1
|
Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci Res 2023; 197:9-17. [PMID: 34748905 DOI: 10.1016/j.neures.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Neurons are the cells of the nervous system and are responsible for every thought, movement and perception. Immune cells are the cells of the immune system, constantly protecting from foreign pathogens. Understanding the interaction between the two systems is especially important in disease states such as autoimmune or neurodegenerative disease. Unfortunately, this interaction is typically detrimental to the host. However, recent efforts have focused on how neurons and immune cells interact, either directly or indirectly, following traumatic injury to the nervous system. The outcome of this interaction can be beneficial - leading to successful neural repair, or detrimental - leading to functional deficits, depending on where the injury occurs. This review will discuss our understanding of neuron-immune cell interactions after traumatic injury to both the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lora A Estera
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Sam P Walsh
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Jordan A Headen
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | - Ashley L Kalinski
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
2
|
Zhu Y, Luan C, Gong L, Gu Y, Wang X, Sun H, Chen Z, Zhou Q, Liu C, Shan Q, Gu X, Zhou S. SnRNA-seq reveals the heterogeneity of spinal ventral horn and mechanism of motor neuron axon regeneration. iScience 2023; 26:107264. [PMID: 37502257 PMCID: PMC10368823 DOI: 10.1016/j.isci.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Spinal motor neurons, the distinctive neurons of the central nervous system, extend into the peripheral nervous system and have outstanding ability of axon regeneration after injury. Here, we explored the heterogeneity of spinal ventral horn cells after rat sciatic nerve crush via single-nuclei RNA sequencing. Interestingly, regeneration mainly occurred in a Sncg+ and Anxa2+ motor neuron subtype (MN2) surrounded by a newly emerged microglia subtype (Mg6) after injury. Subsequently, microglia depletion slowed down the regeneration of sciatic nerve. OPCs were also involved into the regeneration process. Knockdown of Cacna2d2 in vitro and systemic blocking of Cacna2d2 in vivo improved the axon growth ability, hinting us the importance of Ca2+. Ultimately, we proposed three possible phases of motor neuron axon regeneration: preparation stage, early regeneration stage, and regeneration stage. Taken together, our study provided a resource for deciphering the underlying mechanism of motor neuron axon regeneration in a single cell dimension.
Collapse
Affiliation(s)
- Ye Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Chengcheng Luan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qi Shan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
3
|
Intrinsic heterogeneity in axon regeneration. Biochem Soc Trans 2022; 50:1753-1762. [DOI: 10.1042/bst20220624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The nervous system is composed of a variety of neurons and glial cells with different morphology and functions. In the mammalian peripheral nervous system (PNS) or the lower vertebrate central nervous system (CNS), most neurons can regenerate extensively after axotomy, while the neurons in the mammalian CNS possess only limited regenerative ability. This heterogeneity is common within and across species. The studies about the transcriptomes after nerve injury in different animal models have revealed a series of molecular and cellular events that occurred in neurons after axotomy. However, responses of various types of neurons located in different positions of individuals were different remarkably. Thus, researchers aim to find the key factors that are conducive to regeneration, so as to provide the molecular basis for solving the regeneration difficulties after CNS injury. Here we review the heterogeneity of axonal regeneration among different cell subtypes in different animal models or the same organ, emphasizing the importance of comparative studies within and across species.
Collapse
|
4
|
Noristani HN. Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges. Exp Neurol 2022; 357:114198. [DOI: 10.1016/j.expneurol.2022.114198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
|
5
|
Noristani HN, Kim H, Pang S, Zhong J, Son YJ. Co-targeting B-RAF and PTEN Enables Sensory Axons to Regenerate Across and Beyond the Spinal Cord Injury. Front Mol Neurosci 2022; 15:891463. [PMID: 35557554 PMCID: PMC9087900 DOI: 10.3389/fnmol.2022.891463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Primary sensory axons in adult mammals fail to regenerate after spinal cord injury (SCI), in part due to insufficient intrinsic growth potential. Robustly boosting their growth potential continues to be a challenge. Previously, we showed that constitutive activation of B-RAF (rapidly accelerated fibrosarcoma kinase) markedly promotes axon regeneration after dorsal root and optic nerve injuries. The regrowth is further augmented by supplemental deletion of PTEN (phosphatase and tensin homolog). Here, we examined whether concurrent B-RAF activation and PTEN deletion promotes dorsal column axon regeneration after SCI. Remarkably, genetically targeting B-RAF and PTEN selectively in DRG neurons of adult mice enables many DC axons to enter, cross, and grow beyond the lesion site after SCI; some axons reach ∼2 mm rostral to the lesion by 3 weeks post-injury. Co-targeting B-RAF and PTEN promotes more robust DC regeneration than a pre-conditioning lesion, which additively enhances the regeneration triggered by B-RAF/PTEN. We also found that post-injury targeting of B-RAF and PTEN enhances DC axon regeneration. These results demonstrate that co-targeting B-RAF and PTEN effectively enhances the intrinsic growth potential of DC axons after SCI and therefore may help to develop a novel strategy to promote robust long-distance regeneration of primary sensory axons.
Collapse
Affiliation(s)
- Harun N. Noristani
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Harun N. Noristani,
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shuhuan Pang
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jian Zhong
- Burke Medical Research Institute, Weill Cornell Medical College of Cornell University, White Plains, NY, United States
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Aldskogius H, Kozlova EN. Dorsal Root Injury-A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury. Cells 2021; 10:2185. [PMID: 34571835 PMCID: PMC8470715 DOI: 10.3390/cells10092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response closely resembling the one seen after direct spinal cord injury. In this review, we provide examples of previous research on dorsal root injury models and how these models can help future exploration of mechanisms and potential therapies for spinal cord injury repair.
Collapse
Affiliation(s)
- Håkan Aldskogius
- Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden;
| | | |
Collapse
|
7
|
Komirishetty P, Zubkow K, Areti A, Ong H, Zochodne DW. Delayed manipulation of regeneration within injured peripheral axons. Neurobiol Dis 2021; 155:105383. [PMID: 33945876 DOI: 10.1016/j.nbd.2021.105383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
While several new translational strategies to enhance regrowth of peripheral axons have been identified, combined approaches with different targets are rare. Moreover, few have been studied after a significant delay when growth programs are already well established and regeneration-related protein expression has waned. Here we study two approaches, Rb1 (Retinoblastoma 1) knockdown that targets overall neuron plasticity, and near nerve insulin acting as a growth factor. Both are validated to boost regrowth only at the outset of regeneration. We show that local delivery of Rb1 siRNA alone, with electroporation to an area of prior sciatic nerve injury generated knockdown of Rb1 mRNA in ipsilateral lumbar dorsal root ganglia. While mice treated with Rb1-targeted siRNA, compared with scrambled control siRNA, starting 2 weeks after the onset of regeneration, had only limited behavioural or electrophysiological benefits, they had enhanced reinnervation of epidermal axons. We next confirmed that intrinsic Rb1 knockdown combined with exogenous insulin had dramatic synergistic impacts on the growth patterns of adult sensory neurons studied in vitro, prompting analysis of a combined approach in vivo. Using an identical delayed post-injury protocol, we noted that added insulin not only augmented epidermal reinnervation rendered by Rb1 knockdown alone but also improved indices of mechanical sensation and motor axon recovery. The findings illustrate that peripheral neurons that are well into attempted regrowth retain their responsiveness to both intrinsic and exogenous approaches that improve their recovery. We also identify a novel local approach to manipulate gene expression and outcome in regrowing axons.
Collapse
Affiliation(s)
- P Komirishetty
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - K Zubkow
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - A Areti
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - H Ong
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - D W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada.
| |
Collapse
|
8
|
Attwell CL, van Zwieten M, Verhaagen J, Mason MRJ. The Dorsal Column Lesion Model of Spinal Cord Injury and Its Use in Deciphering the Neuron-Intrinsic Injury Response. Dev Neurobiol 2018; 78:926-951. [PMID: 29717546 PMCID: PMC6221129 DOI: 10.1002/dneu.22601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
Abstract
The neuron‐intrinsic response to axonal injury differs markedly between neurons of the peripheral and central nervous system. Following a peripheral lesion, a robust axonal growth program is initiated, whereas neurons of the central nervous system do not mount an effective regenerative response. Increasing the neuron‐intrinsic regenerative response would therefore be one way to promote axonal regeneration in the injured central nervous system. The large‐diameter sensory neurons located in the dorsal root ganglia are pseudo‐unipolar neurons that project one axon branch into the spinal cord, and, via the dorsal column to the brain stem, and a peripheral process to the muscles and skin. Dorsal root ganglion neurons are ideally suited to study the neuron‐intrinsic injury response because they exhibit a successful growth response following peripheral axotomy, while they fail to do so after a lesion of the central branch in the dorsal column. The dorsal column injury model allows the neuron‐intrinsic regeneration response to be studied in the context of a spinal cord injury. Here we will discuss the advantages and disadvantages of this model. We describe the surgical methods used to implement a lesion of the ascending fibers, the anatomy of the sensory afferent pathways and anatomical, electrophysiological, and behavioral techniques to quantify regeneration and functional recovery. Subsequently we review the results of experimental interventions in the dorsal column lesion model, with an emphasis on the molecular mechanisms that govern the neuron‐intrinsic injury response and manipulations of these after central axotomy. Finally, we highlight a number of recent advances that will have an impact on the design of future studies in this spinal cord injury model, including the continued development of adeno‐associated viral vectors likely to improve the genetic manipulation of dorsal root ganglion neurons and the use of tissue clearing techniques enabling 3D reconstruction of regenerating axon tracts. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 00: 000–000, 2018
Collapse
Affiliation(s)
- Callan L Attwell
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands
| | - Mike van Zwieten
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands.,Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, The Netherlands
| | - Matthew R J Mason
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, Amsterdam, 1105BA, The Netherlands
| |
Collapse
|
9
|
Lindholm T, Risling M, Carlstedt T, Hammarberg H, Wallquist W, Cullheim S, Sköld MK. Expression of Semaphorins, Neuropilins, VEGF, and Tenascins in Rat and Human Primary Sensory Neurons after a Dorsal Root Injury. Front Neurol 2017; 8:49. [PMID: 28270793 PMCID: PMC5318460 DOI: 10.3389/fneur.2017.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Dorsal root injury is a situation not expected to be followed by a strong regenerative growth, or growth of the injured axon into the central nervous system of the spinal cord, if the central axon of the dorsal root is injured but of strong regeneration if subjected to injury to the peripherally projecting axons. The clinical consequence of axonal injury is loss of sensation and may also lead to neuropathic pain. In this study, we have used in situ hybridization to examine the distribution of mRNAs for the neural guidance molecules semaphorin 3A (SEMA3A), semaphorin 3F (SEMA3F), and semaphorin 4F (SEMA4F), their receptors neuropilin 1 (NP1) and neuropilin 2 (NP2) but also for the neuropilin ligand vascular endothelial growth factor (VEGF) and Tenascin J1, an extracellular matrix molecule involved in axonal guidance, in rat dorsal root ganglia (DRG) after a unilateral dorsal rhizotomy (DRT) or sciatic nerve transcetion (SNT). The studied survival times were 1–365 days. The different forms of mRNAs were unevenly distributed between the different size classes of sensory nerve cells. The results show that mRNA for SEMA3A was diminished after trauma to the sensory nerve roots in rats. The SEMA3A receptor NP1, and SEMA3F receptor NP2, was significantly upregulated in the DRG neurons after DRT and SNT. SEMA4F was upregulated after a SNT. The expression of mRNA for VEGF in DRG neurons after DRT showed a significant upregulation that was high even a year after the injuries. These data suggest a role for the semaphorins, neuropilins, VEGF, and J1 in the reactions after dorsal root lesions.
Collapse
Affiliation(s)
- Tomas Lindholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Helsa Företagshälsovård Östermalm, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Thomas Carlstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Hammersmith Hospital, University College London and Imperial College, London, UK; Department of Hand Surgery, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Henrik Hammarberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Hand Surgery, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Wilhelm Wallquist
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Anesthesiology and Intensive Care, Västerås General Hospital, Västerås, Sweden
| | - Staffan Cullheim
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
He Z, Jin Y. Intrinsic Control of Axon Regeneration. Neuron 2016; 90:437-51. [DOI: 10.1016/j.neuron.2016.04.022] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 01/12/2023]
|
11
|
Cheng X, Harzdorf N, Khaing Z, Kang D, Camelio AM, Shaw T, Schmidt CE, Siegel D. Neuronal growth promoting sesquiterpene–neolignans; syntheses and biological studies. Org Biomol Chem 2012; 10:383-93. [DOI: 10.1039/c1ob06363d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Abstract
Failure of axon regeneration after central nervous system (CNS) injuries results in permanent functional deficits. Numerous studies in the past suggested that blocking extracellular inhibitory influences alone is insufficient to allow the majority of injured axons to regenerate, pointing to the importance of revisiting the hypothesis that diminished intrinsic regenerative ability critically underlies regeneration failure. Recent studies in different species and using different injury models have started to reveal important cellular and molecular mechanisms within neurons that govern axon regeneration. This review summarizes these observations and discusses possible strategies for stimulating axon regeneration and perhaps functional recovery after CNS injury.
Collapse
Affiliation(s)
- Kai Liu
- FM Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
13
|
Gardiner NJ. Integrins and the extracellular matrix: Key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol 2011; 71:1054-72. [DOI: 10.1002/dneu.20950] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Ma CHE, Omura T, Cobos EJ, Latrémolière A, Ghasemlou N, Brenner GJ, van Veen E, Barrett L, Sawada T, Gao F, Coppola G, Gertler F, Costigan M, Geschwind D, Woolf CJ. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest 2011; 121:4332-47. [PMID: 21965333 DOI: 10.1172/jci58675] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/16/2011] [Indexed: 11/17/2022] Open
Abstract
Although peripheral nerves can regenerate after injury, proximal nerve injury in humans results in minimal restoration of motor function. One possible explanation for this is that injury-induced axonal growth is too slow. Heat shock protein 27 (Hsp27) is a regeneration-associated protein that accelerates axonal growth in vitro. Here, we have shown that it can also do this in mice after peripheral nerve injury. While rapid motor and sensory recovery occurred in mice after a sciatic nerve crush injury, there was little return of motor function after sciatic nerve transection, because of the delay in motor axons reaching their target. This was not due to a failure of axonal growth, because injured motor axons eventually fully re-extended into muscles and sensory function returned; rather, it resulted from a lack of motor end plate reinnervation. Tg mice expressing high levels of Hsp27 demonstrated enhanced restoration of motor function after nerve transection/resuture by enabling motor synapse reinnervation, but only within 5 weeks of injury. In humans with peripheral nerve injuries, shorter wait times to decompression surgery led to improved functional recovery, and, while a return of sensation occurred in all patients, motor recovery was limited. Thus, absence of motor recovery after nerve damage may result from a failure of synapse reformation after prolonged denervation rather than a failure of axonal growth.
Collapse
Affiliation(s)
- Chi Him Eddie Ma
- Program in Neurobiology and F.M. Kirby Neurobiology Center, Children’s Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yuan Q, Hu B, Su H, So KF, Lin Z, Wu W. GAP-43 expression correlates with spinal motoneuron regeneration following root avulsion. J Brachial Plex Peripher Nerve Inj 2009; 4:18. [PMID: 19852861 PMCID: PMC2771005 DOI: 10.1186/1749-7221-4-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The growth-associated protein GAP-43 plays a crucial role in axonal regeneration in injured neurons. METHODS We have used immunohistochemistry to investigate the expression of GAP-43 in spinal motoneurons during nerve reconstruction following root avulsion in the neonatal and adult rats. RESULTS Following the injury, GAP-43-immunoreactivity (IR) could be found in adult avulsed motoneurons as early as 1 day, increased from 3 to 7 days and reached a maximal level at 2 weeks post-injury. The up-regulation of GAP-43 in adult avulsed motoneurons was accompanied with the axonal regeneration indicated by numerous regenerating motor axons entering the reimplanted ventral root and nerve. In contrast, GAP-43-IR could not be found in the neonatal avulsed motoneurons at any examined post-injury time points. This failure of up-regulation of GAP-43 was coincident with no axonal regeneration in the reimplanted nerve in the neonatal rats. CONCLUSION Close association of GAP-43 expression and capacity of regeneration in reimplanted spinal nerve of avulsed motoneurons suggests that GAP-43 is a potential therapeutic target for treatment of root avulsion of brachial plexus.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
16
|
Hoffman PN. A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol 2009; 223:11-8. [PMID: 19766119 DOI: 10.1016/j.expneurol.2009.09.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/13/2009] [Accepted: 09/09/2009] [Indexed: 11/19/2022]
Abstract
Injury of axons in the peripheral nervous system (PNS) induces transcription-dependent changes in gene expression and axonal transport that promote effective regeneration by increasing the intrinsic growth state of axons. Regeneration is enhanced in axons re-injured 1-2 weeks after the intrinsic growth state has been increased by such a prior conditioning lesion (CL). The intrinsic growth state does not increase after axons are injured in the mammalian central nervous system (CNS), where they lack the capacity for effective regeneration. Sensory neurons in the dorsal root ganglion (DRG) have two axonal branches that respond differently to injury. Peripheral branches, which are located entirely in the PNS, are capable of effective regeneration. Central branches regenerate in the PNS (i.e., in the dorsal root, which extends from the DRG to the spinal cord), but not in the CNS (i.e., the spinal cord). A CL of peripheral branches increases the intrinsic growth state of central branches in the dorsal columns of the spinal cord, enabling these axons to undergo lengthy regeneration in a segment of peripheral nerve transplanted into the spinal cord (i.e., a peripheral nerve graft). This regeneration does not occur in the absence of a CL. We will examine how changes in gene expression and axonal transport induced by a CL may promote this regeneration.
Collapse
Affiliation(s)
- Paul N Hoffman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-6953, USA.
| |
Collapse
|
17
|
Geremia NM, Pettersson LME, Hasmatali JC, Hryciw T, Danielsen N, Schreyer DJ, Verge VMK. Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol 2009; 223:128-42. [PMID: 19646438 DOI: 10.1016/j.expneurol.2009.07.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/11/2009] [Accepted: 07/15/2009] [Indexed: 12/21/2022]
Abstract
Identification of the molecule(s) that globally induce a robust regenerative state in sensory neurons following peripheral nerve injury remains elusive. A potential candidate is brain-derived neurotrophic factor (BDNF), the sole neurotrophin upregulated in sensory neurons after peripheral nerve injury. Here we tested the hypothesis that BDNF plays a critical role in the regenerative response of mature rat sensory neurons following peripheral nerve lesion. Neutralization of endogenous BDNF was performed by infusing BDNF antibodies intrathecally via a mini-osmotic pump for 3 days at the level of the fifth lumbar dorsal root ganglion, immediately following unilateral spinal nerve injury. This resulted in decreased expression of the injury/regeneration-associated genes growth-associated protein-43 and Talpha1 tubulin in the injured sensory neurons as compared to injury plus control IgG infused or injury alone animals. Similar results were observed following inhibition of BDNF expression by intrathecal delivery of small interfering RNAs (siRNA) targeting BDNF starting 3 days prior to injury. The reduced injury/regeneration-associated gene expression correlated with a significantly reduced intrinsic capacity of these neurons to extend neurites when assayed in vitro. In contrast, delayed infusion of BDNF antibody for 3 days beginning 1 week post-lesion had no discernible influence on the elevated expression of these regeneration-associated markers. These results support an important role for endogenous BDNF in induction of the cell body response in injured sensory neurons and their intrinsic ability to extend neurites, but BDNF does not appear to be necessary for maintaining the response once it is induced.
Collapse
Affiliation(s)
- Nicole M Geremia
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | | | | | |
Collapse
|
18
|
Minor K, Phillips J, Seeds NW. Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury. J Neurochem 2009; 109:706-15. [PMID: 19220707 DOI: 10.1111/j.1471-4159.2009.05977.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Following CNS injury, myelin-associated inhibitors represent major obstacles to axonal regeneration and functional recovery. The following study suggests that the proteolytic enzyme tissue plasminogen activator (tPA) plays a major function in 'conditioning-injury induced' axon regeneration. In this paradigm, prior peripheral nerve injury leads to an enhanced ability of sensory neurons to regenerate their central axons in the presence of the CNS inhibitory microenvironment. tPA is widely expressed by CNS and PNS neurons and plays major roles in synaptic reorganization and plasticity. This study shows that cultured neurons from mice deficient in tPA, in contrast to wild-type mice, fail to undergo conditioning-injury induced axonal regeneration in the presence of purified myelin membranes. Interestingly, neurons from mice deficient in plasminogen, the best known substrate for tPA, showed active axon regeneration. These results suggest a novel plasminogen-independent role for tPA in promoting axonal regeneration on CNS myelin.
Collapse
Affiliation(s)
- Kenneth Minor
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, Colorado 8004, USA
| | | | | |
Collapse
|
19
|
Song XY, Li F, Zhang FH, Zhong JH, Zhou XF. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One 2008; 3:e1707. [PMID: 18320028 PMCID: PMC2246162 DOI: 10.1371/journal.pone.0001707] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/04/2008] [Indexed: 12/12/2022] Open
Abstract
Background The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. Methodology/Principal Findings The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. Conclusions/Significance Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.
Collapse
Affiliation(s)
- Xing-Yun Song
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Fang Li
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Feng-He Zhang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Jin-Hua Zhong
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Xin-Fu Zhou
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- *E-mail:
| |
Collapse
|
20
|
Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VMK. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol 2007; 205:347-59. [PMID: 17428474 DOI: 10.1016/j.expneurol.2007.01.040] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/16/2007] [Accepted: 01/19/2007] [Indexed: 12/29/2022]
Abstract
Brief electrical stimulation enhances the regenerative ability of axotomized motor [Nix, W.A., Hopf, H.C., 1983. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 272, 21-25; Al-Majed, A.A., Neumann, C.M., Brushart, T.M., Gordon, T., 2000. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20, 2602-2608] and sensory [Brushart, T.M., Jari, R., Verge, V., Rohde, C., Gordon, T., 2005. Electrical stimulation restores the specificity of sensory axon regeneration. Exp. Neurol. 194, 221-229] neurons. Here we examined the parameter of duration of stimulation on regenerative capacity, including the intrinsic growth programs, of sensory neurons. The effect of 20 Hz continuous electrical stimulation on the number of DRG sensory neurons that regenerate their axons was evaluated following transection and surgical repair of the femoral nerve trunk. Stimulation was applied proximal to the repair site for 1 h, 3 h, 1 day, 7 days or 14 days at the time of nerve repair. Following a 21-day regeneration period, DRG neurons that regenerated axons into the muscle and cutaneous sensory nerve branches were retrogradely identified. Stimulation of 1 h led to a significant increase in DRG neurons regenerating into cutaneous and muscle branches when compared to 0 h (sham) stimulation or longer periods of stimulation. Stimulation for 1 h also significantly increased the numbers of neurons that regenerated axons beyond the repair site 4 days after lesion and was correlated with a significant increase in expression of growth-associated protein 43 (GAP-43) mRNA in the regenerating neurons at 2 days post-repair. An additional indicator of heightened plasticity following 1 h stimulation was elevated expression of brain-derived neurotrophic factor (BDNF). The effect of brief stimulation on enhancing sensory and motoneuron regeneration holds promise for inducing improved peripheral nerve repair in the clinical setting.
Collapse
Affiliation(s)
- Nicole M Geremia
- Department of Anatomy and Cell Biology, Cameco MS/Neuroscience Research Center University of Saskatchewan, Saskatoon City Hospital, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
21
|
Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 2006; 32:143-54. [PMID: 16713293 DOI: 10.1016/j.mcn.2006.03.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/10/2006] [Accepted: 03/23/2006] [Indexed: 12/17/2022] Open
Abstract
Dorsal root ganglion (DRG) neurons regenerate after a peripheral nerve injury but not after injury to their axons in the spinal cord. A key question is which transcription factors drive the changes in gene expression that increase the intrinsic growth state of peripherally injured sensory neurons? A prime candidate is activating transcription factor-3 (ATF-3), a transcription factor that we find is induced in all DRG neurons after peripheral, but not central axonal injury. Moreover, we show in adult DRG neurons that a preconditioning peripheral, but not central axonal injury, increases their growth, correlating closely with the pattern of ATF-3 induction. Using viral vectors, we delivered ATF-3 to cultured adult DRG neurons and find that ATF-3 enhances neurite outgrowth. Furthermore, ATF-3 promotes long sparsely branched neurites. ATF-3 overexpression did not increase c-Jun expression. ATF-3 may contribute, therefore, to neurite outgrowth by orchestrating the gene expression responses in injured neurons.
Collapse
Affiliation(s)
- Rhona Seijffers
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
22
|
Qiu J, Cafferty WBJ, McMahon SB, Thompson SWN. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci 2005; 25:1645-53. [PMID: 15716400 PMCID: PMC6725934 DOI: 10.1523/jneurosci.3269-04.2005] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sensory axons in the adult spinal cord do not regenerate after injury. This is essentially because of inhibitory components in the damaged CNS, such as myelin-associated inhibitors and the glial scar. However, if the sciatic nerve is axotomized before injury of the dorsal column, injured axons can regenerate a short distance in the spinal cord. Here, we show that sciatic nerve transection results in time-dependent phosphorylation and activation of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in dorsal root ganglion (DRG) neurons. This effect is specific to peripheral injuries and does not occur when the dorsal column is crushed. Sustained perineural infusion of the Janus kinase 2 (JAK2) inhibitor AG490 to the proximal nerve stump can block STAT3 phosphorylation after sciatic nerve transection and results in reduced growth-associated protein 43 upregulation and compromised neurite outgrowth in vitro. Importantly, in vivo perineural infusion of AG490 also significantly attenuates dorsal column axonal regeneration in the adult spinal cord after a preconditioning sciatic nerve transection. We conclude that STAT3 activation is necessary for increased growth ability of DRG neurons and improved axonal regeneration in the spinal cord after a conditioning injury.
Collapse
Affiliation(s)
- Jin Qiu
- Wolfson Centre for Age-Related Diseases, Guy's, King's, and St. Thomas's School of Biomedical Science, King's College London, London SE1 1UL, United Kingdom
| | | | | | | |
Collapse
|
23
|
McPhail LT, Oschipok LW, Liu J, Tetzlaff W. Both positive and negative factors regulate gene expression following chronic facial nerve resection. Exp Neurol 2005; 195:199-207. [PMID: 15935349 DOI: 10.1016/j.expneurol.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/19/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Previously, we reported that following a chronic nerve resection, removal of the neuroma reversed the atrophy, increased the number of countable motoneurons and resulted in the re-expression of GAP-43 and alpha tubulin mRNA. In the present study, we questioned whether this response was due to the removal of the neuroma, or a result of factors such as neurotrophins, produced at the injury site. To test this hypothesis, 10 weeks after axotomy, the axonal transport blocker colchicine or, glial derived neurotrophic factor (GDNF) was injected proximal to the neuroma. The injection of GDNF or colchicine elicited an increase in motoneuron size and in GAP-43, but not alpha tubulin, mRNA. These data suggest that in addition to factors produced at the injury site, the neuroma acts as a source of target-like repressive signals that when removed results in an increase in gene expression and motoneuron size. To analyze the regenerative potential of chronically resected motoneurons, mice without a previous nerve injury and mice with a chronic resection received a pre-degenerated segment of sciatic nerve attached to the proximal facial nerve stump. Axons from both the chronic and acute groups grew into the grafts, however, significantly more retrogradely labeled motoneurons were counted in the acute group compared to the chronic resection group. No difference in motoneuron cell size was observed between the two groups of regenerated neurons. Therefore, despite severe atrophy, many of the surviving mouse facial motoneurons retain the propensity to extend their axons when provided with the appropriate environment.
Collapse
Affiliation(s)
- Lowell T McPhail
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, Rm 2465 Biosciences Building, 6270 University Boulevard, Vancouver, BC, Canada V6T1Z4
| | | | | | | |
Collapse
|
24
|
Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 2005; 43:134-61. [PMID: 15672094 DOI: 10.1038/sj.sc.3101715] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we review mechanisms and molecules that necessitate protection and oppose axonal growth in the injured spinal cord, representing not only a cast of villains but also a company of therapeutic targets, many of which have yet to be fully exploited. We next discuss recent progress in the fields of bridging, overcoming conduction block and rehabilitation after spinal cord injury (SCI), where several treatments in each category have entered the spotlight, and some are being tested clinically. Finally, studies that combine treatments targeting different aspects of SCI are reviewed. Although experiments applying some treatments in combination have been completed, auditions for each part in the much-sought combination therapy are ongoing, and performers must demonstrate robust anatomical regeneration and/or significant return of function in animal models before being considered for a lead role.
Collapse
Affiliation(s)
- L M Ramer
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
25
|
Abstract
Injury to the adult mammalian central nervous system (CNS) often results in permanent loss of sensory and motor function. This is due to the failure of injured axons to regenerate. The inhibitory nature of the CNS can be attributed to several factors, including formation of the glial scar, the presence of several molecules, associated with myelin, which inhibit axonal regrowth, and the intrinsic growth state of these neurons. Encouraging regeneration in the adult mammalian CNS therefore will require targeting one or all of these factors following injury. Here we illustrate recent work from our laboratory that identifies some of the signalling components involved in modulation of the intrinsic growth state of adult neurons. When activated, these signalling pathways can induce axonal regeneration in the presence of the myelin-associated inhibitors both in vitro and in vivo.
Collapse
Affiliation(s)
- Tim Spencer
- Department of Biological Sciences, Hunter College, The City University of New York, NY 10021, USA
| | | |
Collapse
|
26
|
Riddell JS, Enriquez-Denton M, Toft A, Fairless R, Barnett SC. Olfactory ensheathing cell grafts have minimal influence on regeneration at the dorsal root entry zone following rhizotomy. Glia 2004; 47:150-67. [PMID: 15185394 DOI: 10.1002/glia.20041] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effectiveness of grafts of olfactory ensheathing cells (OECs) as a means of promoting functional reconnection of regenerating primary afferent fibers was investigated following dorsal root injury. Adult rats were subjected to dorsal root section and reanastomosis and at the same operation a suspension of purified OECs was injected at the dorsal root entry zone and/or into the sectioned dorsal root. Regeneration of dorsal root fibers was then assessed after a survival period ranging from 1 to 6 months. In 11 animals, electrophysiology was used to look for evidence of functional reconnection of regenerating dorsal root fibers. However, electrical stimulation of lesioned dorsal roots failed to evoke detectable cord dorsum or field potentials within the spinal cord of any of the animals examined, indicating that reconnection of regenerating fibers with spinal cord neurones had not occurred. In a further 11 rats, immunocytochemical labeling and biotin dextran tracing of afferent fibers in the lesioned roots was used to determine whether regenerating fibers were able to grow into the spinal cord in the presence of an OEC graft. Although a few afferent fibers could be seen to extend for a limited distance into the spinal cord, similar minimal in-growth was seen in control animals that had not been injected with OECs. We therefore conclude that OEC grafts are of little or no advantage in promoting the in-growth of regenerating afferent fibers at the dorsal root entry zone following rhizotomy.
Collapse
Affiliation(s)
- John S Riddell
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
27
|
McPhee B. Second Sir George Montario Bedbrook Oration-1999. Some milestones in the life of George Bedbrook. Their relationship to management and research of spinal cord injuries. ANZ J Surg 2003; 73:650-9. [PMID: 12887540 DOI: 10.1046/j.1445-2197.2003.t01-1-02671.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Spencer T, Domeniconi M, Cao Z, Filbin MT. New roles for old proteins in adult CNS axonal regeneration. Curr Opin Neurobiol 2003; 13:133-9. [PMID: 12593992 DOI: 10.1016/s0959-4388(03)00012-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The past year has yielded many insights and a few surprises in the field of axonal regeneration. The identification of oligodendrocyte-myelin glycoprotein as an inhibitor of axonal growth, and the discovery that the three major myelin-associated inhibitors of CNS regeneration share the same functional receptor, has launched a new wave of studies that aim to identify the signaling components of these inhibitory pathways. These findings also offer new avenues of research directed toward blocking possible therapeutic targets that inhibit regeneration and toward encouraging axonal regeneration in the CNS after injury.
Collapse
Affiliation(s)
- Timothy Spencer
- Department of Biological Sciences, Hunter College, The City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
29
|
Aldskogius H, Kozlova EN. Strategies for repair of the deafferented spinal cord. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:301-8. [PMID: 12589928 DOI: 10.1016/s0165-0173(02)00212-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deafferentation of the spinal cord by interruption of the sensory fibers in the dorsal roots highlights the problem of regeneration failure in the central nervous system. The injured dorsal root axons regenerate steadily, albeit slowly, in the peripheral compartment of the dorsal root, but abruptly cease to elongate when confronted with the interface between the peripheral and central nervous system, the dorsal root transitional zone (DRTZ). The glial cells of the CNS and their products together form this regeneration barrier. Recent years have witnessed several successful approaches to, at least in part, overcome this barrier. Particularly promising results have been obtained by (1). the replacement of adult non-regenerating dorsal root ganglion neurons with corresponding cells from embryonic or fetal donors, (2). the implantation of olfactory ensheathing cells at the DRTZ, and (3). immediate intrathecal infusion of growth factors to which dorsal root ganglion cells respond. In all these instances, growth of sensory axons into the adult spinal cord, as well as return of spinal cord connectivity, have been demonstrated. These findings suggest routes towards treatment strategies for plexus avulsion, and contribute to our understanding of possibilities to overcome regeneration failure in the spinal cord.
Collapse
Affiliation(s)
- Håkan Aldskogius
- Department of Neuroscience, Neuroanatomy, Biomedical Center, PO Box 587, Uppsala University, SE-751 23, Uppsala, Sweden.
| | | |
Collapse
|
30
|
Hiebert GW, Khodarahmi K, McGraw J, Steeves JD, Tetzlaff W. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J Neurosci Res 2002; 69:160-8. [PMID: 12111797 DOI: 10.1002/jnr.10275] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous experiments from our laboratory have shown that application of brain-derived neurotrophic factor (BDNF) to the red nucleus or the motor cortex stimulates an increase in the expression of regeneration-associated genes in rubrospinal and corticospinal neurons. Furthermore, we have previously shown that BDNF application stimulates regeneration of rubrospinal axons into a peripheral graft after a thoracic injury. The current study investigates whether application of BDNF to the motor cortex will facilitate regeneration of corticospinal neurons into a peripheral nerve graft placed into the thoracic spinal cord. In adult Sprague Dawley rats, the dorsal columns and the corticospinal tract between T9 and T10 were ablated by suction, and a 5-mm-long segment of predegenerated tibial nerve was autograft implanted into the lesion. With an osmotic pump, BDNF was infused directly into the parenchyma of the motor cortex for 14 days. Growth of the corticospinal tract into the nerve graft was then evaluated by transport of an anterograde tracer. Anterogradely labeled corticospinal fibers were not observed in the peripheral nerve graft in animals treated with saline or BDNF. Serotinergic and noradrenergic fibers, as well as peripheral sensory afferents, were observed to penetrate the graft, indicating the viability of the peripheral nerve graft as a permissive growth substrate for these specific fiber types. Although treatment of the corticospinal fibers with BDNF failed to produce regeneration into the graft, there was a distinct increase in the number of axonal sprouts rostral to the injury site. This indicates that treatment of corticospinal neurons with neurotrophins, e.g., BDNF, can be used to enhance sprouting of corticospinal axons within the spinal cord. Whether such sprouting leads to functional recovery after spinal cord injury is currently under investigation.
Collapse
Affiliation(s)
- G W Hiebert
- CORD (Collaboration On Repair Discoveries), University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
31
|
Lewin GR, Winter J, McMahon SB. Regulation of afferent connectivity in the adult spinal cord by nerve growth factor. Eur J Neurosci 2002; 4:700-7. [PMID: 12106314 DOI: 10.1111/j.1460-9568.1992.tb00179.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During development, nerve growth factor (NGF) regulates the density and character of peripheral target innervation (Barde, Neuron, 2, 1525 - 1534, 1989; Ritter et al., Soc. Neurosci. Abstr., 17, 546.2, 1991); its role in adult animals is less well defined. Here we have asked if the availability of growth factors such as NGF in peripheral tissues can influence the pattern of primary afferent connections in the CNS. Using osmotic minipumps, we raised the levels of NGF in rat skeletal muscle in vivo, a tissue where the levels of this factor are normally very low (Korsching and Thoenen, Proc. Natl. Acad. Sci. USA, 80, 3513 - 3516, 1983; Shelton and Reichardt, Proc. Natl. Acad. Sci. USA, 81, 7951 - 7955, 1984; Goedert et al., Mol. Brain Res., 1, 85 - 92, 1986). After 2 weeks of treatment we asked if the sensory neurons innervating this tissue showed an altered strength and distribution of connections with dorsal horn neurons. The contralateral (vehicle-treated) muscle, and totally untreated animals, served as controls. In normal and vehicle-treated animals, electrical stimulation of muscle afferents excited relatively few neurons in the dorsal horn, and these generally showed only weak responses. In contrast, on the NGF-treated side many more dorsal horn neurons in the lumbar enlargement of the spinal cord were excited by muscle afferents. The increased responsiveness could not be explained by a generalized increase in dorsal horn excitability, since spontaneous activity was not enhanced, nor by a change in A-fibre-mediated inhibitions from the treated afferents. Thus, these afferents appeared to establish new synaptic connections or strengthened previously weak ones as a result of increased neurotrophic factor availability. The data suggest that, in the adult rat, the levels of growth factors in peripheral targets may be used to regulate an appropriate degree of afferent connectivity within the central nervous system.
Collapse
Affiliation(s)
- G R Lewin
- United Medical and Dental Schools, St Thomas' Campus, Lambeth Palace Road, London SE1 7EH, UK
| | | | | |
Collapse
|
32
|
Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 2002; 34:885-93. [PMID: 12086637 DOI: 10.1016/s0896-6273(02)00702-x] [Citation(s) in RCA: 429] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The peripheral branch of primary sensory neurons regenerates after injury, but there is no regeneration when their central branch is severed by spinal cord injury. Here we show that microinjection of a membrane-permeable analog of cAMP in lumbar dorsal root ganglia markedly increases the regeneration of injured central sensory branches. The injured axons regrow into the spinal cord lesion, often traversing the injury site. This result mimics the effect of a conditioning peripheral nerve lesion. We also demonstrate that sensory neurons exposed to cAMP in vivo, when subsequently cultured in vitro, show enhanced growth of neurites and an ability to overcome inhibition by CNS myelin. Thus, stimulating cAMP signaling increases the intrinsic growth capacity of injured sensory axons. This approach may be useful in promoting regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Simona Neumann
- Department of Anatomy and W.M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Conditioning injury to adult mammalian sensory neurons enhances their regeneration potential. Here we show that leukemia inhibitory factor (LIF) is a fundamental component of the conditioning response. Conditioning injury in vivo significantly increases the intrinsic growth capacity of sensory neurons in vitro from LIF+/+ mice. This conditioning effect is significantly blunted in sensory neurons from LIF-/- mice. Enhanced growth is rescued in vitro in LIF-/- mice by the addition of exogenous LIF, and the effect blocked by human LIF-05, an LIF receptor antagonist. Furthermore, we demonstrate that LIF promotes elongating but not arborizing neurite outgrowth in vitro and is required for normal regeneration of injured adult sensory neurons in vivo. LIF is also functionally protective to peptidergic sensory neurons after nerve damage in vivo. Our results indicate that the alteration in intrinsic growth status of injured sensory neurons depends, at least in part, on LIF.
Collapse
|
34
|
Ramer MS, McMahon SB, Priestley JV. Axon regeneration across the dorsal root entry zone. PROGRESS IN BRAIN RESEARCH 2001; 132:621-39. [PMID: 11545025 DOI: 10.1016/s0079-6123(01)32107-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M S Ramer
- Department of Neuroscience, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
35
|
Abstract
Glial-derived inhibitory molecules and a weak cell-body response prevent sensory axon regeneration into the spinal cord after dorsal root injury. Neurotrophic factors, particularly neurotrophin-3 (NT-3), may increase the regenerative capacity of sensory neurons after dorsal rhizotomy, allowing regeneration across the dorsal root entry zone (DREZ). Intrathecal NT-3, delivered at the time of injury, promoted an upregulation of the growth-associated protein GAP-43 primarily in large-diameter sensory profiles (which did not occur after rhizotomy alone), as well as regeneration of cholera toxin B-labeled sensory axons across the DREZ and deep into the dorsal horn. However, delaying treatment for 1 week compromised regeneration: although axons still penetrated the DREZ, growth within white matter was qualitatively and quantitatively restricted. This was not associated with an impaired cell-body response (GAP-43 upregulation was equivalent for both immediate and delayed treatments), or with astrogliosis at the DREZ, which begins almost immediately after rhizotomy, but with the delayed appearance of mature ED1-expressing phagocytes in the dorsal white matter between 1 and 2 weeks after lesion, marking the beginning of myelin breakdown. After rhizotomy with immediate NT-3 treatment, regeneration continues beyond 2 weeks, but in the dorsal gray matter rather than in the degenerating dorsal columns. The ability of NT-3 to promote regeneration across the DREZ, but not after the beginning of degeneration after delayed treatment reveals a hierarchy of inhibitory influences: the astrogliotic, but not the degenerative barrier is surmountable by NT-3 treatment.
Collapse
|
36
|
Duchossoy Y, Kassar-Duchossoy L, Orsal D, Stettler O, Horvat JC. Reinnervation of the biceps brachii muscle following cotransplantation of fetal spinal cord and autologous peripheral nerve into the injured cervical spinal cord of the adult rat. Exp Neurol 2001; 167:329-40. [PMID: 11161621 DOI: 10.1006/exnr.2000.7556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to compensate the loss of motoneurons resulting from severe spinal cord injury and to reestablish peripheral motor connectivity, solid pieces of fetal spinal cord, taken from embryonic day 14 rat embryos, were transplanted into unilateral aspiration lesions of the cervical spinal cord of adult rats. Concomitantly, one end of a 3.5-cm autologous peripheral nerve graft was put in close contact with the embryonic graft; the other end was sutured to the distal stump of the musculocutaneous nerve which innervate the biceps brachii muscle. The animals were examined 3 and 6 months after surgery. Following intramuscular injection of horseradish peroxidase, retrograde axonal labeling studies indicated that both transplanted and host spinal neurons were able to extend axons all the way through the peripheral nerve graft and nerve stump, up to the reconnected muscles. The labeled cells in the transplant were generally observed close to the intraspinal tip of the peripheral nerve graft. Retrograde axonal tracing, as well as electrophysiological and histological data, demonstrated the sensory and motor reinnervation of the reconnected muscles. This muscular reinnervation was able to reverse the atrophic changes observed in the denervated muscle. In control experiments, the extraspinal end of the peripheral nerve graft was ligatured in order to compare the differentiation of the transplanted neurons and the survival of their growing axons with or without their muscular targets. Six months after both types of surgery, large-size grafted neurons, identified as motoneurons by immunocytochemistry for peripherine and calcitonin gene-related peptide, were only observed in fetal spinal cord transplants which were connected to denervated muscles, thus demonstrating the trophic influence of the muscle target on the survival and differentiation of the transplanted neurons and on the maintenance of the axons they had grown into the peripheral nerve graft.
Collapse
Affiliation(s)
- Y Duchossoy
- Laboratoire de Neurobiologie, Université René Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | | | | | | | | |
Collapse
|
37
|
Bomze HM, Bulsara KR, Iskandar BJ, Caroni P, Skene JH. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 2001; 4:38-43. [PMID: 11135643 DOI: 10.1038/82881] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In contrast to peripheral nerves, damaged axons in the mammalian brain and spinal cord rarely regenerate. Peripheral nerve injury stimulates neuronal expression of many genes that are not generally induced by CNS lesions, but it is not known which of these genes are required for regeneration. Here we show that co-expressing two major growth cone proteins, GAP-43 and CAP-23, can elicit long axon extension by adult dorsal root ganglion (DRG) neurons in vitro. Moreover, this expression triggers a 60-fold increase in regeneration of DRG axons in adult mice after spinal cord injury in vivo. Replacing key growth cone components, therefore, could be an effective way to stimulate regeneration of CNS axons.
Collapse
Affiliation(s)
- H M Bomze
- Cogent Neuroscience, 4425 Ben Franklin Boulevard, Durham, North Carolina 27704, USA
| | | | | | | | | |
Collapse
|
38
|
Andersen PL, Webber CA, Kimura KA, Schreyer DJ. Cyclic AMP prevents an increase in GAP-43 but promotes neurite growth in cultured adult rat dorsal root ganglion neurons. Exp Neurol 2000; 166:153-65. [PMID: 11031091 DOI: 10.1006/exnr.2000.7485] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High expression of the growth-associated protein GAP-43 in neurons is correlated with developmental and regenerative axon growth. It has been postulated that during development and after injury, GAP-43 expression is elevated due to the unavailability of a target-derived repressive signal, but that GAP-43 expression then declines upon target contact. Here we examine the cyclic AMP second messenger signaling pathway to determine if it might mediate retrograde transmission of a signal which represses GAP-43 expression and inhibits growth. Cultures of adult rat dorsal root ganglia were chronically exposed to membrane-permeable analogs of cyclic AMP and activators of adenyl cyclase. These treatments caused GAP-43 protein levels to decrease in a dose-dependent manner, although neuronal survival was not affected. GAP-43 mRNA was also decreases by cyclic AMP. GAP-43 protein levels were not repressed by neurotrophins, cytokines, or other agents. Surprisingly, cyclic AMP caused an increase in the rate of neurite outgrowth, even though the neurons were partially depleted of GAP-43. Growth stimulation was quickly inducible and reversible, could occur in the presence of transcription inhibitors, and did not entail alterations in branching pattern. These findings suggest that axon growth involving high levels of GAP-43 is distinct from the growth stimulation which is rapidly induced by cyclic AMP.
Collapse
Affiliation(s)
- P L Andersen
- Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | | | | | | |
Collapse
|
39
|
Abstract
Adult neurones fail to regenerate when injured in the CNS, which leads to severe and irreversible functional deficits. Several important advances in understanding the reasons for this failure have been gained from the use of primary sensory neurones as a model system. The peripherally and centrally projecting branches of sensory neurones are differentially capable of regeneration, which is why these cells are ideally situated to elucidate the mechanisms that underlie regeneration failure. Such mechanisms include both a hostile environment within the spinal cord and a poor growth response following injury. For successful functional regeneration to occur, it is likely that both of these barriers will have to be surmounted, along with the challenge of guiding regrowing axons to appropriate postsynaptic targets. The contribution that the study of primary sensory neurones has made to the attainment of this goal will be reviewed.
Collapse
Affiliation(s)
- E J Bradbury
- Sensory Function Group, Centre for Neuroscience Research, Hodgkin Building, King's College London, Guy's Campus, London Bridge, SE1 1UL, London, UK.
| | | | | |
Collapse
|
40
|
Plasticity and rigidity in the nervous system. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1064-6000(00)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Fernandes KJ, Fan DP, Tsui BJ, Cassar SL, Tetzlaff W. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M. J Comp Neurol 1999; 414:495-510. [PMID: 10531542 DOI: 10.1002/(sici)1096-9861(19991129)414:4<495::aid-cne6>3.0.co;2-s] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Axotomized motoneurons regenerate their axons regardless of whether axotomy occurs proximally or distally from their cell bodies. In contrast, regeneration of rubrospinal axons into peripheral nerve grafts has been detected after cervical but not after thoracic injury of the rubrospinal tract. By using in situ hybridization (ISH) combined with reliable retrograde tracing methods, we compared regeneration-associated gene expression after proximal and distal axotomy in spinal motoneurons versus rubrospinal neurons. Regardless of whether they were axotomized at the iliac crest (proximal) or popliteal fossa (distal), sciatic motoneurons underwent highly pronounced changes in ISH signals for Growth Associated Protein 43 (GAP-43) (10-20x increase) and neurofilament M (60-85% decrease). In contrast, tubulin ISH signals substantially increased only after proximal axotomy (3-5x increase). To compare these changes in gene expression with those of axotomized rubrospinal neurons, the rubrospinal tract was transected at the cervical (proximal) or thoracic (distal) levels of the spinal cord. Cervically axotomized rubrospinal neurons showed three- to fivefold increases in ISH signals for GAP-43 and tubulins (only transient) and a 75% decrease for neurofilament-M. In sharp contrast, thoracic axotomy had only marginal effects. After implantation of peripheral nerve transplants into the spinal cord injury sites, retrograde labeling with the sensitive retrograde tracer Fluoro-Gold identified regenerating rubrospinal neurons only after cervical axotomy. Furthermore, rubrospinal neurons specifically regenerating into the transplants were hypertrophied and expressed high levels of GAP-43 and tubulins. Taken together, these data support the concept that, even if central nervous system (CNS) axons are presented with a permissive/supportive environment, appropriate cell body responses to injury are a prerequisite for CNS axonal regeneration.
Collapse
Affiliation(s)
- K J Fernandes
- Collaboration On Repair Discoveries (CORD), Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
42
|
Reimer M, Kanje M. Peripheral but not central axotomy promotes axonal outgrowth and induces alterations in neuropeptide synthesis in the nodose ganglion of the rat. Eur J Neurosci 1999; 11:3415-23. [PMID: 10564349 DOI: 10.1046/j.1460-9568.1999.00757.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effects of central and peripheral axotomy of the sensory neurons in the nodose ganglion on neurite outgrowth and neuropeptide expression. Axonal outgrowth was studied in ganglia subjected to a conditioning lesion of the vagus nerve 6 days prior to in vitro explantation. In such cultures, a conditioning effect, i. e. a shorter initial delay and faster axonal outgrowth, was observed after peripheral axotomy, while central axotomy had no effect. Neuropeptide expression was measured by immunocytochemistry 3 days after axotomy. Peripheral axotomy induced an increase in the number of neurons expressing the C-terminal flanking peptide of neuropeptide Y (C-PON), galanin (GAL) and vasoactive intestinal peptide (VIP). In contrast, central axotomy did not affect neuropeptide expression. These results suggest that both axonal outgrowth and expression of neuropeptides in the sensory neurons of the nodose ganglion could be regulated by the contact of the cells with their peripheral, but not their central targets.
Collapse
Affiliation(s)
- M Reimer
- Department of Animal Physiology, Lund University, Sweden.
| | | |
Collapse
|
43
|
Zhou XF, Chie ET, Deng YS, Zhong JH, Xue Q, Rush RA, Xian CJ. Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 1999; 92:841-53. [PMID: 10426526 DOI: 10.1016/s0306-4522(99)00027-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peripheral nerve injury results in plastic changes in the dorsal root ganglia and spinal cord, and is often complicated with neuropathic pain. The mechanisms underlying these changes are not known. We have now investigated the expression of brain-derived neurotrophic factor in the dorsal root ganglia with histochemical and biochemical methods following sciatic nerve lesion in the rat. The percentage of neurons immunoreactive for brain-derived neurotrophic factor in the ipsilateral dorsal root ganglia was significantly increased as early as 24 h after the nerve lesion and the increase lasted for at least two weeks. The level of brain-derived neurotrophic factor messenger RNA was also significantly increased in the ipsibut not contralateral dorsal root ganglia. Both neurons and satellite cells in the lesioned dorsal root ganglia synthesized brain-derived neurotrophic factor messenger RNA after the nerve lesion. There was a dramatic shift in size distribution of positive neurons towards large sizes seven days after sciatic nerve lesion. Morphometric analysis and retrograde tracing studies showed that no injured neurons smaller than 600 microm2 were immunoreactive for brain-derived neurotrophic factor, whereas the majority of large injured neurons were immunoreactive in the ipsilateral dorsal root ganglia seven days postlesion. The brain-derived neurotrophic factor-immunoreactive nerve terminals in the ipsilateral spinal cord were reduced in the central region of lamina II, but increased in more medial regions or deeper into laminae III/IV. These studies indicate that sciatic nerve injury results in a differential regulation of brain-derived neurotrophic factor in different subpopulations of sensory neurons in the dorsal root ganglia. Small neurons switched off their normal synthesis of brain-derived neurotrophic factor, whereas larger ones switched to a brain-derived neurotrophic factor phenotype. The phenotypic switch may have functional implications in neuronal plasticity and generation of neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- X F Zhou
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
In previous studies, interleukin-6 was shown to be synthesized in approximately one-third of lumbar dorsal root ganglion neurons during the first week after nerve transection. In present studies, interleukin-6 mRNA was found to be induced also in axotomized facial motor neurons and sympathetic neurons. The nature of the signal that induces interleukin-6 mRNA in neurons after nerve injury was analyzed. Blocking of retrograde axonal transport by injection of colchicine into an otherwise normal nerve did not induce interleukin-6 mRNA in primary sensory neurons, but injection of colchicine into the nerve stump prevented induction of interleukin-6 mRNA by nerve transection. Therefore, it was concluded that interleukin-6 is induced by an injury factor arising from the nerve stump rather than by interruption of normal retrograde trophic support from target tissues or distal nerve segments. Next, injection into the nerve of a mast cell degranulating agent was shown to stimulate interleukin-6 mRNA in sensory neurons and systemic administration of mast cell stabilizing agents to mitigate the induction of interleukin-6 mRNA in sensory neurons after nerve injury. These data implicate mast cells as one possible source of the factors that lead to induction of interleukin-6 mRNA after nerve injury. In search of a possible function of inducible interelukin-6, neuronal death after nerve transection was assessed in mice with null deletion of the interleukin-6 gene. Retrograde death of neurons in the fifth lumbar dorsal root ganglion was 45% greater in knockout than in wild-type mice. Thus, endogenous interleukin-6 contributes to the survival of axotomized neurons.
Collapse
|
45
|
Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999; 23:83-91. [PMID: 10402195 DOI: 10.1016/s0896-6273(00)80755-2] [Citation(s) in RCA: 500] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regeneration is abortive following adult mammalian CNS injury. We have investigated whether increasing the intrinsic growth state of primary sensory neurons by a conditioning peripheral nerve lesion increases regrowth of their central axons. After dorsal column lesions, all fibers stop at the injury site. Animals with a peripheral axotomy concomitant with the central lesion show axonal growth into the lesion but not into the spinal cord above the lesion. A preconditioning lesion 1 or 2 weeks prior to the dorsal column injury results in growth into the spinal cord above the lesion. In vitro, the growth capacity of DRG neurite is also increased following preconditioning lesions. The intrinsic growth state of injured neurons is, therefore, a key determinant for central regeneration.
Collapse
Affiliation(s)
- S Neumann
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
46
|
Abstract
The initial outgrowth of peripheral axons in developing embryos is thought to occur independently of neurotrophins. However, the degree to which peripheral neurons can extend axons and elaborate axonal arborizations in the absence of these molecules has not been studied directly because of exquisite survival requirements for neurotrophins at early developmental stages. We show here that embryonic sensory neurons from BAX-deficient mice survived indefinitely in the absence of neurotrophins, even in highly dissociated cultures, allowing assessment of cell autonomous axon outgrowth. At embryonic day 11 (E11)-E13, stages of rapid axon growth toward targets in vivo, Bax-/- sensory neurons cultured without neurotrophins were almost invariably unipolar and extended only a rudimentary axon. Addition of neurotrophins caused outgrowth of a second axon and a marked, dose-dependent elongation of both processes. Surprisingly, morphological responses to individual neurotrophins differed substantially. Neurotrophin-3 (NT-3) supported striking terminal arborization of subsets of Bax-/- neurons, whereas NGF produced predominantly axon elongation in a different subset. We conclude that axon growth in vitro is neurotrophin dependent from the earliest stages of sensory neuron development. Furthermore, neurotrophins support the appearance of distinct axonal morphologies that characterize different sensory neuron subpopulations.
Collapse
|
47
|
Andersen LB, Schreyer DJ. Constitutive expression of GAP-43 correlates with rapid, but not slow regrowth of injured dorsal root axons in the adult rat. Exp Neurol 1999; 155:157-64. [PMID: 10072292 DOI: 10.1006/exnr.1998.6903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been postulated that the neuronal growth-associated protein GAP-43 plays an essential role in axon elongation. Although termination of developmental axon growth is generally accompanied by a decline in expression of GAP-43, a subpopulation of dorsal root ganglion (DRG) neurons retains constitutive expression of GAP-43 throughout adulthood. Peripheral nerve regeneration occurring subsequent to injury of the peripheral axon branches of adult DRG neurons is accompanied by renewed elevation of GAP-43 expression. Lesions of DRG central axon branches in the dorsal roots are also followed by some regenerative growth, but little or no increase in GAP-43 expression above the constitutive level is observed. To determine whether dorsal root axon regeneration occurs only from neurons which constitutively express GAP-43, we have used retrograde fluorescent labeling to identify those DRG neurons which extend axons beyond a crush lesion of the dorsal root. Only GAP-43 immunoreactive neurons supported axon regrowth of 7 mm or greater within the first week. At later times, axon regrowth is seen to occur from neurons both with and without GAP-43 immunoreactivity. We conclude that regeneration of injured axons within the dorsal root is not absolutely dependent on the presence of GAP-43, but that expression of GAP-43 is correlated with a capacity for rapid growth.
Collapse
Affiliation(s)
- L B Andersen
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | | |
Collapse
|
48
|
Tator CH. Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery 1998; 42:696-707; discussion 707-8. [PMID: 9574633 DOI: 10.1097/00006123-199804000-00007] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This article reviews the anatomic and pathophysiological bases for recovery of neurological function after experimental or clinical spinal cord injury (SCI). METHODS Current knowledge regarding the recovery of neurological function after experimental or clinical SCI was reviewed to determine the biological basis of neurological recovery. RESULTS There is a great propensity for recovery after clinical or experimental SCI. An examination of the anatomic basis of recovery indicates that there is a potential for both root and cord recovery, with the latter involving recovery of both gray and white matter of the cord. Resolution of acute injury events, such as hemorrhaging, and resolution of secondary pathophysiological processes, such as ischemia and excitotoxicity, can each account for recovery. The third recovery mechanism involves regrowth or regeneration of nervous tissue, resulting from either inherent or induced processes. CONCLUSION During the Decade of the Brain, there has been a profusion of very promising in vitro and in vivo studies that have shown enhanced neurological recovery after experimental or clinical SCI.
Collapse
Affiliation(s)
- C H Tator
- Division of Neurosurgery, Toronto Hospital and University of Toronto, Ontario, Canada
| |
Collapse
|
49
|
Lund LM, McQuarrie IG. Calcium/calmodulin-dependent protein kinase II expression in motor neurons: effect of axotomy. JOURNAL OF NEUROBIOLOGY 1997; 33:796-810. [PMID: 9369152 DOI: 10.1002/(sici)1097-4695(19971120)33:6<796::aid-neu7>3.0.co;2-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although Ca2+/calmodulin-dependent (CaM) protein kinase II isoforms are present in the nervous system in high amounts, many aspects of in vivo expression, localization, and function remain unexplored. During development, CaM kinase IIalpha and IIbeta are differentially expressed. Here, we examined CaM kinase II isoforms in Sprague-Dawley rat sciatic motor neurons before and after axotomy. We cut the L4-5 spinal nerves unilaterally and exposed the proximal nerve stumps to a fluoroprobe, to retrogradely label the neurons of origin. Anti-CaM kinase IIbeta antibody showed immunoreactivity in motor neurons, which decreased to low levels by 4 days after axotomy. We found a similar response by in situ hybridization with riboprobes. The decrease in expression of mRNA and protein was confined to fluorescent motor neurons. For CaM kinase IIalpha, in situ hybridization showed that the mRNA was in sciatic motor neurons, with a density unaffected by axotomy. However, these neurons were also enlarged, suggesting an up-regulation of expression. Northern blots confirmed an mRNA increase. We were unable to find CaM kinase IIalpha immunoreactivity before or after axotomy in sciatic motor neuron cell bodies, suggesting that CaM kinase IIalpha is in the axons or dendrites, or otherwise unavailable to the antibody. Using rats with crush lesions, we radiolabeled axonal proteins being synthesized in the cell body and used two-dimensional polyacrylamide gel electrophoresis with Western blots to identify CaM kinase IIalpha as a component of slow axonal transport. This differential regulation and expression of kinase isoforms suggests separate and unique intracellular roles. Because we find CaM kinase IIbeta down-regulates during axonal regrowth, its role in these neurons may be related to synaptic transmission. CaM kinase IIalpha appears to support axonal regrowth.
Collapse
Affiliation(s)
- L M Lund
- VA Medical Center, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
50
|
Doubell TP, Woolf CJ. Growth-associated protein 43 immunoreactivity in the superficial dorsal horn of the rat spinal cord is localized in atrophic C-fiber, and not in sprouted A-fiber, central terminals after peripheral nerve injury. J Comp Neurol 1997; 386:111-8. [PMID: 9303528 DOI: 10.1002/(sici)1096-9861(19970915)386:1<111::aid-cne10>3.0.co;2-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury induces the up-regulation in dorsal root ganglion cells of growth-associated protein 43 (GAP-43) and its transport to the superficial laminae of the dorsal horn of the spinal cord, where it is located primarily in unmyelinated axons and growth-cone like structures. Peripheral nerve injury also induces the central terminals of axotomized myelinated axons to sprout and form novel synaptic contacts in lamina II of the dorsal horn. To investigate whether the sprouting of A-fiber central terminals into lamina II is the consequence of GAP-43 incorporation into their terminal membranes, we have used an ultrastructural analysis with double labelling to identify the localization of GAP-43 immunoreactivity. Transganglionic transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was used to identify C-fiber terminals. Transganglionic transport of the B fragment of cholera toxin conjugated to horseradish peroxidase (B-HRP) was used to label A-fiber sciatic nerve central terminals in combination with GAP-43 immunocytochemistry. GAP-43 was found to colocalize only with WGA-HRP- and not with B-HRP-labelled synapses or axons. In addition, many single-labelled GAP-43 synapses were observed. Many of the WGA-HRP-labelled terminals that were characterized by degenerative changes were GAP-43 immunoreactive. Our results indicate that peripheral nerve injury induces novel synapse formation of A fibers in lamina II but that up-regulated levels of GAP-43 are present mainly in other axon projections to the superficial dorsal horn.
Collapse
Affiliation(s)
- T P Doubell
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | |
Collapse
|