1
|
Goldman SM, Henderson BEP, Walters TJ, Corona BT. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. PLoS One 2018; 13:e0191245. [PMID: 29329332 PMCID: PMC5766229 DOI: 10.1371/journal.pone.0191245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML). A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN) as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect) within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1) functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2) The capacity for VML therapies to augment regeneration and repair within the remaining musculature may have significant clinical impact and warrants further exploration.
Collapse
Affiliation(s)
- Stephen M. Goldman
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Beth E. P. Henderson
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Thomas J. Walters
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Benjamin T. Corona
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| |
Collapse
|
2
|
Corona BT, Henderson BEP, Ward CL, Greising SM. Contribution of minced muscle graft progenitor cells to muscle fiber formation after volumetric muscle loss injury in wild-type and immune deficient mice. Physiol Rep 2017; 5:e13249. [PMID: 28400501 PMCID: PMC5392532 DOI: 10.14814/phy2.13249] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Volumetric muscle injury (VML) causes an irrecoverable loss of muscle fibers, persistent strength deficits, and chronic disability. A crucial challenge to VML injury and possible regeneration is the removal of all of the in situ native elements necessary for skeletal muscle regeneration. Our first goal was to establish a reliable VML model in the mouse tibialis anterior (TA) muscle. In adult male wild-type and nude mice, a non-repaired ≈20% VML injury to the TA muscle resulted in an ≈59% loss in nerve evoked muscle strength, ≈33% loss in muscle mass, and ≈29% loss of muscle fibers at 28 day post-injury. Our second goal was to investigate if minced muscle grafts (≈1 mm3 tissue fragments) promote recovery of muscle fibers after VML injury and to understand if the graft-derived progenitor cells directly contribute to fiber regeneration. To assess donor cell contribution, donor muscle tissue was derived from UBC-GFP mice in a subset of experiments. Minced grafts restored ≈34% of the lost fibers 28 days post-injury. The number of GFP+ fibers and the estimated number of regenerated fibers were similar, regardless of host mouse strain. The muscle tissue regeneration promoted by minced grafts did not improve TA muscle strength at this time post-injury. These findings demonstrate the direct contribution of minced muscle graft-derived myogenic stem/progenitor cells to recovery of muscle fibers after VML injury and signify the utility of autologous myogenic stem cell therapies for this indication.
Collapse
Affiliation(s)
- Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
3
|
Ward CL, Ji L, Corona BT. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss. Biores Open Access 2015; 4:198-208. [PMID: 26309796 PMCID: PMC4497650 DOI: 10.1089/biores.2015.0009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is a hallmark of orthopedic trauma with no current standard of care. As a potential therapy for some VML indications, autologous minced muscle grafts (1 mm(3) pieces of muscle) are effective in promoting remarkable de novo fiber regeneration. But they require ample donor muscle tissue and therefore may be limited in their application for large clinical VML. Here, we tested the hypothesis that autologous minced grafts may be volume expanded in a collagen hydrogel, allowing for the use of lesser autologous muscle while maintaining regenerative and functional efficacy. The results of the study indicate that 50% (but not 75%) less minced graft tissue suspended in a collagen hydrogel promoted a functional improvement similar to that of a 100% minced graft repair. However, approximately half of the number of fibers regenerated de novo with 50% graft repair. Moreover, the fibers that regenerated had a smaller cross-sectional area. These findings support the concept of using autologous minced grafts for the regeneration of muscle tissue after VML, but indicate the need to identify optimal carrier materials for expansion.
Collapse
Affiliation(s)
- Catherine L. Ward
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Lisa Ji
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Benjamin T. Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| |
Collapse
|
4
|
Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res 2014; 358:857-73. [PMID: 25300647 DOI: 10.1007/s00441-014-2006-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Volumetric muscle loss (VML) is a traumatic and functionally debilitating muscle injury with limited treatment options. Developmental regenerative therapies for the repair of VML typically comprise an ECM scaffold. In this study, we tested if the complete reliance on host cell migration to a devitalized muscle scaffold without myogenic cells is sufficient for de novo muscle fiber regeneration. Devitalized (muscle ECM with no living cells) and, as a positive control, vital minced muscle grafts were transplanted to a VML defect in the tibialis anterior muscle of Lewis rats. Eight weeks post-injury, devitalized grafts did not appreciably promote de novo muscle fiber regeneration within the defect area, and instead remodeled into a fibrotic tissue mass. In contrast, transplantation of vital minced muscle grafts promoted de novo muscle fiber regeneration. Notably, pax7+ cells were absent in remote regions of the defect site repaired with devitalized scaffolds. At 2 weeks post-injury, the devitalized grafts were unable to promote an anti-inflammatory phenotype, while vital grafts appeared to progress to a pro-regenerative inflammatory response. The putative macrophage phenotypes observed in vivo were supported in vitro, in which soluble factors released from vital grafts promoted an M2-like macrophage polarization, whereas devitalized grafts failed to do so. These observations indicate that although the remaining muscle mass serves as a source of myogenic cells in close proximity to the defect site, a devitalized scaffold without myogenic cells is inadequate to appreciably promote de novo muscle fiber regeneration throughout the VML defect.
Collapse
|
5
|
Louboutin JP, Fichter-Gagnepain V, Pastoret C, Thaon E, Noireaud J, Sébille A, Fardeau M. Morphological and functional study of extensor digitorum longus muscle regeneration after iterative crush lesions in mdx mouse. Neuromuscul Disord 1995; 5:489-500. [PMID: 8580731 DOI: 10.1016/0960-8966(95)00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The regenerative capacity of mdx Extensor Digitorum Longus (EDL) muscle after iterative muscle crush injuries was examined and compared with that of age-matched control C57BL/10 mice. Muscle crush injuries were performed at 8 weeks and repeated at 12 and 16 weeks. Contralateral non-crushed EDLs from mdx and C57BL/10 mice were used as internal controls for histopathology, histoenzymology, morphometry and for the study of the contractile properties. Morphological examinations were performed at 12, 16 and 20 weeks, respectively one month after a single, a second or a third crush. Contractile properties were studied at 12 to 20 weeks. By 20 weeks, no difference in the number of fibres with internal nuclei could be observed between crushed EDL from both strains, and non-crushed mdx EDL; the area and the diameter of crushed EDL from mdx mice were, respectively, 1.5- and 1.2-fold higher than the ones from crushed EDL from C57BL/10 strain. By 20 weeks, diameter distribution of crushed EDL muscles from C57BL/10 mice were shifted towards smaller fibre diameter, whereas in mdx mice, diameter distribution of crushed EDL muscles paralleled that of non-crushed EDL muscles. By 20 weeks, crushed mdx and C57BL/10 EDL muscles produced 77 and 47% of normalized tetanus tension respectively of non-crushed mdx and C57BL/10 EDL muscles. Following crush injury, both 12- and 20-week mdx and C57BL/10 EDL exhibited a slowed time to peak (TTP) and half-relaxation time (H1/2R) of twitch. There was no difference in posttetanic potentiation between the different groups. Crushed EDL of both strains showed an increased resistance to fatigue, compared to the non-crushed controls. The present study provides morphological and functional evidence for the greater recovery of mdx muscle compared to C57BL/10 muscle following iterative crush injury; however, the recovery does not completely prevent the appearance of necrosis/regeneration features.
Collapse
Affiliation(s)
- J P Louboutin
- Unité CNRS 1340. Hôpital GR Laënnec-BP 1005 Nantes, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Myoblast transfer therapy and gene therapy have both been proposed as potential treatments for inherited myopathies, such as Duchenne muscular dystrophy (DMD). The success of myoblast implantation in mouse models, where problems such as immune rejection are easily overcome, have led to similar experiments being attempted on Duchenne patients with limited, if any, success. Gene therapy, either by viral vectors or direct injection of the plasmid, has also had some success in animal models. Although both techniques, either separately or in combination, show some promise for the treatment of DMD, there are still many issues to be investigated in animal models, including the following: What is the best source of muscle precursor cells (mpc), and how may sufficient cells be obtained? What is the best vehicle for gene therapy? How far from the injection site can an implanted cell or gene have an effect? How can immune rejection of the injected cells or introduced protein be overcome? Does the introduced dystrophin lead to improved muscle function? Can cardiac muscle can be successfully treated by gene therapy? Can skeletal muscle which has undergone a great deal of damage be improved by either cell or gene therapy?
Collapse
Affiliation(s)
- C N Pagel
- Department of Histopathology, Charing Cross and Westminster Medical School, London, England
| | | |
Collapse
|
7
|
Abstract
We have studied the effect of adding extra satellite cells or soluble factors from crushed muscle on regeneration of minced fragments from rat tibialis muscle. The muscle mince was wrapped in an artificial epimysium to prevent adhesions and cell immigration from adjacent muscles. Regeneration was quantitatively assessed by electrophoretic determination of the muscle-specific form of creatine kinase. Control minces exhibited three periods of change in creatine kinase activity during a 7-week regeneration period. Activity fell rapidly during the first week, then rose gradually from 1-3 weeks and increased more rapidly from 3-7 weeks. To augment the original complement of myogenic cells, satellite cells were isolated from the contralateral muscle, purified by density gradient centrifugation, and expanded in culture for 3 days before adding to the muscle mince. The added cells resulted in a 3-fold enhancement of creatine kinase activity throughout the regeneration period. Soluble muscle extract incorporated into a collagen matrix also stimulated regeneration when added to muscle mince. The extract accelerated the rate of creatine kinase increase during the 1-3 week period beyond that observed in the control or cell augmented mince, suggesting that factors in the extract may facilitate revascularization or reinnervation. The specific activity of creatine kinase was increased in regenerates augmented with both cells and extract, indicating that the effects enhance primarily myogenic processes.
Collapse
Affiliation(s)
- R Bischoff
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
8
|
Abstract
Experiments in mice have supported the idea of treating Duchenne muscular dystrophy (DMD) by implanting normal muscle precursor cells into dystrophin-deficient muscles. However, similar experiments on DMD patients have had little success. Gene therapy for DMD, by introducing dystrophin constructs via retroviral or adenoviral vectors, has been shown to be possible in the mouse, but the efficiency and safety aspects of this technique will have to be carefully examined before similar experiments can be attempted in man. Direct injection of dystrophin cDNA constructs into mdx muscles has given rise to very low levels of dystrophin and this may be a possibility for the treatment of heart muscle.
Collapse
Affiliation(s)
- J E Morgan
- Department of Histopathology, Charing Cross and Westminster Medical School, London, UK
| |
Collapse
|
9
|
Alameddine HS, Louboutin JP, Dehaupas M, Sébille A, Fardeau M. Functional recovery induced by satellite cell grafts in irreversibly injured muscles. Cell Transplant 1994; 3:3-14. [PMID: 8162290 DOI: 10.1177/096368979400300103] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Grafting autologous cultured satellite cells in irreversibly injured rat extensor digitorum longus EDL muscle leads to myofiber regeneration at the grafting site. In this study, we investigated whether cell grafts induced functional improvement and correlated mechanophysiological findings with histological observations. In cell grafted muscles, the number of myofibers did not differ significantly between 2 wk and 3 mo, whereas no regenerating myofibers were observed in ungrafted controls. During this period, the total number of myofibers in the cell grafted muscles represented 48.2-51.9% of that in normal muscles. The mean diameter of regenerated myofibers increased with time, reaching a maximum (32 microns) at the second mo and remained smaller than that of normal myofibers (47 microns). Muscle function was measured by mechanophysiological recordings of muscle response to supramaximal electrical stimulation of the nerve in situ. Cell grafted muscles exhibited a progressive improvement of all contractile parameters. After 3 mo, a 4-fold increase in absolute values of twitch and tetanic tension outputs was measured in cell grafted muscles when compared to ungrafted controls. However, these parameters remained much lower than in normal muscles (23.4% and 22.3% of control, respectively). This study showed that myogenic cell grafts replace degenerated myofibers and form functional myofibers. Functional improvement observed, between 2 wk and 3 mo after cell grafting, correlated with the development, differentiation, and maturation of the regenerated myofibers rather than with an increase in the number of regenerated myofibers.
Collapse
|
10
|
Abstract
Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form of control is to determine which of the many growth factors that can alter satellite cell behavior in vitro are at work in vivo. Little work has been done to determine what controls are at work after a regeneration response has been initiated. It seems likely that, after injury, growth factors are liberated through proteolytic activity and initiate an activation process whereby cells enter into a proliferative phase. After myofibers are formed, it also seems likely that satellite cell behavior is regulated through diffusible factors arising from the fibers rather than continuous control by circulating factors.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Schultz
- Department of Anatomy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
11
|
Abstract
Notexin, a myotoxic phospholipase, was used to induce focal necrosis in the sartorius muscles of normal mixed-breed adult dogs and in 12-week-old beagles. Notexin injury caused pathologic changes similar to those of Duchenne muscular dystrophy (DMD) and its canine homologue, golden retriever muscular dystrophy (GRMD). All three conditions are characterized by increased serum creatine kinase (CK) levels, sarcolemmal defects, delta lesions, hyaline degeneration of myofibers, calcium-positive myofibers, and minimal effects on neurovascular structures. Four and 24 h after exposure to notexin, serum CK levels were elevated, and many myofibers were necrotic. In addition, by 24 h the necrotic areas were heavily invaded by mononuclear cells, and calcium-positive myofibers were prominent. Capillaries appeared intact even in areas of marked myonecrosis. Massive cellular infiltrate and myotube formation was evident at 3 days post injury. By 7 days, most affected fascicles were occupied by small immature myofibers. Regeneration was largely complete at 21 days. Our results suggest that notexin-induced muscle injury in dogs will be useful in the evaluation of potential therapies for DMD such as myoblast transplantation.
Collapse
Affiliation(s)
- N J Sharp
- Department of Companion Animal and Special Species Medicine, College of Veterinary Medicine, North Carolina State University, Raleigh 27606
| | | | | | | | | |
Collapse
|
12
|
Morgan JE, Pagel CN, Sherratt T, Partridge TA. Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. J Neurol Sci 1993; 115:191-200. [PMID: 7683332 DOI: 10.1016/0022-510x(93)90224-m] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Experiments were conducted to study the fate(s) of normal muscle precursor cells (mpc) which had been injected into the muscles of mdx mice. Right legs of mdx nu/nu mice were X-irradiated (18 Gray), to inhibit the proliferation of host mpc. Normal mpc were injected into the tibialis anterior (TA) muscles of these legs and the non-irradiated, contralateral legs. In pre-irradiated legs injected with normal mpc, the number of dystrophin-positive fibres was similar at 35, 49 and at 250 days after injection, but the number of dystrophin-negative fibres was much less at the latter time point, indicating prolonged survival of dystrophin-positive muscle fibres. Non-injected muscles neighbouring the injected TA muscle rarely contained muscle of donor origin 49 days after injection, but frequently did so 250 days after injection. This indicates that some of the injected mpc must have retained the ability to proliferate, to migrate into a neighbouring muscle and to differentiate into new muscle for a considerable period after the original cell implant. In non-irradiated legs, the implanted normal mpc formed markedly fewer dystrophin-positive fibres than in the contralateral, irradiated muscle, and undertook little or no migration to adjacent muscles.
Collapse
Affiliation(s)
- J E Morgan
- Department of Histopathology, Charing Cross and Westminster Medical School, London, UK
| | | | | | | |
Collapse
|
13
|
Morgan JE, Watt DJ. Myoblast transplantation in inherited myopathies. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1993; 3:303-31. [PMID: 8111544 DOI: 10.1007/978-94-011-1528-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J E Morgan
- Department of Histopathology, Charing Cross and Westminster Medical School, London, UK
| | | |
Collapse
|
14
|
Moens P, Partridge TA, Morgan JE, Beckers-Bleukx G, Maréchal G. Regeneration after free muscle grafting in normal and dystrophic (mdx) mice. J Neurol Sci 1992; 111:209-13. [PMID: 1431988 DOI: 10.1016/0022-510x(92)90071-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Soleus muscles from C57BL/10 and mdx mice were isotransplanted to induce a cycle of degeneration/regeneration. Sixty days post-surgery, transplanted and contralateral soleus muscles were removed for mechanical and biochemical analyses. The regeneration which occurs after transplantation, induces in both mdx and C57BL/10 soleus muscles a decrease in maximal isometric force, together with an increase of the velocity of contraction. This increase in velocity is accompanied by the expression of typically fast-type myosin heavy chains. Thus degeneration/regeneration of both mdx and normal mice are very similar, causing a shift towards physiologically 'faster' muscle. Previous physiological and biochemical studies of mdx muscles have shown that mdx muscle is shifted towards 'slower' muscle compared to normal mice. One explanation of these findings was that the degeneration/regeneration cycles inherent in dystrophin-deficient mdx muscle causes a shift towards 'slow'. Our results argue against this hypothesis: degeneration/regeneration in both normal and mdx mice causes a shift towards 'fast'.
Collapse
Affiliation(s)
- P Moens
- Département de Physiologie, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
15
|
Abstract
Duchenne's muscular dystrophy (DMD), which affects 1/3500 live male births, involves a progressive degeneration of skeletal and cardiac muscle, leading to early death. The protein dystrophin is lacking in DMD and present, but defective, in the allelic, less severe, Becker muscular dystrophy and is also missing in the mdx mouse. Experiments on the mdx mouse have suggested two possible therapies for these myopathies. Implantation of normal muscle precursor cells (mpc) into mdx skeletal muscle leads to the conversion of dystrophin-negative fibres to -positive, with consequent improvement in muscle histology. Direct injection of dystrophin cDNA into skeletal or cardiac muscle also gives rise to dystrophin-positive fibres. Although both appear promising, there are a number of questions to be answered and refinements to be made before either technique could be considered possible as treatments for myopathies in man.
Collapse
Affiliation(s)
- J E Morgan
- Department of Histopathology, Charing Cross and Westminster Medical School, London, UK
| | | |
Collapse
|
16
|
Mechalchuk CL, Bressler BH. Contractility of mdx skeletal muscle after denervation and devascularization. Muscle Nerve 1992; 15:310-7. [PMID: 1557078 DOI: 10.1002/mus.880150309] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To evaluate the regenerative capacity of mdx skeletal muscle, changes in contractile properties of the fast-twitch extensor digitorum longus (EDL) of normal and mdx mice were studied at 7 and 16 weeks of age, following denervation and devascularization (DD) at 4 weeks of age. At 7 weeks, DD EDL of both strains showed significantly decreased isometric twitch and tetanus tensions compared with their non-DD controls. By 16 weeks, normal operated muscle exhibited a recovery of 57% and 58% of absolute tetanus and twitch tensions while the mdx EDL recovered remarkably to 96% and 99% of 7-week values. At 7 weeks, the DD EDL of both strains exhibited significantly slower time-to-peak (TTP) and one-half relaxation time (1/2RT). By 16 weeks, TTP and 1/2RT of the mdx DD EDL no longer differed from non-DD controls, but the normal EDL showed slowed TTP. No differences were found in the maximum velocity of shortening (Vo) or in posttetanic potentiation (PTP). Following DD, there was an increase in resistance to fatigue in both strains at 7 weeks. This resistance persisted at 16 weeks in the normal mouse, but the operated mdx EDL returned to normal. It would appear that following a denervation/devascularization insult, the mdx EDL is able to recover contractile characteristics to a remarkably larger extent than normal EDL.
Collapse
Affiliation(s)
- C L Mechalchuk
- Department of Anatomy, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
17
|
Anderson JE. Dystrophic changes in mdx muscle regenerating from denervation and devascularization. Muscle Nerve 1991; 14:268-79. [PMID: 2041548 DOI: 10.1002/mus.880140311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The regenerative capacity of young mdx muscle after a denervating and devascularizing injury (DD) was examined in extensor digitorum longus (EDL) and compared with that of age-matched control mouse EDL. DD of the right EDL was produced at the age approximating the onset of dystrophy in the mdx model, and mice recovered for 2 weeks. Contralateral unoperated EDLs from mdx and control mice served as internal controls for histopathology, myofiber cross-sectional area (CSA), and ultrastructure of fiber regeneration in DD-EDL. Mdx DD-EDL were composed of small, uniformly mature myofibers with mostly peripheral nuclei. This contrasted with control DD-EDL in which fibers were centrally nucleated. In addition, the unoperated mdx EDL exhibited the central nucleation of spontaneous recovery from dystrophy. The CSA distribution of mdx DD-EDL myofibers was significantly shifted toward smaller CSA compared with unoperated mdx EDL, although mean CSA did not differ between the two mdx muscle groups. The CSA distribution of control DD-EDL was significantly different and shifted toward smaller CSA from both unoperated control EDL and from mdx DD-EDL distributions. Ultrastructural features of dystrophy were present in both mdx DD-EDL and in the unoperated mdx EDL, although they appeared more prevalent in the latter. These results suggest that short-term plasticity of mdx muscle recovery from imposed injury may be greater than that of normal muscle in establishing a regenerating fiber population.
Collapse
Affiliation(s)
- J E Anderson
- Department of Anatomy, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
Alameddine HS, Dehaupas M, Fardeau M. Regeneration of skeletal muscle fibers from autologous satellite cells multiplied in vitro. An experimental model for testing cultured cell myogenicity. Muscle Nerve 1989; 12:544-55. [PMID: 2674704 DOI: 10.1002/mus.880120705] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An experimental model used to test in vivo myogenicity of autologous satellite cells multiplied in vitro is described. Free muscle autotransplantation served as the basis and was combined with x-irradiation. Administration of 1500, 2500, and 3500 rad doses 24 hours before or after ischemia showed that inhibition of spontaneous regeneration is dose dependent and more efficient when irradiation was applied before injury. A single dose of 2500 rad before injury resulted in the formation of a cystic structure ideal for cell implantation. FITC-latex beads and/or carbocyanine dyes were internalized by mononucleated satellite cells in vitro. Labeling did not affect survival or development of these cells. No sign of marker release or spreading from labeled to unlabeled cells was detectable unless by the fusion process. These labels were retained for several weeks. Grafting of labeled dense cellular suspensions into x-irradiated ischemic muscles indicated that satellite cells retain their myogenic characteristic and are able to reform fully differentiated muscle fibers.
Collapse
Affiliation(s)
- H S Alameddine
- Institut National de la Santé et de la Recherche Médicale, Unité 153, Paris, France
| | | | | |
Collapse
|
19
|
Morgan JE, Coulton GR, Partridge TA. Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil 1987; 8:386-96. [PMID: 3480896 DOI: 10.1007/bf01578428] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A problem with the use of muscle grafting as a therapeutic procedure is to produce a graft functionally adequate to replace a muscle of complex architecture, such as a sphincter muscle. We thought it might be possible to use dead cadaver muscles, repopulated by the patient's own muscle precursor cells (mpc), to reconstruct muscles whose anatomy would be imposed by the framework of dead muscle and whose genetic constitution would be determined by the mpc. Here we show, in the mouse, that an extensor digitorum longus (EDL) muscle, killed by repeated freezing and thawing, repopulated with mpc and grafted into a nu/nu or tolerant AKR host mouse, is capable of supporting muscle formation. By using the allotypic isoenzyme forms of glucose-6-phosphate isomerase as markers, we have shown that the newly regenerated muscle in such grafts is derived mainly from the implanted mpc, but also to some extent from the host mouse's own mpc. By 50-70 days after grafting, new muscle fibres were found to constitute up to 70% of the graft. Many fibres had assumed diameters in the normal range for mouse muscle, often having peripherally placed nuclei. These findings raise the possibility of the therapeutic use of such grafts. To our surprise, dead EDL muscle grafts into which no mpc had been implanted were also the site of good muscle regeneration. New-formed muscle in these grafts was shown to be derived entirely from mpc which must have migrated into the graft from the host. Investigation of the mechanisms underlying this phenomenon should further our knowledge of factors which regulate the proliferation and movement of dormant mpc in adult animals.
Collapse
Affiliation(s)
- J E Morgan
- Department of Histopathology, Charing Cross & Westminster Medical School, London, U.K
| | | | | |
Collapse
|