1
|
Mironenko NV, Khyutti AV, Kyrova EI, Belov DA, Afanasenko OS. First Detection of Potato Spindle Tuber Viroid in Natural Isolates of Potato Blight Agent Phytophthora infestans. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:55-62. [PMID: 37186047 DOI: 10.1134/s0012496622700119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Phytophthora infestans is the oomycete that causes potato blight, an important disease. The potato spindle tuber viroid (PSTVd) is a dangerous pathogen of many plants, including potato. We have previously shown that PSTVd can be transmitted from infected potato plants into the Ph. infestans mycelium, replicated within the mycelium, and then transmitted to other potato plants upon their infection with Ph. infestans in laboratory conditions. The objective of this work was to check the hypothesis that PSTVd transmission, preservation, and replication in Ph. infestans are possible to occur in natural conditions during long-term coevolution of the host and pathogen in the Solanum spp.-Ph. infestans system. A screening test for PSTVd was performed in 111 natural Ph. infestans isolates obtained from potato plants, which represented various cultivars, had signs of potato blight, and were collected from industrial potato fields of the Moscow, Vologda, and Bryansk regions and breeding and variety test plots of the St. Petersburg and Moscow regions in 2020 and 2022. Using RT-PCR with PSTVd-specific primers, 42 Ph. infestans isolates collected in 2020 were tested after five passages and 69 Ph. infestans isolates collected in 2022, after a single passage on rye agar. Diagnostic amplicons were detected in 8 and 50 isolates, respectively. Some of the amplicons were visually assessed as minor amplification products, apparently resulting from nonspecific priming on a host Ph. infestans gene, which codes for a hypothetical protein-coding mRNA in Ph. infestans and other oomycetes. Eight amplicons were sequenced to verify the PSTVd presence in Ph. infestans isolates. Three amplicons corresponded to the complete PSTVd genome and five, to its part (~260 bp). The nucleotide sequences of cloned amplification products were identified to species in the BLAST system and deposited in GenBank. The amplicons obtained with the PSTVd-specific primers were identified as PSTVd sequences in all Ph. infestans isolates examined. The majority of the nucleotide sequences were phylogenetically related to BLAST sequences of PSTVd strains originating from Russia; several strains showed similarity to strains from other countries (France, China, and West African countries). The results demonstrate that PSTVd was for the first time detected in natural (field) Ph. infestans isolates and offer new opportunities for studying the intricate multilevel host-parasite interactions.
Collapse
Affiliation(s)
- N V Mironenko
- All-Russia Institute of Plant Protection, St. Petersburg, Russia.
| | - A V Khyutti
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| | - E I Kyrova
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| | - D A Belov
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| | - O S Afanasenko
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| |
Collapse
|
2
|
Manrubia S. The simple emergence of complex molecular function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200422. [PMID: 35599566 DOI: 10.1098/rsta.2020.0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
At odds with a traditional view of molecular evolution that seeks a descent-with-modification relationship between functional sequences, new functions can emerge de novo with relative ease. At early times of molecular evolution, random polymers could have sufficed for the appearance of incipient chemical activity, while the cellular environment harbours a myriad of proto-functional molecules. The emergence of function is facilitated by several mechanisms intrinsic to molecular organization, such as redundant mapping of sequences into structures, phenotypic plasticity, modularity or cooperative associations between genomic sequences. It is the availability of niches in the molecular ecology that filters new potentially functional proposals. New phenotypes and subsequent levels of molecular complexity could be attained through combinatorial explorations of currently available molecular variants. Natural selection does the rest. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Systems Biology Department, National Biotechnology Centre (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
3
|
Hadidi A, Sun L, Randles JW. Modes of Viroid Transmission. Cells 2022; 11:cells11040719. [PMID: 35203368 PMCID: PMC8870041 DOI: 10.3390/cells11040719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
Studies on the ways in which viroids are transmitted are important for understanding their epidemiology and for developing effective control measures for viroid diseases. Viroids may be spread via vegetative propagules, mechanical damage, seed, pollen, or biological vectors. Vegetative propagation is the most prevalent mode of spread at the global, national and local level while further dissemination can readily occur by mechanical transmission through crop handling with viroid-contaminated hands or pruning and harvesting tools. The current knowledge of seed and pollen transmission of viroids in different crops is described. Biological vectors shown to transmit viroids include certain insects, parasitic plants, and goats. Under laboratory conditions, viroids were also shown to replicate in and be transmitted by phytopathogenic ascomycete fungi; therefore, fungi possibly serve as biological vectors of viroids in nature. The term “mycoviroids or fungal viroids” has been introduced in order to denote these viroids. Experimentally, known sequence variants of viroids can be transmitted as recombinant infectious cDNA clones or transcripts. In this review, we endeavor to provide a comprehensive overview of the modes of viroid transmission under both natural and experimental situations. A special focus is the key findings which can be applied to the control of viroid diseases.
Collapse
Affiliation(s)
- Ahmed Hadidi
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
- Correspondence:
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - John W. Randles
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
4
|
Flores R, Navarro B, Serra P, Di Serio F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 2022; 8:veab107. [PMID: 35223083 PMCID: PMC8865084 DOI: 10.1093/ve/veab107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
5
|
Steinbachová L, Matoušek J, Steger G, Matoušková H, Radišek S, Honys D. Transformation of Seed Non-Transmissible Hop Viroids in Nicotiana benthamiana Causes Distortions in Male Gametophyte Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112398. [PMID: 34834761 PMCID: PMC8624972 DOI: 10.3390/plants10112398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
Viroids are small, non-coding, parasitic RNAs that promote developmental distortions in sensitive plants. We analyzed pollen of Nicotiana benthamiana after infection and/or ectopic transformation with cDNAs of citrus bark cracking viroid (CBCVd), apple fruit crinkle viroid (AFCVd) and potato spindle tuber viroid (PSTVd) variant AS1. These viroids were seed non-transmissible in N. benthamiana. All viroids propagated to high levels in immature anthers similar to leaves, while their levels were drastically reduced by approximately 3.6 × 103, 800 and 59 times in mature pollen of CBCVd, AFCVd and PSTVd infected N. benthamiana, respectively, in comparison to leaves. These results suggest similar elimination processes during male gametophyte development as in the Nicotiana tabacum we presented in our previous study. Mature pollen of N. benthamiana showed no apparent defects in infected plants although all three viroids induced strong pathological symptoms on leaves. While Nicotiana species have naturally bicellular mature pollen, we noted a rare occurrence of mature pollen with three nuclei in CBCVd-infected N. benthamiana. Changes in the expression of ribosomal marker proteins in AFCVd-infected pollen were detected, suggesting some changes in pollen metabolism. N. benthamiana transformed with 35S-driven viroid cDNAs showed strong symptoms including defects in pollen development. A large number of aborted pollen (34% and 62%) and a slight increase of young pollen grains (8% and 15%) were found in mature pollen of AFCVd and CBCVd transformants, respectively, in comparison to control plants (3.9% aborted pollen and 0.3% young pollen). Moreover, pollen grains with malformed nuclei or trinuclear pollen were found in CBCVd-transformed plants. Our results suggest that "forcing" overexpression of seed non-transmissible viroid led to strong pollen pathogenesis. Viroid adaptation to pollen metabolism can be assumed as an important factor for viroid transmissibility through pollen and seeds.
Collapse
Affiliation(s)
- Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (H.M.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, D-40204 Düsseldorf, Germany;
| | - Helena Matoušková
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (H.M.)
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia;
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| |
Collapse
|
6
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
7
|
Matoušek J, Steinbachová L, Drábková LZ, Kocábek T, Potěšil D, Mishra AK, Honys D, Steger G. Elimination of Viroids from Tobacco Pollen Involves a Decrease in Propagation Rate and an Increase of the Degradation Processes. Int J Mol Sci 2020; 21:E3029. [PMID: 32344786 PMCID: PMC7216239 DOI: 10.3390/ijms21083029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
8
|
Bao S, Owens RA, Sun Q, Song H, Liu Y, Eamens AL, Feng H, Tian H, Wang MB, Zhang R. Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathog 2019; 15:e1008110. [PMID: 31790500 PMCID: PMC6907872 DOI: 10.1371/journal.ppat.1008110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/12/2019] [Accepted: 09/25/2019] [Indexed: 11/18/2022] Open
Abstract
Viroids are small, non-protein-coding RNAs which can induce disease symptoms in a variety of plant species. Potato (Solanum tuberosum L.) is the natural host of Potato spindle tuber viroid (PSTVd) where infection results in stunting, distortion of leaves and tubers and yield loss. Replication of PSTVd is accompanied by the accumulation of viroid-derived small RNAs (sRNAs) proposed to play a central role in disease symptom development. Here we report that PSTVd sRNAs direct RNA silencing in potato against StTCP23, a member of the TCP (teosinte branched1/Cycloidea/Proliferating cell factor) transcription factor family genes that play an important role in plant growth and development as well as hormonal regulation, especially in responses to gibberellic acid (GA). The StTCP23 transcript has 21-nucleotide sequence complementarity in its 3ʹ untranslated region with the virulence-modulating region (VMR) of PSTVd strain RG1, and was downregulated in PSTVd-infected potato plants. Analysis using 3ʹ RNA ligase-mediated rapid amplification of cDNA ends (3ʹ RLM RACE) confirmed cleavage of StTCP23 transcript at the expected sites within the complementarity with VMR-derived sRNAs. Expression of these VMR sRNA sequences as artificial miRNAs (amiRNAs) in transgenic potato plants resulted in phenotypes reminiscent of PSTVd-RG1-infected plants. Furthermore, the severity of the phenotypes displayed was correlated with the level of amiRNA accumulation and the degree of amiRNA-directed down-regulation of StTCP23. In addition, virus-induced gene silencing (VIGS) of StTCP23 in potato also resulted in PSTVd-like phenotypes. Consistent with the function of TCP family genes, amiRNA lines in which StTCP23 expression was silenced showed a decrease in GA levels as well as alterations to the expression of GA biosynthesis and signaling genes previously implicated in tuber development. Application of GA to the amiRNA plants minimized the PSTVd-like phenotypes. Taken together, our results indicate that sRNAs derived from the VMR of PSTVd-RG1 direct silencing of StTCP23 expression, thereby disrupting the signaling pathways regulating GA metabolism and leading to plant stunting and formation of small and spindle-shaped tubers. Potato spindle tuber viroid (PSTVd) is a small RNA pathogen that causes severe pandemic diseases in potato. How this non-protein-coding RNA induces disease symptom development in potato is unknown, thereby hindering the development of effective control measures. Here we report the first evidence that PSTVd disease is caused by the silencing of StTCP23, a potato transcription factor encoding gene, by PSTVd-derived small-interfering RNA (siRNAs). Specifically, we demonstrate that 3ʹ untranslated region (UTR) region of StTCP23 mRNA contains a 21-nt sequence that is complementary to the virulence-modulating region (VMR) of PSTVd. Furthermore, we show that StTCP23 expression is repressed in PSTVd-infected potato, and this repression is accompanied by StTCP23 transcript cleavage within the identified region of complementary. In planta expression of VMR sequences as 21-nt artificial microRNAs (amiRNAs) or infection of potato plants with a virus-induced gene silencing vector containing a portion the StTCP23 coding sequence, results in reduced StTCP23 transcript abundance and the expression of PSTVd-like disease symptoms. Consistent with the predicted functional role of StTCP23 in regulating the gibberellic acid (GA) biosynthesis and signaling pathways, GA levels were reduced both in PSTVd-infected and amiRNA-expressing plants. Our results provide compelling evidence that StTCP23 positively regulates potato sprouting and tuber development via a GA-related mechanism, and that the disease symptoms that develop upon PSTVd infection result from silencing of StTCP23 by VMR-derived siRNAs.
Collapse
Affiliation(s)
- Sarina Bao
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Robert A. Owens
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, Maryland, United States of America
| | - Qinghua Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hui Song
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanan Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Andrew Leigh Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Australia
| | - Hao Feng
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hongzhi Tian
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | | | - Ruofang Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- * E-mail:
| |
Collapse
|
9
|
Wei S, Bian R, Andika IB, Niu E, Liu Q, Kondo H, Yang L, Zhou H, Pang T, Lian Z, Liu X, Wu Y, Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. Proc Natl Acad Sci U S A 2019; 116:13042-13050. [PMID: 31182602 PMCID: PMC6600922 DOI: 10.1073/pnas.1900762116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Viroids are pathogenic agents that have a small, circular noncoding RNA genome. They have been found only in plant species; therefore, their infectivity and pathogenicity in other organisms remain largely unexplored. In this study, we investigate whether plant viroids can replicate and induce symptoms in filamentous fungi. Seven plant viroids representing viroid groups that replicate in either the nucleus or chloroplast of plant cells were inoculated to three plant pathogenic fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum By transfection of fungal spheroplasts with viroid RNA transcripts, each of the three, hop stunt viroid (HSVd), iresine 1 viroid, and avocado sunblotch viroid, can stably replicate in at least one of those fungi. The viroids are horizontally transmitted through hyphal anastomosis and vertically through conidia. HSVd infection severely debilitates the growth of V. mali but not that of the other two fungi, while in F. graminearum and C. parasitica, with deletion of dicer-like genes, the primary components of the RNA-silencing pathway, HSVd accumulation increases. We further demonstrate that HSVd can be bidirectionally transferred between F. graminearum and plants during infection. The viroids also efficiently infect fungi and induce disease symptoms when the viroid RNAs are exogenously applied to the fungal mycelia. These findings enhance our understanding of viroid replication, host range, and pathogenicity, and of their potential spread to other organisms in nature.
Collapse
Affiliation(s)
- Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, 710-0046 Kurashiki, Japan
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
| |
Collapse
|
10
|
Catalán P, Elena SF, Cuesta JA, Manrubia S. Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo. Viruses 2019; 11:v11050425. [PMID: 31075860 PMCID: PMC6563258 DOI: 10.3390/v11050425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023] Open
Abstract
Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixed length, rod-like structures typical of Pospiviroidae are difficult to fix. Using different quantitative approaches, we evaluated the likelihood that RNA sequences fold into a rod-like structure and bear specific sequence motifs facilitating interactions with other molecules, e.g., RNA polymerases, RNases, and ligases. By means of numerical simulations, we show that circular RNA replicons analogous to Pospiviroidae emerge if evolution is seeded with minimal circular RNAs that grow through the gradual addition of nucleotides. Further, these rod-like replicons often maintain their structure if independent functional modules are acquired that impose selective constraints. The evolutionary scenario we propose here is consistent with the structural and biochemical properties of viroids described to date.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, 46980 València, Spain.
- The Santa Fe Institute, Santa Fe, NM 87501, USA.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid⁻Banco de Santander, 28903 Getafe, Spain.
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- National Biotechnology Centre (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
11
|
Hadidi A. Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics. Viruses 2019; 11:E120. [PMID: 30699972 PMCID: PMC6409718 DOI: 10.3390/v11020120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Viroid discovery as well as the economic significance of viroids and biological properties are presented. Next-generation sequencing (NGS) technologies combined with informatics have been applied to viroid research and diagnostics for almost a decade. NGS provides highly efficient, rapid, low-cost high-throughput sequencing of viroid genomes and of the 21⁻24 nt vd-sRNAs generated by the RNA silencing defense of the host. NGS has been utilized in various viroid studies which are presented. The discovery during the last few years that prokaryotes have heritable adaptive immunity mediated through clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated Cas proteins, have led to transformative advances in molecular biology, notably genome engineering and most recently molecular diagnostics. The potential application of the CRISPR-Cas13a system for engineering viroid interference in plants is suggested by targeting specific motifs of three economically important viroids. The CRISPR-Cas13 system has been utilized recently for the accurate detection of human RNA viruses by visual read out in 90 min or less and by paper-based assay. Multitarget RNA tests by this technology have a good potential for application as a rapid and accurate diagnostic assay for known viroids. The CRISPR/Cas system will work only for known viroids in contrast to NGS, but it should be much faster.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
12
|
Seligmann H, Raoult D. Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA. Front Microbiol 2018; 9:101. [PMID: 29449833 PMCID: PMC5799277 DOI: 10.3389/fmicb.2018.00101] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
We examine the hypothesis that de novo template-free RNAs still form spontaneously, as they did at the origins of life, invade modern genomes, contribute new genetic material. Previously, analyses of RNA secondary structures suggested that some RNAs resembling ancestral (t)RNAs formed recently de novo, other parasitic sequences cluster with rRNAs. Here positive control analyses of additional RNA secondary structures confirm ancestral and de novo statuses of RNA grouped according to secondary structure. Viroids with branched stems resemble de novo RNAs, rod-shaped viroids resemble rRNA secondary structures, independently of GC contents. 5' UTR leading regions of West Nile and Dengue flavivirid viruses resemble de novo and rRNA structures, respectively. An RNA homologous with Megavirus, Dengue and West Nile genomes, copperhead snake microsatellites and levant cotton repeats, not templated by Mimivirus' genome, persists throughout Mimivirus' infection. Its secondary structure clusters with candidate de novo RNAs. The saltatory phyletic distribution and secondary structure of Mimivirus' peculiar RNA suggest occasional template-free polymerization of this sequence, rather than noncanonical transcriptions (swinger polymerization, posttranscriptional editing).
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
13
|
Shining a light on LAMP assays--a comparison of LAMP visualization methods including the novel use of berberine. Biotechniques 2015; 58:189-94. [PMID: 25861931 DOI: 10.2144/000114275] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/19/2014] [Indexed: 11/23/2022] Open
Abstract
The need for simple and effective assays for detecting nucleic acids by isothermal amplification reactions has led to a great variety of end point and real-time monitoring methods. Here we tested direct and indirect methods to visualize the amplification of potato spindle tuber viroid (PSTVd) by loop-mediated isothermal amplification (LAMP) and compared features important for one-pot in-field applications. We compared the performance of magnesium pyrophosphate, hydroxynaphthol blue (HNB), calcein, SYBR Green I, EvaGreen, and berberine. All assays could be used to distinguish between positive and negative samples in visible or UV light. Precipitation of magnesium-pyrophosphate resulted in a turbid reaction solution. The use of HNB resulted in a color change from violet to blue, whereas calcein induced a change from orange to yellow-green. We also investigated berberine as a nucleic acid-specific dye that emits a fluorescence signal under UV light after a positive LAMP reaction. It has a comparable sensitivity to SYBR Green I and EvaGreen. Based on our results, an optimal detection method can be chosen easily for isothermal real-time or end point screening applications.
Collapse
|
14
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
15
|
Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog 2014; 10:e1004553. [PMID: 25503469 PMCID: PMC4263765 DOI: 10.1371/journal.ppat.1004553] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR). However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd) and Apple hammerhead viroid-like RNA (AHVd-like RNA), respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small RNAs.
Collapse
|
16
|
Kovalskaya N, Hammond RW. Molecular biology of viroid-host interactions and disease control strategies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:48-60. [PMID: 25438785 DOI: 10.1016/j.plantsci.2014.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 06/04/2023]
Abstract
Viroids are single-stranded, covalently closed, circular, highly structured noncoding RNAs that cause disease in several economically important crop plants. They replicate autonomously and move systemically in host plants with the aid of the host machinery. In addition to symptomatic infections, viroids also cause latent infections where there is no visual evidence of infection in the host; however, transfer to a susceptible host can result in devastating disease. While there are non-hosts for viroids, no naturally occurring durable resistance has been observed in most host species. Current effective control methods for viroid diseases include detection and eradication, and cultural controls. In addition, heat or cold therapy combined with meristem tip culture has been shown to be effective for elimination of viroids for some viroid-host combinations. An understanding of viroid-host interactions, host susceptibility, and non-host resistance could provide guidance for the design of viroid-resistant plants. Efforts to engineer viroid resistance into host species have been underway for several years, and include the use of antisense RNA, antisense RNA plus ribozymes, a dsRNase, and siRNAs, among others. The results of those efforts and the challenges associated with creating viroid resistant plants are summarized in this review.
Collapse
Affiliation(s)
- Natalia Kovalskaya
- USDA ARS BARC Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA
| | - Rosemarie W Hammond
- USDA ARS BARC Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
17
|
Scientific Opinion on the assessment of the risk of solanaceous pospiviroids for the EU territory and the identification and evaluation of risk management options. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
18
|
Eiras M. VIROIDES, PEQUENOS RNAS PATOGÊNICOS CAPAZES DE REPLICAÇÃO AUTÔNOMA: MODELOS MOLECULARES PARA O ESTUDO DE INTERAÇÕES PATÓGENO-HOSPEDEIRO E EVOLUÇÃO. ARQUIVOS DO INSTITUTO BIOLÓGICO 2010. [DOI: 10.1590/1808-1657v77p7512010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Os viroides, apesar de serem constituídos por um pequeno RNA de fita simples, fortemente estruturado, circular, que não codifica proteínas, são capazes de se replicar de maneira autônoma em plantas superiores e causar doença interagindo diretamente com fatores do hospedeiro. Nesta revisão, serão apresentados e discutidos alguns dos mais recentes trabalhos envolvendo a interação de viroides com fatores do hospedeiro, incluindo aspectos relacionados à replicação, movimento e patogênese, além de suas características evolutivas. Nos últimos anos, alguns grupos de pesquisa têm se aventurado na busca por fatores do hospedeiro e mecanismos moleculares relacionados ao ciclo infeccioso dos viroides, tentando desvendar como esses pequenos RNAs interagem com o hospedeiro induzindo sintomas. Os viroides não codificam proteínas supressoras de silenciamento e, portanto, devem garantir sua existência utilizando estratégias baseadas em sua estrutura secundária, na compartimentalização em organelas, associação com fatores do hospedeiro e eficiência na replicação. A complexidade do ciclo infeccioso desses minúsculos RNAs indica que muitas interações desses patógenos com fatores do hospedeiro ainda devem ser identificadas.
Collapse
Affiliation(s)
- M. Eiras
- Instituto Biológico, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Brasil
| |
Collapse
|
19
|
Bernad L, Duran-Vila N, Elena SF. Effect of citrus hosts on the generation, maintenance and evolutionary fate of genetic variability of citrus exocortis viroid. J Gen Virol 2009; 90:2040-2049. [PMID: 19403756 DOI: 10.1099/vir.0.010769-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Citrus exocortis viroid (CEVd) populations are composed of closely related haplotypes whose frequencies in the population result from the equilibrium between mutation, selection and genetic drift. The genetic diversity of CEVd populations infecting different citrus hosts was studied by comparing populations recovered from infected trifoliate orange and sour orange seedling trees after 10 years of evolution, with the ancestral population maintained for the same period in the original host, Etrog citron. Furthermore, populations isolated from these trifoliate orange and sour orange trees were transmitted back to Etrog citron plants and the evolution of their mutant spectra was studied. The results indicate that (i) the amount and composition of the within-plant genetic diversity generated varies between these two hosts and is markedly different from that which is characteristic of the original Etrog citron host and (ii) the genetic diversity found after transmitting back to Etrog citron is indistinguishable from that which is characteristic of the ancestral Etrog citron population, regardless of the citrus plant from which the evolved populations were isolated. The relationship between the CEVd populations from Etrog citron and trifoliate orange, both sensitive hosts, and those from sour orange, which is a tolerant host, is discussed.
Collapse
Affiliation(s)
- Lucía Bernad
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 València, Spain
| | - Núria Duran-Vila
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, 46113 València, Spain
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Campus UPV CPI 8E, 46022 València, Spain
| |
Collapse
|
20
|
de Hoop MB, Verhoeven JTJ, Roenhorst JW. Phytosanitary measures in the European Union: a call for more dynamic risk management allowing more focus on real pest risks�Case study:Potato spindle tuber viroid(PSTVd) on ornamentalSolanaceaein Europe. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2338.2008.01271.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Matousek J, Orctová L, Ptácek J, Patzak J, Dedic P, Steger G, Riesner D. Experimental transmission of pospiviroid populations to weed species characteristic of potato and hop fields. J Virol 2007; 81:11891-9. [PMID: 17715233 PMCID: PMC2168794 DOI: 10.1128/jvi.01165-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Weed plants characteristic for potato and hop fields have not been considered in the past as potential hosts that could transmit and lead to spreading of potato spindle tuber (PSTVd) and hop stunt (HSVd) viroids, respectively. To gain insight into this problem, we biolistically inoculated these weed plants with viroid populations either as RNA or as cDNA. New potential viroid host species, collected in central Europe, were discovered. From 12 weed species characteristic for potato fields, high viroid levels, detectable by molecular hybridization, were maintained after both RNA and DNA transfers in Chamomilla reculita and Anthemis arvensis. Low viroid levels, detectable by reverse transcription-PCR (RT-PCR) only, were maintained after plant inoculations with cDNA in Veronica argensis and Amaranthus retroflexus. In these two species PSTVd concentrations were 10(5) and 10(3) times, respectively, lower than in tomato as estimated by real-time PCR. From 14 weeds characteristic for hop fields, high HSVd levels were detected in Galinsoga ciliata after both RNA and DNA transfers. HSVd was found, however, not to be transmissible by seeds of this weed species. Traces of HSVd were detectable by RT-PCR in HSVd-cDNA-inoculated Amaranthus retroflexus. Characteristic monomeric (+)-circular and linear viroid RNAs were present in extracts from weed species propagating viroids to high levels, indicating regular replication, processing, and circularization of viroid RNA in these weed species. Sequence analyses of PSTVd progenies propagated in C. reculita and A. arvensis showed a wide spectrum of variants related to various strains, from mild to lethal variants; the sequence variants isolated from A. retroflexus and V. argensis exhibited similarity or identity to the superlethal AS1 viroid variant. All HSVd clones from G. ciliata corresponded to a HSVdg variant, which is strongly pathogenic for European hops.
Collapse
Affiliation(s)
- J Matousek
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Gómez G, Pallás V. Hop stunt viroid is processed and translocated in transgenic Nicotiana benthamiana plants. MOLECULAR PLANT PATHOLOGY 2006; 7:511-517. [PMID: 20507465 DOI: 10.1111/j.1364-3703.2006.00356.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Viroids are small, single-stranded, circular, pathogenic RNAs that do not code for proteins and thus depend on host factors for their replication and movement. They induce diseases in plants by direct interaction with host factors through a mechanism as yet unidentified. Hop stunt viroid (HSVd) has been found in a wide range of herbaceous and woody hosts. Nicotiana benthamiana is one of the most frequently used experimental systems in the study of plant-virus interactions. However, this plant is a non-host for HSVd. To go further in the study of the requirements of a plant to be a host for viroids N. benthamiana was transformed with cDNA expressing dimeric (+) HSVd. Correct processing to the circular (+) monomers was always observed, demonstrating that N. benthamiana has the appropriate machinery to cleave and circularize (+) HSVd molecules. Additionally, N. benthamiana plants agroinoculated with the dimeric (-) HSVd accumulated the circular and linear (+) monomers, indicating that (-) HSVd transcripts can be used as template for the RNA-RNA transcription. Grafting assays showed that HSVd is able to move to distal plant parts. In addition, alterations in the normal flower development were observed. Taken together, these results indicate that deficiencies in the interaction with host factors related either to the early steps of the replication process or to cell to cell movement appear to be the factors that limit infectivity of HSVd in N. benthamiana. These transgenic plants can be an useful tool to study the HSVd-host factor interactions.
Collapse
Affiliation(s)
- Gustavo Gómez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Ave. de los Naranjos s/n, 46022 Valencia, Spain
| | | |
Collapse
|
23
|
Affiliation(s)
- Ian Cooper
- Natural Environment Research Council Centre for Ecology and Hydrology Mansfield Road, Oxford, Oxfordshire OX1 3SR, United Kingdom
| | | |
Collapse
|
24
|
Bostan H, Nie X, Singh RP. An RT-PCR primer pair for the detection of Pospiviroid and its application in surveying ornamental plants for viroids. J Virol Methods 2004; 116:189-93. [PMID: 14738987 DOI: 10.1016/j.jviromet.2003.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A primer pair for reverse transcription-polymerase chain reaction (RT-PCR), based on the conserved sequences of the members of genus Pospiviroid was designed to yield a fragment of about 200 base pairs (bp). Since pospiviroids infect a large number of plants species and a few members of the genus Pospiviroid have been already detected in some ornamental plants, the primer pair was evaluated for its efficacy using ornamental plants. The method of return-polyacrylamide gel electrophoresis (R-PAGE) was used to determine the general presence of viroids in the test samples. Efficacy of the primer pair for members of genus Pospiviroid was demonstrated by the detection of Potato spindle tuber viroid (PSTVd) and Tomato chlorotic dwarf viroid (TCDVd) in potato, Chrysanthemum stunt viroid and Iresine viroid in Verbena and Vinca species, and Citrus exocortis viroid in Impatiens species. Specificity of the primer pair became evident, where additional viroids were detected by R-PAGE in Coleus and Magilla species, but they were not amplified by the Pospiviroid primer. This primer pair would be of benefit in indexing ornamental plants in quarantine samples or in viroid-free certification schemes, irrespective of their actual identity.
Collapse
Affiliation(s)
- Hidayet Bostan
- Department of Plant Protection, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | | | | |
Collapse
|
25
|
Fadda Z, Daròs JA, Flores R, Duran-Vila N. Identification in eggplant of a variant of citrus exocortis viroid (CEVd) with a 96 nucleotide duplication in the right terminal region of the rod-like secondary structure. Virus Res 2004; 97:145-9. [PMID: 14602207 DOI: 10.1016/j.virusres.2003.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of eggplants, kept for years under greenhouse conditions after having been mechanically inoculated with nucleic acid preparations from field-grown eggplants containing two viroids, Eggplant latent viroid (ELVd) and Citrus exocortis viroid (CEVd), revealed the presence of an additional larger viroid RNA. Molecular characterization of this RNA showed that it is a stable 467-nt variant of CEVd with a 96-nt duplication of the right terminal region (CEVd-D96) that preserves the rod-like secondary structure. The coexistence in eggplant of CEVd (371nt) and CEVd-D96, and the fact that they have an almost identical sequence, strongly suggests the emergence of the latter from the former through an internal recombination mediated by a jumping RNA polymerase with low processivity. CEVd-D96 from eggplant is similar to the CEVd-D92 variant characterized previously in a hybrid tomato, suggesting that certain hosts may play a critical role in selecting and replicating this class of enlarged variants.
Collapse
Affiliation(s)
- Z Fadda
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, 46113 Moncada, Valencia, Spain
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
27
|
Flores R. A naked plant-specific RNA ten-fold smaller than the smallest known viral RNA: the viroid. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:943-52. [PMID: 11570283 DOI: 10.1016/s0764-4469(01)01370-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viroids are subviral plant pathogens at the frontier of life. They are solely composed by a single-stranded circular RNA of 246-401 nt with a compact secondary structure. Viroids replicate autonomously when inoculated into their host plants and incite, in most of them, economically important diseases. In contrast to viruses, viroids do not code for any protein and depend on host enzymes for their replication, which in some viroids occurs in the nucleus and in others in the chloroplast, through a rolling-circle mechanism with three catalytic steps. Quite remarkably, however, one of the steps, cleavage of the oligomeric head-to-tail replicative intermediates to unit-length strands, is mediated in certain viroids by hammerhead ribozymes that can be formed by their strands of both polarities. Viroids induce disease by direct interaction with host factors, the nature of which is presently unknown. Some properties of viroids, particularly the presence of ribozymes, suggest that they might have appeared very early in evolution and could represent 'living fossils' of the precellular RNA world that presumably preceded our current world based on DNA and proteins.
Collapse
Affiliation(s)
- R Flores
- Instituto de Bología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
28
|
Amari K, Gomez G, Myrta A, Di Terlizzi B, Pallás V. The molecular characterization of 16 new sequence variants of Hop stunt viroid reveals the existence of invariable regions and a conserved hammerhead-like structure on the viroid molecule. J Gen Virol 2001; 82:953-962. [PMID: 11257203 DOI: 10.1099/0022-1317-82-4-953] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At present isolates of Hop stunt viroid (HSVd) are divided into five groups: three major groups (plum-type, hop-type and citrus-type) each containing isolates from only a limited number of isolation hosts and two minor groups that were presumed to derive from recombination events between members of the main groups. In this work we present the characterization of 16 new sequence variants of HSVd obtained from four Mediterranean countries (Cyprus, Greece, Morocco and Turkey) where this viroid had not previously been described. Molecular variability comparisons considering the totality of the sequence variants characterized so far revealed that most of the variability is found in the pathogenic and variable domains of the viroid molecule whereas both the terminal right (T(R)) and left (T(L)) domains are regions of low or no variability, respectively, suggesting the existence of constraints limiting the heterogeneity of the sequence variants. Phylogenetic analyses revealed that sequence variants belonging to the two minor recombinant subgroups are more frequent than previously thought. When the cruciform structure alternative to the typical rod-like conformation was considered it was observed that the upper part of this structure (hairpin I) was strictly conserved whereas in the lower part a reduced variability was found. The existence of a covariation in this lower part was notable. Interestingly, a hammerhead-like sequence was found within the T(R) domain of HSVd and it was strictly conserved in all the sequence variants. The evolutionary implications of the presence of this motif on the HSVd are discussed.
Collapse
Affiliation(s)
- Khalid Amari
- Departamento de Mejora y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 4195, 30071 Murcia, Spain1
| | - Gustavo Gomez
- Departamento de Mejora y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 4195, 30071 Murcia, Spain1
| | - Arben Myrta
- Ministry of Agriculture and Food, Tirana, Albania2
| | | | - Vicente Pallás
- Departamento de Mejora y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 4195, 30071 Murcia, Spain1
| |
Collapse
|
29
|
Abstract
This chapter focuses on the second viroid family, whose members are also referred to as hammerhead viroids, taking into account their most outstanding feature. If the word “small” is the first to come to mind when considering viroids, perhaps the second word is “hammerhead,” because this class of ribozymes, which because of its structural simplicity has an enormous biotechnological potential, is described in avocado sunblotch viroid (ASBVd) as well as in a viroid-like satellite RNA. The most outstanding feature of the Avsunviroidae members is their potential to adopt hammerhead structures in both polarity strands and to self-cleave in vitro accordingly. Viroids differ from viruses not only in their genome size but also in other fundamental aspects, prominent among which is the lack of messenger activity of both viroid RNAs and their complementary strands.
Collapse
Affiliation(s)
- R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|
30
|
Abstract
In its methodology, the unexpected discovery of the viroid in 1971 resembles that of the virus by Beijerinck some 70 years earlier. In either case, a novel type of plant pathogen was recognized by its ability to penetrate through a medium with pores small enough to exclude even the smallest previously known pathogen: bacteria as compared with the tobacco mosaic agent; viruses as compared with the potato spindle tuber agent. Interestingly, one of the two methods used by Beijerinck, diffusion of the tobacco mosaic agent into agar gels, is conceptually similar to one method used to establish the size of the potato spindle tuber agent, namely polyacrylamide gel electrophoresis. Further work demonstrated that neither agent is an unusually small conventional pathogen (a microbe in the case of the tobacco mosaic agent; a virus in the case of the potato spindle tuber agent), but that either agent represents the prototype of a fundamentally distinct class of pathogen, the viruses and the viroids, respectively. With the viroids, this distinction became evident once their unique molecular structure, lack of mRNA activity, and autonomous replication had become elucidated. Functionally, viroids rely to a far greater extent than viruses on their host's biosynthetic systems: Whereas translation of viral genetic information is essential for virus replication, viroids are totally dependent on their hosts' transcriptional system and, in contrast to viruses, no viroid-coded proteins are involved. Because of the viroids' simplicity and extremely small size they approach more closely even than viruses Beijerinck's concept of a contagium vivum fluidum.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland, College Park, USA
| |
Collapse
|
31
|
|