealis. Electron microscopic examination of several pyloric muscles revealed three distinct types of nerve terminals. Excitatory terminals were readily identified by the spherical shape of their small, clear synaptic vesicles. These terminals also housed a few large dense core vesicles. Inhibitory nerve terminals were recognized by the elliptical shape of their small, clear synaptic vesicles, and contacted the muscles at well-defined synapses equipped with dense bar active zones. Bath application of GABA reduced the amplitudes of EJPs in a pyloric muscle of C. borealis, consistent with the presence of GABAergic inhibitory innervation. Neuromodulatory terminals were characterized by their predominant population of large dense and dense core vesicles. These terminals formed synapses with presynaptic dense bars on the muscle, as well as on the excitatory and inhibitory nerve terminals. The presence of the inhibitory and neuromodulatory terminals creates a functional context for previously described reports of neuromodulatory actions on stomach muscles and suggests that the transfer function from STG motor patterns to pyloric movement may be orchestrated by a complex innervation from sources outside of the STG itself.
Collapse
Affiliation(s)
- A Sharman
- Life Sciences Division, University of Toronto at Scarborough, Scarborough, Ontario M1C1A4, Canada
| | | | | | | |
Collapse
|
8
|
Calcium entry related to active zones and differences in transmitter release at phasic and tonic synapses. J Neurosci 1999. [PMID: 10493743 DOI: 10.1523/jneurosci.19-19-08419.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic functional differentiation of crayfish phasic and tonic motor neurons is large. For one impulse, quantal release of neurotransmitter is typically 100-1000 times higher for phasic synapses. We tested the hypothesis that differences in synaptic strength are determined by differences in synaptic calcium entry. Calcium signals were measured with the injected calcium indicator dyes Calcium Green-1 and fura-2. Estimated Ca(2+) entry increased almost linearly with frequency for both axons and was two to three times larger in phasic terminals. Tonic terminal Ca(2+) at 10 Hz exceeded phasic terminal Ca(2+) at 1 Hz, yet transmitter release was much higher for phasic terminals at these frequencies. Freeze-fracture images of synapses revealed on average similar numbers of prominent presynaptic active zone particles (putative ion channels) for both neurons and a two- to fourfold phasic/tonic ratio of active zones per terminal volume. This can account for the larger calcium signals seen in phasic terminals. Thus, differences in synaptic strength are less closely linked to differences in synaptic channel properties and calcium entry than to differences in calcium sensitivity of transmitter release.
Collapse
|
9
|
Rheuben MB, Yoshihara M, Kidokoro Y. Ultrastructural correlates of neuromuscular junction development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1999; 43:69-92. [PMID: 10218155 DOI: 10.1016/s0074-7742(08)60541-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- M B Rheuben
- Department of Anatomy, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
10
|
Feeney C, Karunanithi S, Pearce J, Govind C, Atwood H. Motor nerve terminals on abdominal muscles in larval flesh flies,Sarcophaga bullata: Comparisons withDrosophila. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<197::aid-cne5>3.0.co;2-q] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Abstract
Single discrete muscle fibers were found in regenerating motor nerves in adult crayfish. The regenerating nerves were from native or transplanted ganglia in the third abdominal segments and consisted of several motor axons. The proximal end of these motor axons showed numerous sprouts. Muscle fibers in these regenerating nerves appeared newly developed and were innervated by excitatory nerve terminals. A likely source of these novel muscle fibers may be blood cells in the nerve or satellite cells from neighboring muscle. Contacts made by axon sprouts with other axon sprouts, glia, and muscle fiber, in the form of a dense bar with clustered clear vesicles, characterized the regenerating nerve. These contacts may provide a possible signaling pathway for axon regeneration and myogenesis.
Collapse
Affiliation(s)
- J Pearce
- Life Sciences Division, University of Toronto at Scarborough, Scarborough, Ontario M1C 1A4, Canada
| | | | | |
Collapse
|
12
|
Atwood HL, Karunanithi S, Georgiou J, Charlton MP. Strength of synaptic transmission at neuromuscular junctions of crustaceans and insects in relation to calcium entry. INVERTEBRATE NEUROSCIENCE : IN 1997; 3:81-7. [PMID: 9783434 DOI: 10.1007/bf02480362] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crustacean and insect neuromuscular junctions typically include numerous small synapses, each of which usually contains one or more active zones, which possess voltage-sensitive calcium channels and are specialized for release of synaptic vesicles. Strength of transmission (the number of quantal units released per synapse by a nerve impulse) varies greatly among different endings of individual neurons, and from one neuron to another. Ultrastructural features of synapses account for some of the physiological differences at endings of individual neurons. The nerve terminals that release more neurotransmitter per impulse have a higher incidence of synapses with more than one active zone, and this is correlated with more calcium build-up during stimulation. However, comparison of synaptic structure in neurons with different physiological phenotypes indicates no major differences in structure that could account for their different levels of neurotransmitter release per impulse, and release per synapse differs among neurons despite similar calcium build-up in their terminals during stimulation. The evidence indicates differences in calcium sensitivity of the release process among neurons as an aspect of physiological specialization.
Collapse
Affiliation(s)
- H L Atwood
- Department of Physiology, University of Toronto, Ont., Canada.
| | | | | | | |
Collapse
|
13
|
Govind CK, Bevengut M, Pearce J. Lobster swimmerets: Muscle fiber composition and membrane definition of excitatory synapses in a predominantly fast system. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/jez.1402720103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Govind CK, Atwood HL, Pearce J. Inhibitory axoaxonal and neuromuscular synapses in the crayfish opener muscle: membrane definition and ultrastructure. J Comp Neurol 1995; 351:476-88. [PMID: 7706554 DOI: 10.1002/cne.903510313] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The specific inhibitory motoneuron to the crayfish (Procambarus clarkii) opener muscle provides neuromuscular synapses to the muscle fibers and axoaxonal synapses to the excitatory motor nerve terminals. Freeze fracture of the membrane in both types of synapses show that the presynaptic active zone consists of clusters of large particles (putative calcium channels), which are often encircled by large depressions representing fused synaptic vesicles on the internal leaflet or P face of the presynaptic membrane. Corresponding pits and protrusions mark the external leaflet or E face of the presynaptic membrane. The postsynaptic receptor-bearing surface, characterized for neuromuscular synapses only, consists of rows of particles on both leaflets of the muscle membrane. The organization differs from that seen at excitatory synapses where particles occur only on the E-face leaflet. Serial thin sections of nerve terminals reveal that neuromuscular synapses are significantly larger in proximal fibers than in their central counterparts and support a greater number of presynaptic dense bars (active zones). Axoaxonal synapses also show regional differences; almost three times as many occur in the proximal region compared with the central region. Most synapses possess a single dense bar. The majority of synapses formed by the inhibitory axon are neuromuscular; a minority are axoaxonal. The latter occur in various locations along the excitatory nerve terminals as well as on branches of the axon itself. This preterminal or "off-shore" location could act to cut off entire populations of excitatory synapses or reduce the amplitude of the preterminal action potential.
Collapse
Affiliation(s)
- C K Govind
- Life Sciences Division, Scarborough College, University of Toronto, Scarborough, Ontario, Canada
| | | | | |
Collapse
|
15
|
Govind CK, Pearce J, Wojtowicz JM, Atwood HL. "Strong" and "weak" synaptic differentiation in the crayfish opener muscle: structural correlates. Synapse 1994; 16:45-58. [PMID: 8134900 DOI: 10.1002/syn.890160106] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The single excitor motoneuron to the limb opener muscle in the crayfish Procambarus clarkii provides multiterminal innervation to individual muscle fibers. At low impulse frequencies, these neuromuscular synapses generate a threefold larger junctional potential in fibers of the proximal region of the muscle compared to those in the central region. Focal extracellular recording from synapse-bearing "boutons" showed more quantal release at low frequencies in the proximal region. Structural correlates for the physiological differences were sought. Fluorescence microscopy of surface innervation stained with a vital fluorescent dye, 4-Di-2-Asp, showed that density of innervation was not greater in the proximal region and thus could not account for the overall differences in synaptic strength. Freeze fracture studies showed that the intramembrane organization of excitatory synapses and their active zones was qualitatively similar in proximal and central sites. Serial section electron microscopy of several innervation sites in proximal and central regions showed homogeneity in number and size of synapses. However, presynaptic dense bars (at release sites, or active zones) were longer and occurred at a higher density in proximal than in central synapses. The differences in number and length of presynaptic dense bars correlate positively with the differences in synaptic strength represented by junctional potential amplitudes and quantal contents of individual surface recording sites. Since many individual proximal synapses have multiple dense bars, co-operativity among these may serve to enhance transmitter output. It is concluded that occurrence of dense bars is a significant presynaptic correlate of synaptic strength in this neuron.
Collapse
Affiliation(s)
- C K Govind
- Life Sciences Division, Scarborough College, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Atwood HL, Cooper RL, Wojtowicz JM. Nonuniformity and plasticity of quantal release at crustacean motor nerve terminals. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1994; 29:363-82. [PMID: 7848722 DOI: 10.1016/s1040-7952(06)80026-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H L Atwood
- Department of Physiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Pearce J, Govind CK. Reciprocal axo-axonal synapses between the common inhibitor and excitor motoneurons in crustacean limb muscles. JOURNAL OF NEUROCYTOLOGY 1993; 22:259-65. [PMID: 8478645 DOI: 10.1007/bf01187124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nerve terminals of the common inhibitor motoneuron in a crab (Eriphia spiniforns) limb closer muscle and in a crayfish (Procambarus clarkii) limb accessory flexor muscle make neuromuscular synapses with the muscle membrane (postsynaptic inhibition) as well as axo-axonal synapses with the terminals of the excitatory axon (presynaptic inhibition). That transmission is from the inhibitor to the excitor terminals at these axo-axonal synapses is indicated by the occurrence on the inhibitor membrane of presynaptic dense bars denoting sites of transmitter release. Axo-axonal synapses with the opposite polarity, in which transmission is from an excitatory onto an inhibitory terminal, were occasionally seen either adjacent to or separate from the inhibitory axo-axonal synapse. Nerve terminals of the specific inhibitor in the crayfish opener muscle were seen to make numerous axo-axonal output synapses upon excitatory nerve terminals but excitor nerve terminals were not seen to make output synapses onto inhibitor terminals. Thus reciprocal axo-axonal synapses appear to be a feature of the common inhibitor but not of the specific inhibitor. The excitor-to-inhibitor component of these reciprocal synapses may serve to limit transmitter output in the common inhibitor axon by activating glutamateB receptors which facilitate efflux of K+ and hyperpolarization of the membrane.
Collapse
Affiliation(s)
- J Pearce
- Life Sciences Division, Scarborough College, University of Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Fine structure of identified muscle fibers and their neuromuscular synapses in the limb closer muscle of the crab Eriphia spinifrons. Cell Tissue Res 1993. [DOI: 10.1007/bf00297538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Abstract
Multiterminal innervation of a lobster limb muscle by an identified excitor motoneuron was examined during primary development and adult growth. To keep pace with the growth in the target muscle, axonal branches proliferate by sprouting from synaptic terminals; an increasingly complex branching pattern results. Neuromuscular synapses multiply in number, enlarge in size, and become perforated. Concomitantly, synapses tend to appear on the more distal axonal branches and to disappear on more proximal branches, providing for continual remodeling of multiterminal innervation. This plasticity in an identified motoneuron occurs over a long life span of several decades.
Collapse
Affiliation(s)
- C K Govind
- Life Sciences Division, Scarborough College, University of Toronto, Ontario, Canada
| |
Collapse
|
20
|
Cooper RL, Govind CK. Axon composition of the proprioceptive PD nerve during growth and regeneration of lobster claws. ACTA ACUST UNITED AC 1991. [DOI: 10.1002/jez.1402600207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Affiliation(s)
- G A Lnenicka
- Department of Biological Sciences, State University of New York, Albany 12222
| |
Collapse
|
22
|
Villegas GM, Sánchez F. Periaxonal ensheathment of lobster giant nerve fibres as revealed by freeze-fracture and lanthanum penetration. JOURNAL OF NEUROCYTOLOGY 1991; 20:504-17. [PMID: 1869886 DOI: 10.1007/bf01252277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sheath structure and permeability have been studied in the nerve fibres of lobster (Panulirus argus) walking limbs, in particular the individually ensheathed larger giant fibres, 100-150 microns in diameter, of which there are five or six in a peripheral bundle. They are easily distinguished and can be separated from neighbouring fibre bundles in which smaller giant axons (65-80 microns diameter) and many axons of much smaller diameter (5-15 microns) are ensheathed together. Each of the larger giant axons is enveloped by a Schwann cell layer outside of which is a multilayered sheath consisting of one-cell thick belts of flattened cells and interleaved zones of collagen fibrils and extracellular matrix. The cells in each belt lack basal lamina and, after freeze-fracture, as well as in thin sections, exhibit intercellular gap junctions and incomplete, fascia type, tight junctions; their most striking aspect is an exceedingly large number of exo-endocytic profiles. Permeability to lanthanum chloride in the bathing medium studied before or during fixation both in intact nerves and in nerves with surgically breached (slit) epineurium showed penetration of lanthanum tracer between the cells around the giant fibres, but the electron-dense tracer was excluded from the Schwann cell layer and the periaxonal space unless the epineurium had been slit. The extent of lanthanum diffusion was evaluated by transmission electron microscopy of thin sections and confirmed by X-ray microanalysis (EDAX) of comparable selected areas in such sections. The results indicate structural similarities but distinct permeability differences between the multilayered sheath surrounding the lobster giant axons and the vertebrate nerve perineurium. Other ultrastructural details provided by the freeze-fracture replicas concern the distribution of intramembrane particles in the axolemma and the Schwann and sheath cell membranes.
Collapse
Affiliation(s)
- G M Villegas
- Centro de Biociencias, Instituto Internacional de Estudios Avanzados (IDEA), Caracas, Venezuela
| | | |
Collapse
|
23
|
Abstract
Inhibitory neuromuscular synapses formed by the common inhibitor (CI) neuron on the distal accessory flexor muscle (DAFM) in the lobster, Homarus americanus, were studied with electrophysiological and electron-microscopic (thin-section and freeze-fracture) techniques. Postsynaptic inhibition as indicated by inhibitory junctional potentials was several-fold stronger on distal compared to proximal muscle fibers. This difference correlated with the results of serial thin-section studies, which showed more inhibitory synapses on distal fibers than on their proximal counterparts. Effects of postsynaptic inhibition on excitatory junctional potentials via current shunting had a morphological correlate in the spatial relationship between inhibitory and excitatory synapses on the distal fibers. Inhibitory synapses were larger than their excitatory counterparts and had fewer glial processes. In freeze-fracture views, inhibitory synapses did not appear as raised plateaus in the P-face as do excitatory synapses, and their active zones were more widely scattered. The intramembrane particles in the inhibitory postsynaptic membrane - representing neurotransmitter receptors - are arranged in parallel rows in the sarcolemmal P-face and have complementary furrows in the sarcolemmal E-face. Altogether, our findings help to describe a population of inhibitory neuromuscular synapses formed by the CI neuron in lobster muscle.
Collapse
Affiliation(s)
- J P Walrond
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
24
|
Govind CK, Walrond JP. Structural plasticity at crustacean neuromuscular synapses. JOURNAL OF NEUROBIOLOGY 1989; 20:409-21. [PMID: 2664081 DOI: 10.1002/neu.480200511] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Crustacean motor axons innervate muscle fibers via a multiplicity of synaptic terminals which release small but variable amounts of transmitter. Differences in release performance appear to be correlated with the size of synaptic contacts and presynaptic dense bars (active zones). These structural parameters proliferate via sprouting from existing synaptic terminals and relocate to ever more distal sites during development and growth of an identified axon. Moreover, alterations in number of synaptic contacts and active zones occur in adults following stimulation or decentralization, demonstrating structural plasticity of crustacean neuromuscular synapses.
Collapse
Affiliation(s)
- C K Govind
- Life Sciences Division, Scarborough Campus, University of Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Atwood HL, Tse FW. Changes in binomial parameters of quantal release at crustacean motor axon terminals during presynaptic inhibition. J Physiol 1988; 402:177-93. [PMID: 2907048 PMCID: PMC1191886 DOI: 10.1113/jphysiol.1988.sp017199] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
1. The effects of presynaptic inhibition on quantal release of transmitter were investigated at neuromuscular junctions of the motor axon supplying one of the limb muscles of a crab (Pachygrapsus crassipes). 2. Binomial analysis of transmitter release recorded at selected neuromuscular junctions with an extracellular 'macro-patch' electrode indicated high probability of release (p) from a limited number of available sites (n). During presynaptic inhibition, both n and p were reduced. 3. The binomial model provided a good description of results from non-inhibited junctions. During presynaptic inhibition, results from some junctions could be described by the binomial model, while those from other junctions could not. An interpretation of this finding is that presynaptic inhibition differentially affects the probability of release at various release sites of the neuromuscular junctional complex. 4. A morphological study of the region of transmitter release under the macropatch electrode was made. Release-dependent uptake of horseradish peroxidase (HRP) into presynaptic terminals was restricted to the region under the recording electrode, by perfusing the preparation with calcium-free solution containing HRP. Transmitter release, and HRP uptake, occurred only at the site of the electrode, which was filled with a calcium-containing solution. Subsequently, serial sections were prepared for electron microscopy and the region of transmitter release was reconstructed. 5. Numerous axo-axonal synapses were found in the HRP-labelled region. Thus, the morphological prerequisite for presynaptic inhibition exists at the site of transmitter release, and not exclusively at a more remote region. 6. The number of morphologically identified excitatory neuromuscular synapses exceeded the 'release sites' estimated from the binomial model (n) by a wide margin. Morphological differences among synapses were observed. It is proposed that not all morphologically identified synapses participated in transmitter release under the experimental conditions employed. Thus, morphologically defined synapses are likely to be non-uniform in their response properties, including probability of transmitter release (p).
Collapse
Affiliation(s)
- H L Atwood
- Department of Physiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Govind CK, Kirk MD, Pearce J. Highly active neuromuscular system in developing lobsters with programmed obsolescence. J Comp Neurol 1988; 272:437-49. [PMID: 3417895 DOI: 10.1002/cne.902720311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The primary locomotory apparatus in the three larval stages of the lobster, Homarus americanus, are paddlelike structures on the thoracic appendages called exopodites, which beat almost continuously. Consequently their power and return-stroke muscles are examples of highly active but short-lived neuromuscular systems. The muscles, which are well vascularized, are of the fast type with 2-3-micron sarcomere lengths and 6 thin filaments surrounding a thick one. The most striking feature, however, is the large volume of mitochondria making up 40-50% of the fiber. They appear as simple cylinders packed several layers deep along the periphery of the fiber and as large, multibranched forms distributed throughout the fiber and subdividing it into smaller units. The motor innervation to the return-stroke muscle is via 3 excitatory axons, which generate large junctional potentials and twitch contractions. The muscle is densely populated with large neuromuscular synapses, most of which have a well-defined active site or dense bar denoting the site of transmitter release. Altogether this motor system is specialized for prolonged activity. Atrophy of the neuromuscular system occurs by the late larval third stage. The muscle fibers lose their identity, fuse, and become vacuolated. The myofibrils condense and erode and the mitochondria are lost. Atrophy of motor innervation is gradual with individual axons dropping out. The largest axon providing most of the innervation is the first to degenerate. Early degenerative changes affect the axon and neuromuscular terminals but not the synaptic contacts, dense bars, and vesicles, which appear intact. Continued atrophy in the postlarval fourth stage reduces the exopodites to vestiges. Thus the return-stroke muscle of the larval exopodites in which muscle fiber and motoneurons are identifiable permits study of the interaction between a neuron and its target muscle undergoing programmed obsolescence.
Collapse
Affiliation(s)
- C K Govind
- Life Sciences Division, University of Toronto, Scarborough, Ontario, Canada
| | | | | |
Collapse
|
27
|
Atwood HL, Wojtowicz JM. Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1986; 28:275-362. [PMID: 2433245 DOI: 10.1016/s0074-7742(08)60111-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|