1
|
Sørensen LB, Gazerani P, Sluka KA, Graven-Nielsen T. Repeated Injections of Low-Dose Nerve Growth Factor (NGF) in Healthy Humans Maintain Muscle Pain and Facilitate Ischemic Contraction-Evoked Pain. PAIN MEDICINE 2020; 21:3488-3498. [PMID: 33111942 DOI: 10.1093/pm/pnaa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Nerve growth factor (NGF) is essential for generating and potentiating pain responses. This double-blinded crossover study assessed NGF-evoked pain in healthy humans after repeated NGF injections in the tibialis anterior (TA) muscle compared with control injections of isotonic saline. SUBJECTS Twenty healthy subjects participated in two experimental phases; each consisted of seven sessions over 21 days. METHODS At day 0, day 2, and day 4, a low-dose NGF (1 µg) was injected. Data on daily self-reported muscle pain (using a Likert scale) were collected. Data on pressure pain thresholds (PPTs), pain evoked by nonischemic and ischemic muscle contractions (using a numerical rating scale [NRS]), pressure pain detection (PDT), and pain tolerance thresholds (PTTs) to cuff algometry were recorded before day 0 and at 1, 2, 4, 7, 10, and 21 days after the first injection. Temporal summation of pain (TSP) and conditioned pain modulation (CPM) were recorded to assess central pain mechanisms. RESULTS Likert scores remained elevated for 9 days after NGF injection (P<0.05). PPTs at the TA muscle were decreased at day 1 until day 7 after NGF injection compared with day 0 (P=0.05). In subjects presenting with NGF-induced muscle hyperalgesia, pain NRS scores evoked by nonischemic contractions were higher after NGF injection at day 4 and day 7 (P<0.04) compared with the control condition. At all time points, higher pain NRS scores were found with ischemic compared with nonischemic contractions (P<0.05). The pain NRS after ischemic contractions was elevated following prolonged NGF hyperalgesia at day 7 compared with the control condition and day 0 (P<0.04). The PDT, PTT, TSP, and CPM remained unchanged during the period of NGF-induced hyperalgesia. CONCLUSIONS Repeated low-dose NGF injections maintain muscle pain and potentiate pain evoked by ischemic contractions during prolonged NGF hyperalgesia.
Collapse
Affiliation(s)
- Line Bay Sørensen
- Department of Health Science and technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Parisa Gazerani
- Biomedicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Thomas Graven-Nielsen
- Department of Health Science and technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Majima T, Tyagi P, Dogishi K, Kashyap M, Funahashi Y, Gotoh M, Chancellor MB, Yoshimura N. Effect of Intravesical Liposome-Based Nerve Growth Factor Antisense Therapy on Bladder Overactivity and Nociception in a Rat Model of Cystitis Induced by Hydrogen Peroxide. Hum Gene Ther 2017; 28:598-609. [PMID: 28446032 DOI: 10.1089/hum.2016.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate whether liposome-based local suppression of nerve growth factor (NGF) in the bladder has effects on bladder hypersensitivity in a rat cystitis model induced by intravesical instillation of hydrogen peroxide (HP). HP (1.5%) was intravesically administered to adult female Sprague-Dawley rats. Liposomes complexed with NGF antisense oligonucleotide (OND) labeled with TYE563 fluorescent tag were intravesically instilled on day 2. Red fluorescence from the TYE 563 tag was observed with fluorescent microscopy on day 3. Four separate groups of rats were used in the following experiments: (a) sham-liposome group, (b) sham-OND group, (c) cystitis-liposome group, and (d) cystitis-OND group. Saline or 1.5% HP was intravesically administered on day 0. Empty liposomes or liposomes-antisense OND were instilled into the bladder on day 2. The following experiments were conducted to evaluate the effect of NGF antisense treatment on day 7: (a) continuous cystometry was performed in an awake condition; (b) pain behavior induced by instillation of resiniferatoxin into the bladder, including licking behavior (lower abdominal licking) and freezing behavior (motionless head-turning toward lower abdomen), was observed; (c) immunohistochemical staining of the bladder and L6 DRG for NGF was performed; (d) the expression of several genes in the bladder was analyzed by reverse transcription polymerase chain reaction (RT-PCR); and (e) after Fast Blue was injected into the bladder wall, Fast Blue-positive or -negative cells in DRG neurons were separately collected by using a laser-capture microdissection method 7 days later. RT-PCR was performed to evaluate gene expressions in captured neuronal cells. The expression of TYE563 was identified only in the urothelial layer. In cystometric investigation, intercontraction intervals (ICI) were significantly (p = 0.001) shorter in the cystitis-liposome group in comparison to the sham-liposome group. ICI was significantly (p = 0.007) longer in the cystitis-OND group compared to the cystitis-liposome group. Comparisons of the sham-liposome and the sham-OND groups showed no significant difference in ICI (p = 0.56). Licking events did not significantly differ among the four groups. In contrast, the cystitis-liposome group showed significantly more freezing events than the sham-liposome group did (p = 0.002). A significant reduction in the number of freezing events was observed in the cystitis-OND group compared to the cystitis-liposome group (p = 0.04). Immunofluorescence staining demonstrated that NGF expression in the mucosa (p = 0.02) and L6 DRG (p = 0.01) was significantly higher in the cystitis-liposome group than it was in the sham-liposome group. The expression of NGF was significantly lower in the mucosa (p = 0.002) and L6 DRG (p = 0.01) in the cystitis-OND group compared to the cystitis-liposome group. RT-PCR showed that the expression of NGF and TRPV1 mRNA in the mucosa was significantly higher in the cystitis-liposome group than it was in the sham-liposome group (p = 0.001 and 0.03, respectively). On the other hand, these gene expressions were significantly lower in the cystitis-OND group than they were in the cystitis-liposome group (p = 0.007 and 0.02, respectively). The cystitis-liposome group showed significantly higher expression of TRPA1, P2X3, and BDNF mRNA in labeled bladder afferent neurons than the sham-liposome group did (p = 0.03, 0.01, and 0.001, respectively). These gene expressions were significantly lower in the cystitis-OND group compared to the cystitis-liposome group (p = 0.04, 0.006, and 0.03, respectively). The study indicated that intravesical application of liposome-NGF antisense OND significantly improved bladder hypersensitivity induced by chemical cystitis in rats. Intravesical treatment with liposome-OND conjugates could be a novel local therapy of hypersensitive bladder disorders such as bladder pain syndrome/interstitial cystitis.
Collapse
Affiliation(s)
- Tsuyoshi Majima
- 1 Department of Urology, Nagoya University Graduate School of Medicine , Nagoya, Japan .,2 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- 2 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Koji Dogishi
- 2 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto, Japan
| | - Mahendra Kashyap
- 2 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Yasuhito Funahashi
- 1 Department of Urology, Nagoya University Graduate School of Medicine , Nagoya, Japan
| | - Momokazu Gotoh
- 1 Department of Urology, Nagoya University Graduate School of Medicine , Nagoya, Japan
| | - Michael B Chancellor
- 4 Department of Urology, Oakland University William Beaumont School of Medicine , Royal Oak, Michigan
| | - Naoki Yoshimura
- 2 Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Munkholm TK, Arendt-Nielsen L. The interaction between NGF-induced hyperalgesia and acid-provoked pain in the infrapatellar fat pad and tibialis anterior muscle of healthy volunteers. Eur J Pain 2016; 21:474-485. [PMID: 27634419 DOI: 10.1002/ejp.941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Tissue pH is lowered in inflamed tissues, and the increased proton concentration activates acid-sensing ion channels (ASICs), contributing to pain and hyperalgesia. ASICs can be upregulated by nerve growth factor (NGF). The aim of this study was to investigate two new human experimental pain models combining NGF- and acid-induced pain in a randomized, controlled, double-blind study. METHODS In experiment 1, volunteers (N = 16) received an injection of either NGF or isotonic saline in each infrapatellar fat pad (IFP). One day after 5 mL of phosphate-buffered acidic saline was infused into each IFP at a rate of 20 mL/h. In experiment 2, the tibialis anterior (TA) muscle of additional volunteers (N = 16) was examined, following the same procedure except that the volume and infusion rate of acid were different (10 mL, 30 mL/h). Continuous pain ratings were recorded during and after acid infusions. In addition, soreness scores on a Likert scale and pressure pain thresholds (PPTs) were assessed. RESULTS The PPT of the IFP was significantly decreased at the NGF injection site on day 1, but acid-provoked pain ratings and the change in PPT from pre- to postinfusion between the knees were similar. In the muscle pain model, local mechanical hyperalgesia developed 3 h after the NGF injection and a significant additional decrease in PPT was found after acid infusion compared to preinfusion. CONCLUSIONS NGF sensitization in the IFP was not facilitated by acid, whereas an acid-provoked enhancement of muscle hyperalgesia was found. NGF sensitization of adipose tissue responds differently to acid provocation compared to muscle tissue. SIGNIFICANCE Quantification of two novel pain models combining NGF and acid. Hyperalgesia developed after NGF injection in the infrapatellar fat pad, but it was not facilitated by acid provocation. Contrary, NGF-induced hyperalgesia in muscle tissue was enhanced by acid.
Collapse
Affiliation(s)
- T K Munkholm
- Center for Sensory-Motor Interaction (SMI), Aalborg University, Denmark
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Aalborg University, Denmark
| |
Collapse
|
4
|
Wetmore C, Olson L. Expression and regulation of neurotrophins and their receptors in hippocampal systems. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Lars Olson
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Kuznetsov AV. Analytical modelling of retrograde transport of nerve growth factors in an axon: a transient problem. Comput Methods Biomech Biomed Engin 2013; 16:95-102. [DOI: 10.1080/10255842.2011.607445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Abstract
Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.
Collapse
|
7
|
Melanson M, Miao P, Eisenstat D, Gong Y, Gu X, Au K, Zhu W, Begum F, Frost EE, Namaka M. Experimental autoimmune encephalomyelitis-induced upregulation of tumor necrosis factor-alpha in the dorsal root ganglia. Mult Scler 2009; 15:1135-45. [DOI: 10.1177/1352458509106856] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Multiple sclerosis (MS) is a chronic, neurological disease characterized by targeted destruction of central nervous system (CNS) myelin. The autoimmune theory is the most widely accepted explanation of disease pathology. Circulating Th1 cells become activated by exposure to CNS-specific antigens such as myelin basic protein. The activated Th1 cells secrete inflammatory cytokines, which are pivotal for inflammatory responses. We hypothesize that enhanced production of inflammatory cytokines triggers cellular events within the dorsal root ganglia (DRG) and/or spinal cord, facilitating the development of neuropathic pain (NPP) in MS. NPP, the second worst disease-induced symptom suffered by patients with MS, is normally regulated by DRG and/or spinal cord. Objective: To determine gene and protein expression levels of tumor necrosis factor-alpha (TNFα) within DRG and/or spinal cord in an animal model of MS. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in adolescent female Lewis rats. Animals were sacrificed every 3 days post-disease induction. DRG and spinal cords were harvested for protein and gene expression analysis. Results: We show significant increases in TNFα expression in the DRG and of EAE animals at peak disease stage, as assessed by clinical symptoms. Conclusion: Antigen-induced production of inflammatory cytokines such as TNFα within the DRG identifies a potential novel mechanism for MS-induced NPP.
Collapse
Affiliation(s)
- M. Melanson
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, MB, Canada, Department of Neurology Multiple Sclerosis Clinic, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - P. Miao
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, MB, Canada
| | - D. Eisenstat
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Y. Gong
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, MB, Canada
| | - X. Gu
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, MB, Canada
| | - K. Au
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, MB, Canada, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - W. Zhu
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, MB, Canada, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - F. Begum
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada, Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - EE Frost
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada, , Department of Pathology, University of Manitoba, Winnipeg, MB, Canada
| | - M. Namaka
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, MB, Canada, Department of Neurology Multiple Sclerosis Clinic, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Chao T, Pham K, Steward O, Gupta R. Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia. J Comp Neurol 2008; 506:180-93. [PMID: 18022951 DOI: 10.1002/cne.21537] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic nerve compression (CNC) injury initiates a series of pathological changes within the peripheral nerve at the site of injury. However, to date, little work has been performed to explore neuronal cell body responses to CNC injury. Here we show a preferential upregulation of growth-associated protein-43 (GAP-43) and enhanced Fluoro Ruby uptake by the small-diameter calcitonin gene-related protein (CGRP) and isolectin B4 (IB4)-positive neurons in the L4 and L5 ipsilateral dorsal root ganglion (DRG) 2 weeks and 1 month post injury. Furthermore, L4 and L5 DRGs ipsilateral to CNC injury also demonstrated a marked reduction in neurofilament 200 (NF-200) neurons and an increase in CGRP and IB4 neurons at early time points. All numbers normalized to values comparable to those of control when the DRG was evaluated 6 months post injury. Quantification of glial-derived neurotrophic factor (GDNF) protein revealed an upregulation in L4 and L5 DRG followed by a return to baseline values at later stages following injury. Upregulation of GDNF expression by Schwann cells was also readily apparent with both immunohistochemistry and Western blot analysis of 1 month compressed sciatic nerve specimens. Thus, CNC induces a phenotypic change in the DRG that appears to be temporally associated with increases in GDNF protein expression at and near the site of the compression injury in the nerve.
Collapse
Affiliation(s)
- Tom Chao
- Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
9
|
Zweifel LS, Kuruvilla R, Ginty DD. Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 2005; 6:615-25. [PMID: 16062170 DOI: 10.1038/nrn1727] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal connections are established and refined through a series of developmental programs that involve axon and dendrite specification, process growth, target innervation, cell death and synaptogenesis. Many of these developmental events are regulated by target-derived neurotrophins and their receptors, which signal retrogradely over long distances from distal-most axons to neuronal cell bodies. Recent work has established many of the cellular and molecular events that underlie retrograde signalling and the importance of these events for both development and maintenance of proper neural connectivity.
Collapse
Affiliation(s)
- Larry S Zweifel
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
10
|
Richardson RT, O'Leary S, Wise A, Hardman J, Clark G. A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support. Hear Res 2005; 204:37-47. [PMID: 15925190 DOI: 10.1016/j.heares.2005.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 01/02/2005] [Indexed: 10/25/2022]
Abstract
Degeneration of spiral ganglion neurons (SGNs) in the cochlea following sensorineural hearing loss is preventable by the infusion of neurotrophins into the scala tympani. This study investigates the trophic effects and distribution of a single bolus infusion of neurotrophin-3 (NT3) into the scala tympani of the cochlea. The left cochleae of 28-day deafened guinea pigs were infused with 0, 100 or 140 ng 125I NT3 via a cochleostomy in the scala tympani of the basal turn. Seven days post-infusion, cochlear sections were processed for measurements of trophic effects on SGNs and autoradiography. A single infusion of NT3 increased the soma size of SGNs in a dose-dependent and significant manner but did not contribute to SGN survival. Following infusion of 140 ng 125I NT3 into the cochlea, 0.31% of the total 125I NT3 signal in the basal turn was detected in Rosenthal's canal, 2.4% was in peripheral processes and 0.35% was in the modiolar auditory nerve. Despite influencing SGN soma size, 125I NT3 was not observed to accumulate in SGN cell bodies. The data suggest that only a small proportion of neurotrophins infused into the scala tympani diffuses to the SGNs and their processes and produces trophic effects on SGN cell bodies.
Collapse
Affiliation(s)
- Rachael T Richardson
- The Bionic Ear Institute, 384-388 Albert Street, East Melbourne, Vic. 3002, Australia.
| | | | | | | | | |
Collapse
|
11
|
Howe CL, Mobley WC. Signaling endosome hypothesis: A cellular mechanism for long distance communication. ACTA ACUST UNITED AC 2004; 58:207-16. [PMID: 14704953 DOI: 10.1002/neu.10323] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The kinetics of signaling endosome retrograde transport along axons is analyzed and offered as evidence that such transport is more efficient than diffusion or calcium wave-based signaling systems over even relatively small distances. Evidence is provided to support the signaling endosome hypothesis and to expand the hypothesis to include signaling in many cell types and many cellular dimensions. Finally, a saltatory, regenerating inositol 1,4,5-trisphosphate wave model is offered to reconcile current discrepancies in the literature regarding endosomal-based retrograde signaling.
Collapse
Affiliation(s)
- Charles L Howe
- Mechanisms of Neural Repair Lab, Department of Neurology, Mayo Medical and Graduate Schools, Guggenheim 442C, 200 First Street SW, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
12
|
Kishino A, Nakayama C. Enhancement of BDNF and activated-ERK immunoreactivity in spinal motor neurons after peripheral administration of BDNF. Brain Res 2003; 964:56-66. [PMID: 12573513 DOI: 10.1016/s0006-8993(02)04066-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) shows neurotrophic effects on adult motor neurons when given systemically, But it is unknown whether systemically administered BDNF is transported to central cell bodies to affect them directly. Here we used immunohistochemistry to investigate the transport of peripherally injected BDNF to spinal motor neurons and the subsequent activation of a signaling pathway. We first injected BDNF into the flexor digitorum brevis (FDB) and analyzed the motor nucleus that projects to the FDB for BDNF immunoreactivity (BDNF-ir) and phosphorylated extracellular signal-regulated kinase (ERK) 1/2 immunoreactivity (pERK1/2-ir). Both immunoreactivities were observed in the motor neuron cell bodies. Next, BDNF was injected subcutaneously (s.c.) into rats with a unilaterally axotomized sciatic nerve. pERK1/2-ir was detected in motor neurons of the lesioned side. BDNF-ir and pERK1/2-ir were also observed on the unlesioned side when a high dose of BDNF was injected. Therefore, we examined BDNF-ir and pERK1/2-ir after injecting BDNF s.c. into normal rats. Both immunoreactivities were observed in motor nuclei on both sides. Finally, we examined pERK1/2-ir after a lower dose of BDNF was injected, which prevents the decrease in choline acetyl transferase that occurs in the motor neuron upon axotomy. Spinal motor nuclei contained a few cell bodies with pERK1/2-ir. These findings represent the first direct evidence that subcutaneously injected BDNF is transported to motor neurons and that it activates a signaling pathway in the spinal cord and exhibits neurotrophic effects in vivo.
Collapse
Affiliation(s)
- Akiyoshi Kishino
- Sumitomo Pharmaceuticals Research Division, 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan.
| | | |
Collapse
|
13
|
Reynolds AJ, Hendry IA, Bartlett SE. Anterograde and retrograde transport of active extracellular signal-related kinase 1 (ERK1) in the ligated rat sciatic nerve. Neuroscience 2001; 105:761-71. [PMID: 11516839 DOI: 10.1016/s0306-4522(01)00235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurons are one of the most polarized cells and often the nerve terminals may be located long distances from the cell body, thus signal transduction in neurons unlike other cells may need to be conducted over large distances. The mitogen-activated protein/extracellular signal-regulated kinases (MAP kinases or ERKs) regulate a diverse array of functions and in neurons, the ERK signalling pathways appear to have an important role in activity-dependent regulation of neuronal function. Using the ligated rat sciatic nerve as an experimental model we previously showed that the ERK1/2, MAP/ERK kinase (MEK1/2) and the p110 catalytic subunit of PI3-kinase are transported in the rat sciatic nerve. We have extended these findings to determine if these proteins are transported in the active state using antibodies that specifically detect the active form of ERK1/2, MEK1/2 and AKT which is activated downstream of PI3-kinase. We show significant accumulation of active ERK1 on the proximal and distal sides of a nerve ligation after 16 h. Active ERK2 also appeared to be accumulating at the ligature, however this did not reach statistical significance. In contrast there was not any significant accumulation of active MEK1/2 or active AKT. A component of both active ERK1 and active ERK2 is present in between the two ligations suggesting they are also present in the surrounding Schwann cells and are activated in response to nerve injury. Taken together our results suggest that a component of the accumulation of active ERK1 on the distal and proximal side of the nerve ligations results from transport in the anterograde and retrograde direction in the rat sciatic nerve.
Collapse
Affiliation(s)
- A J Reynolds
- Division of Neuroscience, The John Curtin School of Medical Resarch, Australian National University, Canberra
| | | | | |
Collapse
|
14
|
Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J Neurosci 1999. [PMID: 10479691 DOI: 10.1523/jneurosci.19-18-07889.1999] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Target-derived neurotrophins initiate signals that begin at nerve terminals and cross long distances to reach the cell bodies and regulate gene expression. Neurotrophin receptors, Trks, themselves serve as retrograde signal carriers. However, it is not yet known whether the retrograde propagation of Trk activation reflects movement of Trk receptors from neurites to cell bodies or reflects serial activation of stationary Trk molecules. Here, we show that neurotrophins selectively applied to distal neurites of sensory neurons rapidly induce phosphorylation of the transcription factor cAMP response element-binding protein (CREB) and also cause a slower increase in Fos protein expression. Both nuclear responses require activation of neurotrophin receptors (Trks) at distal nerve endings and retrograde propagation of Trk activation to the nerve cell bodies. Using photobleach and recovery techniques to follow biologically active, green fluorescent protein (GFP)-tagged BDNF receptors (TrkB-GFP) in live cells during retrograde signaling, we show that TrkB-GFP moves rapidly from neurites to the cell bodies. This rapid movement requires ligand binding, Trk kinase activity, and intact axonal microtubules. When they reach the cell bodies, the activated TrkB receptors are in a complex with ligand. Thus, the retrograde propagation of activated TrkB from neurites to cell bodies, although rapid, reflects microtubule-dependent transport of phosphorylated Trk-ligand complexes. Moreover, the relocation of activated Trk receptors from nerve endings to cell bodies is required for nuclear signaling responses. Together, these data support a model of retrograde signaling whereby rapid vesicular transport of ligand-receptor complex from the neurites to the cell bodies mediates the nuclear responses.
Collapse
|
15
|
Mohiuddin L, Delcroix JD, Fernyhough P, Tomlinson DR. Focally administered nerve growth factor suppresses molecular regenerative responses of axotomized peripheral afferents in rats. Neuroscience 1999; 91:265-71. [PMID: 10336076 DOI: 10.1016/s0306-4522(98)00582-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effects of delivery of nerve growth factor, from a catheterized osmotic mini-pump to the proximal stump of a transected sciatic nerve, were compared with the effects of normal saline. A pilot measured retrograde axonal transport of nerve growth factor to determine a pump concentration which raised axonal transport ipsilaterally, but not contralaterally. The effects of this delivery over 12 days were then determined on expression of growth-associated protein-43, trkA, p75NTR and preprotachykinin A ipsilateral and contralateral to the pump in dorsal root ganglia at L4 and L5 (pooled). Ganglionic expression was measured both as messenger RNA and protein. Axotomy (saline pumps) increased growth-associated protein-43 messenger RNA (318 +/- 14%: all changes are percent of contralateral, non-axotomized ganglia with saline pumps) and immunoreactivity (431 +/- 43%). The increase was significantly less (P < 0.001) ipsilateral to nerve growth factor pumps (191 +/- 45%). Axotomy reduced expression of p75NTR (messenger RNA: 52 +/- 17%, P < 0.01; immunoreactivity: 74 +/- 3%, P < 0.05). These decreases were converted to increases by nerve growth factor delivery (respectively 143 +/- 40% and 281 +/- 67%; both P < 0.01). With trkA, axotomy decreased the expression of the messenger RNA (68 +/- 40%, P < 0.01) and of the primary translation product--110,000 mol. wt protein (55 +/- 12%, P < 0.01)--but not the fully glycosylated trkA protein (mol. wt 145,000). Nerve growth factor delivery did not affect trkA expression. Axotomy reduced messenger RNA for the substance P precursor, preprotachykinin A, to 42 +/- 17% (P < 0.01) and this reduction was prevented by nerve growth factor treatment. We suggest that the primary effect of nerve growth factor on axotomized C-fibres is not to promote regeneration, although that may be its secondary effect via an action on Schwann cells. It is possible that reduced neuronal sensitivity to nerve growth factor during regeneration is advantageous in suppressing nociception.
Collapse
Affiliation(s)
- L Mohiuddin
- Department of Pharmacology, Queen Mary and Westfield College, London, UK
| | | | | | | |
Collapse
|
16
|
Wheeler EF, Naftel JP, Pan M, von Bartheld CS, Byers MR. Neurotrophin receptor expression is induced in a subpopulation of trigeminal neurons that label by retrograde transport of NGF or fluoro-gold following tooth injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 61:23-38. [PMID: 9795112 DOI: 10.1016/s0169-328x(98)00179-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Tissue responses to injury are regulated by neurotrophins and neurotrophin receptor levels and can involve both retrograde and paracrine/autocrine trophic signaling. To determine how neurotrophins may contribute to the injury response, the timing and the extent of the up-regulation of neurotrophins and their receptors was examined in a model system which is particularly well suited for the analysis of trophic signaling pathways in response to injury. Injury to the occlusal surfaces of rat molar cusps induces a localized increase in nerve growth factor (NGF) expression in the dental pulp within 4-6 h. Radiolabeled NGF was transported in a receptor-mediated fashion from the teeth to a subset of neurons in the trigeminal ganglion within 15 h, indicating that these neurons possess NGF receptors (trk A and/or p75NTR). To test for NGF responses in the tooth sensory afferent neurons, levels of expression of neurotrophins and their receptors were examined by in situ hybridization in the trigeminal ganglion at 0, 4, 12, 20, 28 and 52 h post-injury. Within the maxillary division of the trigeminal ganglion, trk A expression was elevated at 4 h post-injury, with a maximum increase (2-fold) after 52 h. p75NTR was increased by 28 h post-injury and was increased 1.35-fold by 52 h. BDNF mRNA was increased 12 h after injury (1.8-fold), and 2.5-3-fold at 52 h post-injury. The trk B expression was increased only late after injury (28 and 52 h). To determine the receptor/neurotrophin phenotype of trigeminal neurons with projections to the molar teeth, these neurons were double-labeled with the retrograde tracer fluoro-gold and probes for either BDNF or trk B. The results show that tooth-innervating trigeminal neurons express BDNF, but not trk B. The timing of mRNA expression after injury and the phenotype of identified trigeminal neurons suggests a complex signaling cascade in which NGF at the injury site regulates NGF receptor expression at the levels of the cell body as well as increases in BDNF expression. Upregulated BDNF may act in a paracrine fashion on neighboring trigeminal cells expressing trk B. This signaling cascade may be a common feature of the response to mild peripheral inflammatory injuries within nociceptive pathways.
Collapse
Affiliation(s)
- E F Wheeler
- Division of Life Sciences, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, USA.
| | | | | | | | | |
Collapse
|
17
|
Curtis R, Tonra JR, Stark JL, Adryan KM, Park JS, Cliffer KD, Lindsay RM, DiStefano PS. Neuronal injury increases retrograde axonal transport of the neurotrophins to spinal sensory neurons and motor neurons via multiple receptor mechanisms. Mol Cell Neurosci 1998; 12:105-18. [PMID: 9790733 DOI: 10.1006/mcne.1998.0704] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated the retrograde axonal transport of 125I-labeled neurotrophins (NGF, BDNF, NT-3, and NT-4) from the sciatic nerve to dorsal root ganglion (DRG) sensory neurons and spinal motor neurons in normal rats or after neuronal injury. DRG neurons showed increased transport of all neurotrophins following crush injury to the sciatic nerve. This was maximal 1 day after sciatic nerve crush and returned to control levels after 7 days. 125I-BDNF transport from sciatic nerve was elevated with injection either proximal to the lesion or directly into the crush site and after transection of the dorsal roots. All neurotrophin transport was receptor-mediated and consistent with neurotrophin binding to the low-affinity neurotrophin receptor (LNR) or Trk receptors. However, transport of 125I-labeled wheat germ agglutinin also increased 1 day after sciatic nerve crush, showing that increased uptake and transport is a generalized response to injury in DRG sensory neurons. Spinal cord motor neurons also showed increased neurotrophin transport following sciatic nerve injury, although this was maximal after 3 days. The transport of 125I-NGF depended on the expression of LNR by injured motor neurons, as demonstrated by competition experiments with unlabeled neurotrophins. The absence of TrkA in normal motor neurons or after axotomy was confirmed by immunostaining and in situ hybridization. Thus, increased transport of neurotrophic factors after neuronal injury is due to multiple receptor-mediated mechanisms including general increases in axonal transport capacity.
Collapse
Affiliation(s)
- R Curtis
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591-6707, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Senger DL, Campenot RB. Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. J Cell Biol 1997; 138:411-21. [PMID: 9230082 PMCID: PMC2138199 DOI: 10.1083/jcb.138.2.411] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
According to the current theory of retrograde signaling, NGF binds to receptors on the axon terminals and is internalized by receptor-mediated endocytosis. Vesicles with NGF in their lumina, activating receptors in their membranes, travel to the cell bodies and initiate signaling cascades that reach the nucleus. This theory predicts that the retrograde appearance of activated signaling molecules in the cell bodies should coincide with the retrograde appearance of the NGF that initiated the signals. However, we observed that NGF applied locally to distal axons of rat sympathetic neurons in compartmented cultures produced increased tyrosine phosphorylation of trkA in cell bodies/ proximal axons within 1 min. Other proximal proteins, including several apparently localized in cell bodies, displayed increased tyrosine phosphorylation within 5-15 min. However, no detectable 125I-NGF appeared in the cell bodies/proximal axons within 30-60 min of its addition to distal axons. Even if a small, undetectable fraction of transported 125I-NGF was internalized and loaded onto the retrograde transport system immediately after NGF application, at least 3-6 min would be required for the NGF that binds to receptors on distal axons just outside the barrier to be transported to the proximal axons just inside the barrier. Moreover, it is unlikely that the tiny fraction of distal axon trk receptors located near the barrier alone could produce a measurable retrograde trk phosphorylation even if enough time was allowed for internalization and transport of these receptors. Thus, our results provide strong evidence that NGF-induced retrograde signals precede the arrival of endocytotic vesicles containing the NGF that induced them. We further suggest that at least some components of the retrograde signal are carried by a propagation mechanism.
Collapse
Affiliation(s)
- D L Senger
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
19
|
Retrograde transport and steady-state distribution of 125I-nerve growth factor in rat sympathetic neurons in compartmented cultures. J Neurosci 1997. [PMID: 9006972 DOI: 10.1523/jneurosci.17-04-01282.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have used compartmented cultures of rat sympathetic neurons to quantitatively examine the retrograde transport of 125I-nerve growth factor (NGF) supplied to distal axons and to characterize the cellular events that maintain steady-state levels of NGF in cell bodies. In cultures allowed to reach steady-state 125I-NGF transport, cell bodies contained only 5-30% of the total neuron-associated 125I-NGF, whereas 70-95% remained associated with the distal axons. This was true over an 8 pM to 1.5 nM 125I-NGF concentration range, indicating that saturation of high affinity receptors could not account for the large fraction of 125I-NGF remaining in axons. Dissociation assays indicated that 85% of 125I-NGF associated with distal axons was surface-bound. At steady-state, only 2-25% of the distal axon-associated 125I-NGF was retrogradely transported each hour, with higher transport rates associated with younger cultures and lower 125I-NGF concentrations. The velocity of 125I-NGF retrograde transport was estimated at 10-20 mm/hr. However, as in a previous report, almost no 125I-NGF transport was observed during the first hour after 125I-NGF administration, indicating a significant lag between receptor binding and loading onto the retrograde transport system. During 125I-NGF transport through axons spanning an intermediate compartment in five-compartment cultures, little or no 125I-NGF was degraded or released from the axons. After transport, 125I-NGF was degraded with a half-life of 3 hr. In summary, although some cellular events promoted NGF accumulation in cell bodies, distal axons represented by far the principal site of NGF-receptor interaction at steady-state as a result of a low retrograde transport rate.
Collapse
|
20
|
St Wecker PG, Baek JK, Farel PB. Principal neurons of the lumbar sympathetic ganglia increase in number with body size. J Comp Neurol 1995; 357:117-23. [PMID: 7673461 DOI: 10.1002/cne.903570111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuron number appears to be matched to body size during early development by the modulation of the processes of proliferation and naturally occurring cell death. However, body size increases rapidly as the juvenile becomes an adult, long after these processes cease to operate. The present study shows that principal neurons of lumbar sympathetic ganglia increase in number four- to fivefold during postmetamorphic life of the bullfrog. Rana catesbeiana. This increase in neuron number cannot be attributed to either counting error or selection bias and was associated with greater innervation of particular hindlimb targets, as demonstrated by retrograde labeling with horseradish peroxidase. Injection of [3H]thymidine (a marker of DNA synthesis) every third day for 20-22 weeks failed to provide evidence of neuron proliferation, although, on the basis of changes in body length during this period, substantial numbers of neurons likely were added. These results combined with previous studies of hindlimb motor and sensory neuron addition are consistent with the hypothesis that the population of sympathetic neurons is augmented by late differentiation of existing precursor cells.
Collapse
Affiliation(s)
- P G St Wecker
- Department of Physiology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
21
|
Abstract
It is generally believed that the mechanism of action of neurotrophic factors involves uptake of neurotrophic factor by nerve terminals and retrograde transport through the axon and back to the cell body where the factor exerts its neurotrophic effect. This view originated with the observation almost 20 years ago that nerve growth factor (NGF) is retrogradely transported by sympathetic axons, arriving intact at the neuronal cell bodies in sympathetic ganglia. However, experiments using compartmented cultures of rat sympathetic neurons have shown that neurite growth is a local response of neurites to NGF locally applied to them which does not directly involve mechanisms in the cell body. Recently, several NGF-related neurotrophins have been identified, and several unrelated molecules have been shown to act as neurotrophic or differentiation factors for a variety of types of neurons in the peripheral and central nervous systems. It has become clear that knowledge of the mechanisms of action of these factors will be crucial to understanding neurodegenerative diseases and the development of treatments as well as the means to repair or minimize neuronal damage after spinal injury. The concepts derived from work with NGF suggest that the site of exposure of a neuron to a neurotrophic factor is important in determining its response.
Collapse
Affiliation(s)
- R B Campenot
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
Abstract
As an animal grows, its sensory systems face the task of maintaining sensitivity and discrimination in peripheral fields that are continually enlarging. Without the addition of neurons, existing cells would have to innervate a wider skin area, leading to a decrease in the precision with which stimuli are localized. Neurons were counted in the three dorsal root ganglia (DRGs) that innervate the hindlimb of the bullfrog (Rana catesbeiana). Profiles of neuronal nuclei containing the single nucleolus found in these cells were counted in every third section of serially cut ganglia. This means of assessing neuron number was validated by comparing these profile counts with three-dimensional reconstructions of sensory neurons. Large frogs (10-17 cm) had more than twice as many DRG neurons as small frogs (3.3-5 cm). The rate of increase was greatest between 3 and 8 cm, when over 1,300 hindlimb sensory neurons were added for each 1 cm increase in body length. The possibility that selective survival of frogs with many neurons biases estimates of mean neuron number was ruled out by the finding that frogs drawn from the same closed population, half of which were sacrificed immediately and half of which were sacrificed after 1 year's survival, showed expected differences in neuron number. Horseradish peroxidase applied to particular hindlimb nerves retrogradely labeled more neurons in large frogs than small frogs, supporting the hypothesis that added neurons extend their axons to the periphery.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P G St Wecker
- Department of Physiology CB#7545, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
23
|
Ruit KG, Elliott JL, Osborne PA, Yan Q, Snider WD. Selective dependence of mammalian dorsal root ganglion neurons on nerve growth factor during embryonic development. Neuron 1992; 8:573-87. [PMID: 1550679 DOI: 10.1016/0896-6273(92)90284-k] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the NGF dependence of dorsal root ganglion (DRG) neurons in mammals using a paradigm of multiple in utero injections of a high titer anti-NGF antiserum. We have determined the specificity of our antiserum in relation to other members of the NGF neurotrophin family and found no cross-reactivity with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). To identify various classes of DRG neurons, we have stained their characteristic central projections with Dil. We show here that the NGF dependence of DRG neurons is strikingly selective. Although a majority of DRG neurons are lost after NGF deprivation during embryonic life, these are almost exclusively small diameter neurons that project to laminae I and II of the dorsal horn and presumably subserve nociception and thermoreception. Larger neurons that project to more ventral spinal laminae and subserve other sensory modalities do not require NGF for survival. These NGF-independent DRG neurons likely require one of the more recently identified neurotrophins, BDNF or NT-3.
Collapse
Affiliation(s)
- K G Ruit
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|