1
|
Chou S. Opposite effects of cytomegalovirus UL54 exonuclease domain mutations on acyclovir and cidofovir susceptibility. Antiviral Res 2021; 195:105181. [PMID: 34560144 DOI: 10.1016/j.antiviral.2021.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Acyclovir has weak activity against human cytomegalovirus (CMV). Despite some efficacy as prophylaxis, more potent anti-CMV drugs are preferred. Acyclovir resistance of CMV has been little studied. The viral UL97 kinase phosphorylates acyclovir, and cross-resistance of ganciclovir-resistant mutants is documented. However, UL54 exonuclease domain mutants may confer ganciclovir and cidofovir resistance by a mechanism that does not apply to acyclovir as an obligate chain terminator. To test for differential susceptibilities, 11 exonuclease domain mutants were tested for their 50% inhibitory concentrations (EC50s) of acyclovir in comparison with cidofovir. The 5 mutants with the highest cidofovir EC50s (>10-fold increased over wild type) all had acyclovir EC50s less than 20% of wild type. The relatively common N408K mutant had an acyclovir EC50 of 6 μM, comparable to that reported for wild type varicella-zoster virus. Several foscarnet-resistant UL54 mutants outside the exonuclease domains, some with low-grade ganciclovir/cidofovir cross-resistance, showed various degrees of acyclovir resistance. Based on these in vitro data, acyclovir may become a therapeutic option when a highly cidofovir-resistant exonuclease mutation is present without a simultaneous mutation in UL97.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University and Department of Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
2
|
Naesens L, Snoeck R, Andrei G, Balzarini J, Neyts J, De Clercq E. HPMPC (cidofovir), PMEA (adefovir) and Related Acyclic Nucleoside Phosphonate Analogues: A Review of their Pharmacology and Clinical Potential in the Treatment of Viral Infections. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800101] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The acyclic nucleoside phosphonate (ANP) analogues are broad-spectrum antiviral agents, with potent and selective antiviral activity in vitro and in vivo. The prototype compounds are: ( S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC, cidofovir), which is active against a wide variety of DNA viruses; 9-(2-phosphonylmethoxyethyl)adenine (PMEA, adefovir), which is active against retro-, herpes- and hepadnaviruses, and ( R)-9-(2-phosphonylmethoxypropyl) adenine (PMPA), which is active against retro- and hepadnaviruses. The antiviral action of the ANP analogues is based on a specific interaction of the active diphosphorylated metabolite with the viral DNA polymerase. The long intracellular half-life of the active metabolite accounts for the optimal efficacy in infrequent dosing schedules. The potential of HPMPC as a broad-spectrum anti-DNA virus agent, as originally observed in vitro and in vivo, has been confirmed in clinical trials. HPMPC has recently been commercially released in the USA for the treatment of cytomegalovirus retinitis in AIDS patients. In addition, topical systemic HPMPC is being (or will be) explored for use against other herpesviruses (i.e. herpes simplex virus, Epstein-Barr virus, or varicella-zoster virus), by adenoviruses, or by human papilloma- or polyomaviruses. Intravenous HPMPC is associated with dose-dependent nephrotoxicity, that should be counteracted by prehydration and concomitant administration of probenecid, and by the application of an infrequent dosing schedule. The oral prodrug of PMEA, bis(pivaloyloxymethyl)-PMEA, is currently being evaluated in patients infected with human immunodeficiency virus (HIV) or hepatitis B virus. Finally, preclinical data on the efficacy of PMPA in animal retrovirus models point to its potential usefulness against HIV infections, when given either prophylactically or therapeutically in the treatment of established HIV infections.
Collapse
Affiliation(s)
- L Naesens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - J Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - J Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
3
|
Andrei G, Snoeck R, De Clercq E. Differential Susceptibility of Several Drug-Resistant Strains of Herpes Simplex Virus Type 2 to Various Antiviral Compounds. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug-resistant herpes simplex virus type 2 (HSV-2) strains were obtained under the selective pressure of acyclovir, ganciclovir, brivudin, foscamet, 2-phosphonyl-methoxyethyl (PME) derivatives of adenine (PMEA) and 2,6-diaminopurine (PMEDAP), and 3-hydroxy-2-phosphonylmethoxypropyl (HPMP) derivatives of adenine (HPMPA) and cytosine (HPMPC; cidofovir). A significant degree of cross-resistance between HPMPC and HPMPA on the one hand, and between PMEA, PMEDAP and foscarnet on the other, was noted, suggesting a different mode of interaction of the PME and HPMP derivatives at the DNA polymerase level. The results described here with HSV-2 agree with the published results for HSV-1 and human cytomegalovirus.
Collapse
Affiliation(s)
- G Andrei
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
4
|
Magee WC, Evans DH. The antiviral activity and mechanism of action of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides. Antiviral Res 2012; 96:169-80. [PMID: 22960154 DOI: 10.1016/j.antiviral.2012.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 12/18/2022]
Abstract
One class of compounds that has shown promise as antiviral agents are the (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides, members of the broader class of acyclic nucleoside phosphonates. These HPMP nucleosides are nucleotide analogs and have been shown to be effective inhibitors of a wide range of DNA viruses. Prodrugs of these compounds, which achieve higher levels of the active metabolites within the cell, have an expanded activity spectrum that also includes RNA viruses and retroviruses. Because they are analogs of natural nucleotide substrates, HPMP nucleosides are predicted to target polymerases (DNA polymerases, RNA polymerases and reverse transcriptases), resulting in the inhibition of viral genome replication. Previous work using the replicative enzymes of different viruses including human cytomegalovirus (HCMV) and vaccinia virus DNA polymerases and human immunodeficiency virus type 1 (HIV-1) reverse transcriptase has shown that the activated forms of these compounds are substrates for viral polymerases and that incorporation of these compounds into either the primer strand or the template strand inhibits, but does not necessarily terminate, further nucleic acid synthesis. The activity of these compounds against other viruses that do not encode their own polymerases, like polyoma viruses and papilloma viruses, suggests that host cell DNA polymerases are also targeted. This complex mechanism of action and broad activity spectrum has implications for the development of resistance and host cell genome replication, and suggests these compounds may be effective against other viruses such as influenza virus, respiratory syncytial virus and Dengue virus. This class of nucleotide analogs also points to a potential avenue for the development of newer antivirals.
Collapse
Affiliation(s)
- Wendy C Magee
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, 6-020 Katz Group Centre, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | | |
Collapse
|
5
|
Barral K, Weck C, Payrot N, Roux L, Durafour C, Zoulim F, Neyts J, Balzarini J, Canard B, Priet S, Alvarez K. Acyclic nucleoside thiophosphonates as potent inhibitors of HIV and HBV replication. Eur J Med Chem 2011; 46:4281-8. [PMID: 21803462 PMCID: PMC7115536 DOI: 10.1016/j.ejmech.2011.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 12/31/2022]
Abstract
9-[2-(Thiophosphonomethoxy)ethyl]adenine 3 and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine 4 were synthesized as the first thiophosphonate nucleosides bearing a sulfur atom at the α-position of the acyclic nucleoside phosphonates PMEA and PMPA. Thiophosphonates S-PMEA 3 and S-PMPA 4 were evaluated for in vitro activity against HIV-1 (subtypes A to G), HIV-2 and HBV-infected cells, and found to exhibit potent antiretroviral activity. We showed that their diphosphate forms S-PMEApp 5 and S-PMPApp 6 are readily incorporated by wild-type (WT) HIV-1 RT into DNA and act as DNA chain terminators. Compounds 3 and 4 were evaluated for in vitro activity against a broad panel of DNA and RNA viruses and displayed beside HIV a moderate activity against herpes simplex virus and vaccinia viruses. In order to measure enzymatic stabilities of the target derivatives 3 and 4, kinetic data and decomposition pathways were studied at 37 °C in several media.
Collapse
Affiliation(s)
- Karine Barral
- Laboratoire d'Architecture et Fonction des Macromolécules Biologiques, UMR CNRS 6098, Equipe Réplicases Virales: Structure, Mécanisme, et Drug-design, Universités Aix-Marseille I et II, Parc scientifique de Luminy, 163 av de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mechanism of antiviral drug resistance of vaccinia virus: identification of residues in the viral DNA polymerase conferring differential resistance to antipoxvirus drugs. J Virol 2008; 82:12520-34. [PMID: 18842735 DOI: 10.1128/jvi.01528-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acyclic nucleoside phosphonate (ANP) family of drugs shows promise as therapeutics for treating poxvirus infections. However, it has been questioned whether the utility of these compounds could be compromised through the intentional genetic modification of viral sequences by bioterrorists or the selection of drug resistance viruses during the course of antiviral therapy. To address these concerns, vaccinia virus (strain Lederle) was passaged 40 times in medium containing an escalating dose of (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)-2,6-diaminopurine [(S)-HPMPDAP], which selected for mutant viruses exhibiting a approximately 15-fold-increased resistance to the drug. (S)-HPMPDAP-resistant viruses were generated because this compound was shown to be one of the most highly selective and effective ANPs for the treatment of poxvirus infections. DNA sequence analysis revealed that these viruses encoded mutations in the E9L (DNA polymerase) gene, and marker rescue studies showed that the phenotype was produced by a combination of two (A684V and S851Y) substitution mutations. The effects of these mutations on drug resistance were tested against various ANPs, both separately and collectively, and compared with E9L A314T and A684V mutations previously isolated using selection for resistance to cidofovir, i.e., (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)cytosine]. These studies demonstrated a complex pattern of resistance, although as a general rule, the double-mutant viruses exhibited greater resistance to the deoxyadenosine than to deoxycytidine nucleotide analogs. The S851Y mutant virus exhibited a low level of resistance to dCMP analogues but high-level resistance to dAMP analogues and to 6-[3-hydroxy-2-(phosphonomethoxy)propoxy]-2,4-diaminopyrimidine, which is considered to mimic the purine ring system. Notably, (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-3-deazaadenine retained marked activity against most of these mutant viruses. In vitro studies showed that the A684V mutation partially suppressed a virus growth defect and mutator phenotype created by the S851Y mutation, but all of the mutant viruses still exhibited a variable degree of reduced virulence in a mouse intranasal challenge model. Infections caused by these drug-resistant viruses in mice were still treatable with higher concentrations of the ANPs. These studies have identified a novel mechanism for the development of mutator DNA polymerases and provide further evidence that antipoxviral therapeutic strategies would not readily be undermined by selection for resistance to ANP drugs.
Collapse
|
7
|
Andrei G, Gammon DB, Fiten P, De Clercq E, Opdenakker G, Snoeck R, Evans DH. Cidofovir resistance in vaccinia virus is linked to diminished virulence in mice. J Virol 2006; 80:9391-401. [PMID: 16973545 PMCID: PMC1617232 DOI: 10.1128/jvi.00605-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC)] is recognized as a promising drug for the treatment of poxvirus infections, but drug resistance can arise by a mechanism that is poorly understood. We show here that in vitro selection for high levels of resistance to HPMPC produces viruses encoding two substitution mutations in the virus DNA polymerase (E9L) gene. These mutations are located within the regions of the gene encoding the 3'-5' exonuclease (A314T) and polymerase (A684V) catalytic domains. These mutant viruses exhibited cross-resistance to other nucleoside phosphonate drugs, while they remained sensitive to other unrelated DNA polymerase inhibitors. Marker rescue experiments were used to transfer A314T and/or A684V alleles into a vaccinia virus Western Reserve strain. Either mutation alone could confer a drug resistance phenotype, although the degree of resistance was significantly lower than when virus encoded both mutations. The A684V substitution, but not the A314T change, also conferred a spontaneous mutator phenotype. All of the HPMPC-resistant recombinant viruses exhibited reduced virulence in mice, demonstrating that these E9L mutations are inextricably linked to reduced fitness in vivo. HPMPC, at a dose of 50 mg/kg of body weight/day for 5 days, still protected mice against intranasal challenge with the drug-resistant virus with A314T and A684V mutations. Our studies show that proposed drug therapies offer a reasonable likelihood of controlling orthopoxvirus infections, even if the viruses encode drug resistance markers.
Collapse
Affiliation(s)
- Graciela Andrei
- Laboratory of Virology, Katholieke Universiteit Leuven, Leuven B-3000, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Andrei G, De Clercq E, Snoeck R. In vitro selection of drug-resistant varicella-zoster virus (VZV) mutants (OKA strain): differences between acyclovir and penciclovir? Antiviral Res 2004; 61:181-7. [PMID: 15168799 DOI: 10.1016/j.antiviral.2003.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Accepted: 10/09/2003] [Indexed: 11/17/2022]
Abstract
Varicella-zoster virus (VZV) mutants were isolated under the pressure of different classes of antiviral compounds: (i) drugs that depend on the viral thymidine kinase (TK) for their activation, i.e. acyclovir (ACV), brivudin (BVDU), penciclovir (PCV) and sorivudine (BVaraU); (ii) drugs that are independent of the viral TK for their activation, i.e. 2-phosphonylmethoxyethyl (PME) derivatives of adenine (PMEA, adefovir) and 2,6-diaminopurine (PMEDAP); and (iii) drugs that do not require any metabolism to inhibit the viral DNA polymerase, i.e. foscarnet (PFA). Drug-resistant virus strains were obtained by serial passage of the OKA strain in human embryonic lung (HEL) fibroblasts and the different drug-resistant mutants were subsequently evaluated for their in vitro susceptibility to a broad range of antiviral drugs. Virus strains emerging under the pressure of ACV, BVDU and BVaraU were cross-resistant to all drugs that depend on the viral TK for activation, but remained susceptible to the acyclic nucleoside phosphonates (i.e. PMEA, PMEDAP and the 3-hydroxy-2-phosphonylmethoxypropyl derivatives of adenine (HPMPA) and cytosine (HPMPC, cidofovir)) and PFA. In contrast, the virus strains selected under pressure of PCV were resistant to PCV, ACV, PMEA and PFA; but not BVDU, BVaraU, GCV, HPMPC or HPMPA. Similar patterns of drug susceptibility were noted for the virus strains selected under the pressure of PMEA or PFA, pointing to an alteration in the viral DNA polymerase as basis for the resistant phenotype selected by PCV, as well as PMEA and PFA. In contrast, the resistant phenotype selected by ACV as well as BVDU and BVaraU may be attributed primarily to mutations in the viral TK gene. Our data thus indicate that ACV and PCV select in vitro for different drug-resistant VZV phenotypes; whether this is also the situation in vivo remains to be investigated.
Collapse
Affiliation(s)
- G Andrei
- Rega Institute for Medical Research, K. U. Leuven, 3000 Leuven, Belgium.
| | | | | |
Collapse
|
9
|
Kinchington PR, Araullo-Cruz T, Vergnes JP, Yates K, Gordon YJ. Sequence changes in the human adenovirus type 5 DNA polymerase associated with resistance to the broad spectrum antiviral cidofovir. Antiviral Res 2002; 56:73-84. [PMID: 12323401 DOI: 10.1016/s0166-3542(02)00098-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although there is currently no FDA approved antiviral treatment for adenovirus (Ad) infections, the broad spectrum antiviral cidofovir (CDV) has demonstrated potent inhibitory activity against many Ad serotypes in vitro and in an in vivo ocular replication model. The clinical potential of CDV prompted the assessment for the emergence of CDV resistance in Ad5. Serial passage of Ad5 in increasing concentrations of CDV resulted in derivation of four different Ad5 variants with increased resistance to CDV. CDV resistance was demonstrated by ability to replicate viral DNA in infected cells at CDV concentrations that inhibit the parental virus, by ability to form plaques in CDV concentrations of >20 microg/ml and by increased progeny release following infection and growth in media containing CDV. Using marker rescue, the loci for CDV resistance in variant R1 was shown to be mediated by one residue change L741S, one of two mutations within the R1 encoded DNA polymerase. The CDV-resistant variants R4, R5 and R6 also contained mutations in their respective DNA polymerase sequences, but these were different from R1; variant R4 contained two changes (F740I and V180I), whereas both R5 and R6 variants contained the non-conserved mutation A359E. R6 contained additional alterations L554F and V817L. The location of the R1 change is close to a region of the DNA polymerase which is conserved with other polymerases that is predicted to involve nucleotide binding.
Collapse
Affiliation(s)
- Paul R Kinchington
- Department of Ophthalmology, 1020 Eye and Ear Institute, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
10
|
Snoeck R, Andrei G, Bodaghi B, Lagneaux L, Daelemans D, de Clercq E, Neyts J, Schols D, Naesens L, Michelson S, Bron D, Otto MJ, Bousseau A, Nemecek C, Roy C. 2-Chloro-3-pyridin-3-yl-5,6,7,8-tetrahydroindolizine-1-carboxamide (CMV423), a new lead compound for the treatment of human cytomegalovirus infections. Antiviral Res 2002; 55:413-24. [PMID: 12206879 DOI: 10.1016/s0166-3542(02)00074-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human cytomegalovirus (HCMV) remains one of the major pathogens in immunocompromised patients (AIDS and transplants) and the main cause for congenital infections leading from slight cognitive defects up to severe mental retardation. The drugs that are currently available for the treatment of HCMV infections, i.e. ganciclovir, foscarnet and cidofovir, are all acting at the level of the viral DNA polymerase. Here we describe an entirely new molecule, the 2-chloro-3-pyridin-3-yl-5,6,7,8-tetrahydroindolizine-1-carboxamide (CMV423), that shows very potent in vitro activity against HCMV. CMV423 is highly active against HCMV reference strains and clinical isolates, but also against those strains, isolated from patients or emerging after in vitro selection, that are resistant to either ganciclovir, foscarnet or cidofovir. CMV423 also showed activity in two ex vivo models, that are both highly relevant for the pathophysiology of HCMV, the retinal pigment epithelial and the bone marrow stromal cell assays. Viral antigen expression analysis by flow cytometry, as well as time of addition experiments, confirmed that CMV423 acts on a step of the viral replicative cycle that precedes the DNA polymerase step and, most likely, coincides with the immediate early (IE) antigen synthesis. Finally, CMV423 combined with either ganciclovir, foscarnet or cidofovir in checkerboard experiments demonstrated a highly synergistic activity.
Collapse
Affiliation(s)
- Robert Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vogel JU, Michaelis M, Neyts J, Blaheta RA, Snoeck R, Andrei G, De Clercq E, Rabenau HF, Kreuter J, Cinatl J, Doerr HW. Antiviral and immunomodulatory activity of the metal chelator ethylenediaminedisuccinic acid against cytomegalovirus in vitro and in vivo. Antiviral Res 2002; 55:179-88. [PMID: 12076762 DOI: 10.1016/s0166-3542(02)00025-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiviral activity of the metal chelator ethylenediaminedisuccinic acid (EDDS) was examined in vitro against human cytomegalovirus (HCMV) wild type strains and strains that are resistant against ganciclovir (GCV) and cidofovir (HPMPC). EDDS inhibited the replication of wild-type as well as GCV- and HPMPC-resistant strains with a 50% effective concentration of 7.4-12 microg/ml. At concentrations of 100 microg/ml EDDS, unlike GCV or HPMPC, suppressed HCMV-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) and reduced T-cell adhesion to HCMV-infected cells in a monolayer adhesion model. In vitro EDDS inhibited murine cytomegalovirus (MCMV) replication (EC50 8.6 microg/ml) and caused in mice some protection against MCMV induced mortality at a non-toxic dose. Since immunopathological factors may play a significant role in HCMV disease it will be of interest to further study whether EDDS is effective in terms of modulation of inflammatory responses to HCMV infections.
Collapse
Affiliation(s)
- J-U Vogel
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Paul-Ehrlich-Str. 40, D-60596 a. M., Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Talarico CL, Burnette TC, Miller WH, Smith SL, Davis MG, Stanat SC, Ng TI, He Z, Coen DM, Roizman B, Biron KK. Acyclovir is phosphorylated by the human cytomegalovirus UL97 protein. Antimicrob Agents Chemother 1999; 43:1941-6. [PMID: 10428917 PMCID: PMC89395 DOI: 10.1128/aac.43.8.1941] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acyclovir (ACV) has shown efficacy in the prophylactic suppression of human cytomegalovirus (HCMV) reactivation in immunocompromised renal transplant patients without the toxicity associated with ganciclovir (GCV). The HCMV UL97 gene product, a protein kinase, is responsible for the phosphorylation of GCV in HCMV-infected cells. This report provides evidence for the phosphorylation of ACV by UL97. Anabolism studies with the HCMV wild-type strain AD169 and with recombinant mutants derived from marker transfer experiments performed by using mutant UL97 DNA from both clinical isolates and a laboratory-derived strain resistant to GCV showed that mutations in the UL97 gene cripple the ability of recombinant virus-infected cells to anabolize both GCV and ACV. These mutant UL97 recombinant viruses were less susceptible to both GCV and ACV than was the wild-type strain. A recombinant herpes simplex virus type 1 strain, in which the thymidine kinase gene is deleted and the UL13 gene is replaced with the HCMV UL97 gene, was able to induce the phosphorylation of ACV in infected cells. Finally, purified UL97 phosphorylated both GCV and ACV to their monophosphates. Our results indicate that UL97 promotes the selective activity of ACV against HCMV.
Collapse
Affiliation(s)
- C L Talarico
- Department of Virology, Glaxo Wellcome, Inc., Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
UNLABELLED Cidofovir is an antiviral nucleotide analogue with significant activity against cytomegalovirus (CMV) and other herpesviruses. The drug is indicated for the treatment of CMV retinitis, a sight-threatening condition, in patients with AIDS. Cidofovir has a long intracellular half-life which allows for a prolonged interval (2 weeks) between maintenance doses. In contrast, other intravenous treatment options for patients with CMV retinitis (i.e. ganciclovir and foscarnet) must be administered on a daily basis. The efficacy of intravenous cidofovir has been demonstrated in patients with AIDS and previously untreated CMV retinitis in multicentre randomised trials, and in a dose-finding study of cidofovir in patients with AIDS and previously treated relapsing CMV retinitis. Clinical trials have been relatively small (n < or = 100 patients) and no studies have been conducted directly comparing intravenous cidofovir with the more established intravenous agents, ganciclovir or foscarnet. Indirect comparisons of clinical trial data suggest that intravenous cidofovir may have similar efficacy to intravenous ganciclovir or foscarnet in delaying progression of CMV retinitis. However, such comparisons must be made with caution because of potential differences in patient populations, data analysis techniques and interobserver variability in the masked assessment of retinal photographs. Nevertheless, intravenous cidofovir offers a less intrusive administration regimen than intravenous ganciclovir or foscarnet because of its prolonged dosage interval. Since therapy is life-long, patients receiving daily intravenous ganciclovir or foscarnet (but not cidofovir) usually require an indwelling central venous catheter and are therefore at increased risk of serious infection. The relatively long dosage interval for cidofovir may also have favourable implications in terms of overall treatment costs and patient quality of life, although specific data are very limited. Potentially irreversible nephrotoxicity is the major treatment-limiting adverse event associated with intravenous cidofovir in patients with AIDS-related CMV retinitis. Anterior uveitis/iritis has been reported frequently with intravenous cidofovir in postmarketing reports and a small number of patients have developed hypotony. Other treatment options for CMV retinitis are also associated with serious adverse events, and selection of pharmacotherapy will depend on a number of factors including retinitis lesion characteristics, patient quality-of-life issues and efficacy and tolerability profiles of available therapies. CONCLUSION Although the extent of its use may be limited by its adverse event profile, cidofovir offers a useful addition to the limited number of drugs available for the treatment of CMV retinitis in patients with AIDS.
Collapse
Affiliation(s)
- G L Plosker
- Adis International Limited, Auckland, New Zealand.
| | | |
Collapse
|
14
|
|
15
|
Cihlar T, Fuller MD, Mulato AS, Cherrington JM. A point mutation in the human cytomegalovirus DNA polymerase gene selected in vitro by cidofovir confers a slow replication phenotype in cell culture. Virology 1998; 248:382-93. [PMID: 9721246 DOI: 10.1006/viro.1998.9299] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cell culture, cidofovir (CDV) was used to select a human cytomegalovirus (HCMV) strain with decreased drug susceptibility. The genotypic characterization of this virus revealed a single base substitution resulting in a K513N amino acid alteration in the viral DNA polymerase (UL54). Performed in parallel, the selection of HCMV for replication in the presence of ganciclovir (GCV) selected an M460V substitution in the phosphotransferase (UL97), as well as a K513N/V812L double substitution in DNA polymerase. Neither of the two DNA polymerase mutations has been previously identified in HCMV drug-resistant strains. To precisely elucidate their role in drug resistance, corresponding recombinant mutant viruses were generated by recombination of nine overlapping viral DNA fragments. The K513N recombinant virus showed 13- and 6.5-fold decreased susceptibility to CDV and GCV in vitro, respectively, compared with the wild-type recombinant virus. Mutation V812L was associated with a moderate (2-3-fold) decrease in susceptibility to CDV, GCV, foscarnet, and adefovir. A multiplicative interaction of the K513N and V812L mutations with regard to the profile and level of drug resistance was demonstrated in recombinant virus expressing both mutations. In vitro replication kinetic experiments revealed that the K513N mutation significantly decreased HCMV replication capacity. Consistent with this finding, the K513N mutant DNA polymerase exhibited reduced specific activity in comparison with the wild-type enzyme and was severely impaired in its 3'-5' exonuclease function. Unexpectedly, the K513N mutant enzyme showed no decrease in susceptibility to CDV-diphosphate or GCV-triphosphate. However, the K513N mutation decreased the susceptibility to CDV and GCV of the oriLyt plasmid replication in the transient transfection/infection assay, suggesting that the DNA replication of the K513N mutant virus is less sensitive to the corresponding inhibitors.
Collapse
Affiliation(s)
- T Cihlar
- Gilead Sciences, 333 Lakeside Drive, Foster City, California, 94404, USA.
| | | | | | | |
Collapse
|
16
|
Cihlar T, Fuller MD, Cherrington JM. Characterization of drug resistance-associated mutations in the human cytomegalovirus DNA polymerase gene by using recombinant mutant viruses generated from overlapping DNA fragments. J Virol 1998; 72:5927-36. [PMID: 9621055 PMCID: PMC110397 DOI: 10.1128/jvi.72.7.5927-5936.1998] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of specific point mutations in the human cytomegalovirus (HCMV) DNA polymerase (UL54) gene have been tentatively associated with decreased susceptibility to antiviral agents and consequently with clinical failure. To precisely determine the roles of UL54 mutations in HCMV drug resistance, recombinant UL54 mutant viruses were generated by using cotransfection of nine overlapping HCMV DNA fragments into permissive fibroblasts, and their drug susceptibility profiles were determined. Amino acid substitutions located in UL54 conserved region IV (N408D, F412C, and F412V), region V (A987G), and delta-region C (L501I, K513E, P522S, and L545S) conferred various levels of resistance to cidofovir and ganciclovir. Mutations in region II (T700A and V715M) and region VI (V781I) were associated with resistance to foscarnet and adefovir. The region II mutations also conferred moderate resistance to lobucavir. In contrast to mutations in other UL54 conserved regions, those residing specifically in region III (L802M, K805Q, and T821I) were associated with various drug susceptibility profiles. Mutations located outside the known UL54 conserved regions (S676G and V759M) did not confer any significant changes in HCMV drug susceptibility. Predominantly an additive effect of multiple UL54 mutations with respect to the final drug resistance phenotype was demonstrated. Finally, the influence of selected UL54 mutations on the susceptibility of viral DNA replication to antiviral drugs was characterized by using a transient-transfection-plus-infection assay. Results of this work exemplify specific roles of the UL54 conserved regions in the development of HCMV drug resistance and may help guide optimization of HCMV therapy.
Collapse
Affiliation(s)
- T Cihlar
- Gilead Sciences, Foster City, California 94404, USA.
| | | | | |
Collapse
|
17
|
Xiong X, Flores C, Fuller MD, Mendel DB, Mulato AS, Moon K, Chen MS, Cherrington JM. In vitro characterization of the anti-human cytomegalovirus activity of PMEA (Adefovir). Antiviral Res 1997; 36:131-7. [PMID: 9443670 DOI: 10.1016/s0166-3542(97)00050-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PMEA [9-[2-(phosphonomethoxy)ethyl]adenine; adefovir] has shown anti-cytomegalovirus activity in animal models and in preliminary human trials. PMEA diphosphate (PMEApp), the active antiviral metabolite of PMEA, is a potent inhibitor of human cytomegalovirus (HCMV) DNA polymerase. PMEA is efficiently taken up and phosphorylated to PMEApp in numerous human cell lines. In vitro replication of wild type and drug resistant HCMV clinical isolates is effectively inhibited by PMEA. PMEA in combination with other anti-HCMV agents shows additive inhibition of HCMV replication.
Collapse
Affiliation(s)
- X Xiong
- Gilead Sciences, Foster City, CA 94404, USA
| | | | | | | | | | | | | | | |
Collapse
|