1
|
Carrington G, Hau A, Kosta S, Dugdale HF, Muntoni F, D’Amico A, Van den Bergh P, Romero NB, Malfatti E, Vilchez JJ, Oldfors A, Pajusalu S, Õunap K, Giralt-Pujol M, Zanoteli E, Campbell KS, Iwamoto H, Peckham M, Ochala J. Human skeletal myopathy myosin mutations disrupt myosin head sequestration. JCI Insight 2023; 8:e172322. [PMID: 37788100 PMCID: PMC10721271 DOI: 10.1172/jci.insight.172322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Myosin heavy chains encoded by MYH7 and MYH2 are abundant in human skeletal muscle and important for muscle contraction. However, it is unclear how mutations in these genes disrupt myosin structure and function leading to skeletal muscle myopathies termed myosinopathies. Here, we used multiple approaches to analyze the effects of common MYH7 and MYH2 mutations in the light meromyosin (LMM) region of myosin. Analyses of expressed and purified MYH7 and MYH2 LMM mutant proteins combined with in silico modeling showed that myosin coiled coil structure and packing of filaments in vitro are commonly disrupted. Using muscle biopsies from patients and fluorescent ATP analog chase protocols to estimate the proportion of myosin heads that were super-relaxed, together with x-ray diffraction measurements to estimate myosin head order, we found that basal myosin ATP consumption was increased and the myosin super-relaxed state was decreased in vivo. In addition, myofiber mechanics experiments to investigate contractile function showed that myofiber contractility was not affected. These findings indicate that the structural remodeling associated with LMM mutations induces a pathogenic state in which formation of shutdown heads is impaired, thus increasing myosin head ATP demand in the filaments, rather than affecting contractility. These key findings will help design future therapies for myosinopathies.
Collapse
Affiliation(s)
- Glenn Carrington
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbi Hau
- Centre of Human and Applied Physiological Sciences and
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, United Kingdom
| | - Sarah Kosta
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hannah F. Dugdale
- Centre of Human and Applied Physiological Sciences and
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Adele D’Amico
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Peter Van den Bergh
- Neuromuscular Reference Center, Neurology Department, University Hospital Saint-Luc, Brussels, Belgium
| | - Norma B. Romero
- Neuromuscular Morphology Unit, Institute of Myology, Myology Research Centre INSERM, Sorbonne University, Hôpital Pitié-Salpêtrière, Paris, France
| | - Edoardo Malfatti
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Inserm U955, Creteil, France
- U1179 UVSQ-INSERM Handicap Neuromuscular: Physiology, Biotherapy and Applied Pharmacology, UFR Simone Veil-Santé, Université Versailles Saint Quentin en Yvelines, Paris-Saclay, France
| | - Juan Jesus Vilchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sander Pajusalu
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Marta Giralt-Pujol
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Edmar Zanoteli
- Universidade de São Paulo, Hospital das Clínicas, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Neurology, São Paulo SP, Brazil
| | - Kenneth S. Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Michelle Peckham
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Menard LM, Wood NB, Vigoreaux JO. Secondary Structure of the Novel Myosin Binding Domain WYR and Implications within Myosin Structure. BIOLOGY 2021; 10:603. [PMID: 34209926 PMCID: PMC8301185 DOI: 10.3390/biology10070603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/05/2023]
Abstract
Structural changes in the myosin II light meromyosin (LMM) that influence thick filament mechanical properties and muscle function are modulated by LMM-binding proteins. Flightin is an LMM-binding protein indispensable for the function of Drosophila indirect flight muscle (IFM). Flightin has a three-domain structure that includes WYR, a novel 52 aa domain conserved throughout Pancrustacea. In this study, we (i) test the hypothesis that WYR binds the LMM, (ii) characterize the secondary structure of WYR, and (iii) examine the structural impact WYR has on the LMM. Circular dichroism at 260-190 nm reveals a structural profile for WYR and supports an interaction between WYR and LMM. A WYR-LMM interaction is supported by co-sedimentation with a stoichiometry of ~2.4:1. The WYR-LMM interaction results in an overall increased coiled-coil content, while curtailing ɑ helical content. WYR is found to be composed of 15% turns, 31% antiparallel β, and 48% 'other' content. We propose a structural model of WYR consisting of an antiparallel β hairpin between Q92-K114 centered on an ASX or β turn around N102, with a G1 bulge at G117. The Drosophila LMM segment used, V1346-I1941, encompassing conserved skip residues 2-4, is found to possess a traditional helical profile but is interpreted as having <30% helical content by multiple methods of deconvolution. This low helicity may be affiliated with the dynamic behavior of the structure in solution or the inclusion of a known non-helical region in the C-terminus. Our results support the hypothesis that WYR binds the LMM and that this interaction brings about structural changes in the coiled-coil. These studies implicate flightin, via the WYR domain, for distinct shifts in LMM secondary structure that could influence the structural properties and stabilization of the thick filament, scaling to modulation of whole muscle function.
Collapse
Affiliation(s)
| | | | - Jim O. Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, USA; (L.M.M.); (N.B.W.)
| |
Collapse
|
3
|
Parker F, Batchelor M, Wolny M, Hughes R, Knight PJ, Peckham M. A1603P and K1617del, Mutations in β-Cardiac Myosin Heavy Chain that Cause Laing Early-Onset Distal Myopathy, Affect Secondary Structure and Filament Formation In Vitro and In Vivo. J Mol Biol 2018; 430:1459-1478. [PMID: 29660325 PMCID: PMC5958240 DOI: 10.1016/j.jmb.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 11/04/2022]
Abstract
Over 20 mutations in β-cardiac myosin heavy chain (β-MHC), expressed in cardiac and slow muscle fibers, cause Laing early-onset distal myopathy (MPD-1), a skeletal muscle myopathy. Most of these mutations are in the coiled-coil tail and commonly involve a mutation to a proline or a single-residue deletion, both of which are predicted to strongly affect the secondary structure of the coiled coil. To test this, we characterized the effects of two MPD-1 causing mutations: A1603P and K1617del in vitro and in cells. Both mutations affected secondary structure, decreasing the helical content of 15 heptad and light meromyosin constructs. Both mutations also severely disrupted the ability of glutathione S-transferase–light meromyosin fusion proteins to form minifilaments in vitro, as demonstrated by negative stain electron microscopy. Mutant eGFP-tagged β-MHC accumulated abnormally into the M-line of sarcomeres in cultured skeletal muscle myotubes. Incorporation of eGFP-tagged β-MHC into sarcomeres in adult rat cardiomyocytes was reduced. Molecular dynamics simulations using a composite structure of part of the coiled coil demonstrated that both mutations affected the structure, with the mutation to proline (A1603P) having a smaller effect compared to K1617del. Taken together, it seems likely that the MPD-1 mutations destabilize the coiled coil, resulting in aberrant myosin packing in thick filaments in muscle sarcomeres, providing a potential mechanism for the disease. It is unclear how mutations in the coiled coil of β-myosin heavy chain cause distal myopathy. A1603P and K1617del mutations reduce helicity and affect filament formation in vitro. eGFP-tagged β-myosin heavy chain abnormally accumulates at the M-line of sarcomeres in skeletal myotubes. Molecular dynamics simulations provide a molecular understanding for these experiments. Effects on structure and packing into the thick filament provide a molecular basis for the disease.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Matthew Batchelor
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Marcin Wolny
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ruth Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Peter J Knight
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Armel TZ, Leinwand LA. Mutations at the same amino acid in myosin that cause either skeletal or cardiac myopathy have distinct molecular phenotypes. J Mol Cell Cardiol 2009; 48:1007-13. [PMID: 19854198 DOI: 10.1016/j.yjmcc.2009.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 11/29/2022]
Abstract
To date, more than 230 disease-causing mutations have been linked to the slow/cardiac muscle myosin gene, beta-MyHC (MYH7). Most of these mutations are located in the globular head region of the protein and result in cardiomyopathies. Recently, however, a number of novel disease-causing mutations have been described in the long, alpha-helical, coiled coil tail region of the beta-MyHC protein. Mutations in this region are of particular interest because they are associated with a multitude of human diseases, including both cardiac and skeletal myopathies. Here, we attempt to dissect the mechanism(s) by which mutations in the rod region of beta-MyHC can cause a variety of diseases by analyzing two mutations at a single amino acid (R1500P and R1500W) which cause two distinct diseases (Laing-type early-onset distal myopathy and dilated cardiomyopathy, respectively). For diseases linked to the R1500 residue, we find that each mutation displays distinct structural, thermodynamic, and functional properties. Both R1500P and R1500W cause a decrease in thermodynamic stability, although the R1500W phenotype is more severe. Both mutations also affect filament assembly, with R1500P causing an additional decrease in filament stability. In addition to furthering our understanding of the mechanism of pathogenesis for each of these diseases, these data also suggest how the variance in molecular phenotype may be associated with the variance in clinical phenotype present with mutations in the beta-MyHC rod.
Collapse
Affiliation(s)
- Thomas Z Armel
- Department of Molecular, Cellular, and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
5
|
Mutations in the beta-myosin rod cause myosin storage myopathy via multiple mechanisms. Proc Natl Acad Sci U S A 2009; 106:6291-6. [PMID: 19336582 DOI: 10.1073/pnas.0900107106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myosin storage myopathy (MSM) is a congenital myopathy characterized by the presence of subsarcolemmal inclusions of myosin in the majority of type I muscle fibers, and has been linked to 4 mutations in the slow/cardiac muscle myosin, beta-MyHC (MYH7). Although the majority of the >230 disease causing mutations in MYH7 are located in the globular head region of the molecule, those responsible for MSM are part of a subset of MYH7 mutations that are located in the alpha-helical coiled-coil tail. Mutations in the myosin head are thought to affect the ATPase and actin-binding properties of the molecule. To date, however, there are no reports of the molecular mechanism of pathogenesis for mutations in the rod region of muscle myosins. Here, we present analysis of 4 mutations responsible for MSM: L1793P, R1845W, E1886K, and H1901L. We show that each MSM mutation has a different molecular phenotype, suggesting that there are multiple mechanisms by which MSM can be caused. These mechanisms range from thermodynamic and functional irregularities of individual proteins (L1793P), to varying defects in the assembly and stability of filaments formed from the proteins (R1845W, E1886K, and H1901L). In addition to furthering our understanding of MSM, these observations provide the first insight into how mutations affect the rod region of muscle myosins, and provide a framework for future studies of disease-causing mutations in this region of the molecule.
Collapse
|
6
|
Rigotti DJ, Kokona B, Horne T, Acton EK, Lederman CD, Johnson KA, Manning RS, Kane SA, Smith WF, Fairman R. Quantitative atomic force microscopy image analysis of unusual filaments formed by the Acanthamoeba castellanii myosin II rod domain. Anal Biochem 2005; 346:189-200. [PMID: 16213459 DOI: 10.1016/j.ab.2005.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 08/05/2005] [Accepted: 08/19/2005] [Indexed: 12/01/2022]
Abstract
We describe a quantitative analysis of Acanthamoeba castellanii myosin II rod domain images collected from atomic force microscope experiments. These images reveal that the rod domain forms a novel filament structure, most likely requiring unusual head-to-tail interactions. Similar filaments are seen also in negatively stained electron microscopy images. Truncated myosins from Acanthamoeba and other model organisms have been visualized before, revealing laterally associated bipolar minifilaments. In contrast, the filament structures that we observe are dominated by axial rather than lateral polymerization. The unusually small features in this structure (1-5 nm) required the development of quantitative and statistical techniques for filament image analysis. These techniques enhance the extraction of features that hitherto have been difficult to ascertain from more qualitative imaging approaches. The heights of the filaments are observed to have a bimodal distribution consistent with the diameters of a single rod domain and a pair of close-packed rod domains. Further quantitative analysis indicates that in-plane association is limited to at most a pair of rod domains. Taken together, this implies that the filaments contain no more than four rod domains laterally associated with one another, somewhat less than that seen in bipolar minifilaments. Analysis of images of the filaments decorated with an anti-FLAG antibody reveals head-to-tail association with mean distances between the antibodies of 75 +/- 15 nm. We consider a set of molecular models to help interpret possible structures of the filaments.
Collapse
Affiliation(s)
- Daniel J Rigotti
- Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Meat is the edible muscle tissue of animals. The sarcomere is the fundamental functional unit of muscle. Growth and development of muscle is accomplished by the highly ordered accretion and assembly of the constituent proteins in the sarcomere. Primary amino acid sequence elements of the constitutive proteins carry the information necessary for determining the final architecture of the sarcomere. The mechanisms by which the constitutive proteins are assembled and function together to form the sarcomere and produce muscle contraction is just now beginning to be understood. The predominant protein in the sarcomere, found in the thick filament system, is myosin. In physiological buffers purified myosin spontaneously assembles into a synthetic thick filament with a dramatic resemblance to the native thick filament. Some of the amino acid sequence elements contributing to myosin's assembly properties may also be critical to myosin's solubility function, which is so crucial to the manufacture of high quality prepared meat products. This review summarizes recent experimental results contributing to our understanding of the mechanism of sarcomeric muscle myosin assembly.
Collapse
Affiliation(s)
- M Wick
- The Ohio State University, Department of Animal Sciences, Columbus 43210, USA.
| |
Collapse
|
8
|
Chowrashi PK, Pemrick SM, Li S, Yi P, Clarke T, Maguire B, Ader G, Saintigny P, Mittal B, Tewari M, Stoeckert C, Stedman HH, Sylvester JE, Pepe FA. The myosin filament XV assembly: contributions of 195 residue segments of the myosin rod and the eight C-terminal residues. J Muscle Res Cell Motil 1996; 17:555-73. [PMID: 8906623 DOI: 10.1007/bf00124355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A mixture of two peptides of approximately M(r) 13000 has been isolated from a papain digest of LC2 deficient myosin. The peptides assemble into highly ordered aggregates which in one view are made up of strands of pairs of dots with an average side to side spacing of 13.0 nm and an average axial repeat of 9.0 nm. In another view there are strands of single dots with a side-to-side spacing of 7.8 nm and an axial repeat of 9.1 nm. From N-terminal peptide sequencing, the two peptides have been shown to come from regions of the myosin rod displaced by 195 residues. We have shown that either peptide alone can assemble to form the same aggregates. The 195 residue displacement of the M(r) 13000 peptides corresponds closely to the 196 residue repeat of charges along the myosin rod. This finding permits us to designate 195 residue segments of the myosin rod and to relate assembly characteristics directly to the similar 195 residue segments and 196 residue charge repeat. The most C-terminal 195 residue segment carries information for assembly into helical strands. The contiguous 195 residue segment, in major part, carries information for the unipolar assembly, characteristic of the assembly in each half of the myosin filament. The next contiguous 195 residue segment, in major part, carries information for bipolar assembly which is characteristic of the bare zone region of the filament; and for the transition from the bipolar bare zone to unipolar assembly. The effect of the eight C-terminal residues of the myosin rod on the assembly of the contiguous 195 residues has also been studied. The entire fragment of 195 + eight C-terminal residues assembled to form helical strands with an axial repeat of 30 nm. Successive deletion of charged residues changed the axial repeat of the helical strands suggesting that the charged residues at the C-terminus are involved in determining the pitch in the helical assembly of the contiguous 195 residues.
Collapse
Affiliation(s)
- P K Chowrashi
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6058, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
WICK MACDONALD, TABLIN FERN, BANDMAN EVERETT. EFFECTS OF ANTI-LMM ANTIBODIES ON THE SOLUBILITY OF CHICKEN SKELETAL MUSCLE MYOSIN. J Food Biochem 1996. [DOI: 10.1111/j.1745-4514.1996.tb00563.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Stepkowski D, Orlova AA, Moos C. The actin-activated ATPase of co-polymer filaments of myosin and myosin-rod. Biochem J 1994; 300 ( Pt 1):153-8. [PMID: 8198528 PMCID: PMC1138137 DOI: 10.1042/bj3000153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The actin activated ATPase of myosin at low ionic strength shows a complex dependence on actin concentration, in contrast with the simple hyperbolic actin activation kinetics of heavy meromyosin and subfragment-1. To investigate how the aggregation of myosin influences the actomyosin ATPase kinetics, we have studied the actin-activated ATPase of mixed filaments in which the myosin molecules are separated from each other by copolymerization with myosin rod. Electron microscopy of copolymer filaments, alone and bound to actin, indicates that the myosin heads are distributed randomly along the co-polymer filaments. The actin-activated ATPase of myosin decreases with increasing rod, approaching a plateau of about 30% of the control at a rod/myosin molar ratio of 4:1. The decrease in ATPase persists even at Vmax, the extrapolated limit at infinite actin, indicating that it is not due merely to the loss of cooperative actin binding. Furthermore, the actin dependence of the ATPase still shows a biphasic character like that of control myosin, even at rod/myosin ratio of 12:1, so this complexity is not probably due solely to the structural proximity of myosin molecules, but may involve a non-equivalence of myosin heads or myosin molecules in the filament environment.
Collapse
Affiliation(s)
- D Stepkowski
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa
| | | | | |
Collapse
|
11
|
Ward R, Murray JM. Three-dimensional structure of frozen-hydrated paracrystals of myosin rod. J Muscle Res Cell Motil 1990; 11:403-18. [PMID: 2266167 DOI: 10.1007/bf01739761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myosin rod, the tail fragment of myosin, aggregates into various structures at physiological ionic strength. One form, the type II paracrystal, a thin, ribbon-like species, has recently been studied using conventional electron microscopy and was shown to possess two-dimensional order and, further, is likely to be useful in the investigation of the arrangement of myosin molecules in the backbone of the vertebrate muscle thick filament (Ward & Bennett, 1989). We have now examined this aggregate in the frozen-hydrated state by cryo-electron microscopy. Image analysis indicated that the projected structure has the same p12, plane group symmetry as seen after negative staining. A three-dimensional map, calculated from projections, indicated that the structure comprises a bilayer arrangement of strands of grouped rod molecules, with the strands parallel in each layer. The layers themselves are related by screw symmetry. Strands in adjacent layers have opposing polarity with their long axes at an angle of 32 degree to each other. Protein density measurements, carried out on unstained specimens using electron energy-loss spectroscopy, showed that the 44 X 13 X 13 nm unit cell is composed of 40% protein. The density measurements indicated that 9-12 rod molecules pass through each strand. Modelling rod molecules with 43 nm parallel overlaps in a body-centered tetragonal lattice produced a strand that compared favorably with the reconstructed strand. The size and content of these strands suggests that they are analogous to subfilaments observed in the vertebrate myosin thick filament.
Collapse
Affiliation(s)
- R Ward
- Department of Anatomy, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|