1
|
Springer C, Binsch C, Weide D, Toska L, Cremer AL, Backes H, Scheel AK, Espelage L, Kotzka J, Sill S, Kurowski A, Kim D, Karpinski S, Schnurr TM, Hansen T, Hartwig S, Lehr S, Cames S, Brüning JC, Lienhard M, Herwig R, Börno S, Timmermann B, Al-Hasani H, Chadt A. Depletion of TBC1D4 Improves the Metabolic Exercise Response by Overcoming Genetically Induced Peripheral Insulin Resistance. Diabetes 2024; 73:1058-1071. [PMID: 38608276 DOI: 10.2337/db23-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The Rab-GTPase-activating protein (RabGAP) TBC1D4 (AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type 2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet, we show that moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by Tbc1d4 depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christian Springer
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Deborah Weide
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Laura Toska
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anna L Cremer
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | - Anna K Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sebastian Sill
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Anette Kurowski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Daebin Kim
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Karpinski
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
2
|
Bekkelund SI. Leisure physical exercise and creatine kinase activity. The Tromsø study. Scand J Med Sci Sports 2020; 30:2437-2444. [PMID: 32799358 DOI: 10.1111/sms.13809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Creatine kinase (CK) is an enzyme catalyzing energy reaction in muscle cells and has proven to modify cardiovascular risks. The influence of skeletal muscle activity on CK concentrations is a potential study confounder but is mainly reported in connection with sport activities. This study investigated the association between leisure physical exercise and CK and estimated the effect of physical exercise on the CK values. CK and leisure physical exercise defined as intensity, frequency, and duration subsets were measured in the population-based Tromsø study. Comparisons of CK at different exercise levels, multivariate analyses, and relative differences in CK between "never exercise" and "heavy exercise" (moderate or hard exercise ≥2 hours per week) subgroups were analyzed age- and sex-stratified in 12 796 men and women. CK increased significantly with higher levels of physical exercise intensity and frequency in both sexes analyzed by ANOVA. In a multivariate analysis, CK was independently associated with heavy exercise after adjusting for age, BMI, and blood pressure; OR 9.38 (95% CI 5.32-16.53), P < .0001 in men and OR 5.20 (95% CI 2.53-10.69), P < .0001 in women. The differences in CK between physically inactive and participants performing heavy exercise varied between 3.1% (women) and 6.4% (men) and was also larger in participants ≥50 years. In conclusion, CK was positively and independently associated with increasing leisure physical exercise in a general population. CK values associated with exercise were approximately twice as high in men than women, but exercise altered CK only modestly.
Collapse
Affiliation(s)
- Svein Ivar Bekkelund
- Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
3
|
Okita M, Yoshimura T, Nakano J, Watabe M, Nagai T, Kato K, Eguchi K. Effects of treadmill exercise on muscle fibers in mice with steroid myopathy. JOURNAL OF THE JAPANESE PHYSICAL THERAPY ASSOCIATION 2015; 4:25-7. [PMID: 25792922 DOI: 10.1298/jjpta.4.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2000] [Accepted: 11/01/2000] [Indexed: 11/23/2022]
Abstract
We studied the effect of treadmill exercise on muscle fibers in mice with experimental steroid myopathy. Frozen sections of the extensor digitorum longus (EDL) and soleus (SOL) muscles were stained with hematoxylin-eosin, and the muscle fiber diameters measured. In the EDL, muscle fiber diameters in the steroid groups decreased significantly compared with those in the control groups; moreover, muscle fiber diameters in the exercise groups increased significantly compared with those in the non-exercise groups, whereas the diameters in the SOL did not differ. We speculate that treadmill exercise may prevent corticosteroid-induced muscle fiber atrophy.
Collapse
Affiliation(s)
- M Okita
- Department of Physical Therapy, School of Allied Medical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - T Yoshimura
- Department of Occupational Therapy, School of Allied Medical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - J Nakano
- Department of Health Science, Graduate School of Medical Science, Hiroshima University, Hiroshima 734-8551, Japan
| | - M Watabe
- Department of Physical Therapy, School of Allied Medical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - T Nagai
- Department of Rehabilitation, Yamashita Neuro Surgical Clinic, Fukuoka 830-0037, Japan
| | - K Kato
- Department of Physical Therapy, School of Allied Medical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - K Eguchi
- The First Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki 852-8501, Japan
| |
Collapse
|
4
|
Suwa M, Nakano H, Radak Z, Kumagai S. A comparison of chronic AICAR treatment-induced metabolic adaptations in red and white muscles of rats. J Physiol Sci 2015; 65:121-30. [PMID: 25388945 PMCID: PMC10717678 DOI: 10.1007/s12576-014-0349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023]
Abstract
The signaling molecule 5'-AMP-activated protein kinase plays a pivotal role in metabolic adaptations. Treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofranoside (AICAR) promotes the expression of metabolic regulators and components involved in glucose uptake, mitochondrial biogenesis, and fatty acid oxidation in skeletal muscle cells. Our aim was to determine whether AICAR-induced changes in metabolic regulators and components were more prominent in white or red muscle. Rats were treated with AICAR (1 mg/g body weight/day) for 14 days, resulting in increased expression levels of nicotinamide phosphoribosyltransferase (NAMPT), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), glucose transporter 4 proteins, and enhanced mitochondrial biogenesis. These changes were more prominent in white rather than red gastrocnemius muscle or were only observed in the white gastrocnemius. Our results suggest that AICAR induces the expression of metabolic regulators and components, especially in type II (B) fibers.
Collapse
Affiliation(s)
- Masataka Suwa
- Faculty of Life Design, Tohoku Institute of Technology, 6 Futatsusawa, Taihaku-ku, Sendai, Miyagi, 982-8588, Japan,
| | | | | | | |
Collapse
|
5
|
Martinez-Bello VE, Sanchis-Gomar F, Nascimento AL, Pallardo FV, Ibañez-Sania S, Olaso-Gonzalez G, Calbet JA, Gomez-Cabrera MC, Viña J. Living at high altitude in combination with sea-level sprint training increases hematological parameters but does not improve performance in rats. Eur J Appl Physiol 2010; 111:1147-56. [PMID: 21120517 DOI: 10.1007/s00421-010-1740-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
The regimen of aerobic training at sea level with recovery at high altitude has been used by athletes to improve performance. However, little is known about the effects of hypoxia when combined with sprint interval training on performance. The aim of the present study was to determine the effect of a "living high-sprint training low" strategy on hemoglobin, hematocrit and erythropoietin levels in rats. We also wanted to test whether the addition of a hypoxic stress to the program of daily treadmill running at high speeds induces expressional adaptations in skeletal muscle and affects performance. The protein content of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), cytochrome C, pyruvate dehydrogenase kinase (PDK1), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD) and citrate synthase activity were determined in different muscle fiber types in our animals (red and white gastrocnemius muscle). We also determined the maximal aerobic velocity (MAV) before and after the training period. A total of 24 male Wistar rats (3 month old) were randomly divided into four experimental groups: the normoxic control group (n = 6), the normoxic trained group (n = 6), the hypoxic control group (12 h pO(2) 12%/12 h pO(2) 21%) (n = 6) and the hypoxic trained group (12 h pO(2) 12%/12 h pO(2) 21%). Living in normobaric hypoxia condition for 21 days significantly increased hemoglobin, hematocrit and erythropoietin levels in both the rest and the trained groups. The trained animals (normoxia and hypoxia) significantly increased their maximal aerobic velocity. No changes were found in the skeletal muscle in PGC-1α, cytochrome C, PDK1, HSP70, MnSOD protein content and in the citrate synthase activity in any experimental group. Regardless of whether it is combined with sprint interval training or not, after 21 days of living at high altitude we found a significant increase in the hematological values determined in our study. However, contrary to our starting hypothesis, the combination of normobaric hypoxia and sprint training did not improve MAV in our animals.
Collapse
Affiliation(s)
- Vladimir Essau Martinez-Bello
- Department of Physiology, Faculty of Medicine, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Blasco Ibañez, 15, 46010 Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bishop DJ, Thomas C, Moore-Morris T, Tonkonogi M, Sahlin K, Mercier J. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats. Am J Physiol Endocrinol Metab 2010; 299:E225-33. [PMID: 20484007 DOI: 10.1152/ajpendo.00738.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that reducing hydrogen ion accumulation during training would result in greater improvements in muscle oxidative capacity and time to exhaustion (TTE). Male Wistar rats were randomly assigned to one of three groups (CON, PLA, and BIC). CON served as a sedentary control, whereas PLA ingested water and BIC ingested sodium bicarbonate 30 min prior to every training session. Training consisted of seven to twelve 2-min intervals performed five times/wk for 5 wk. Following training, TTE was significantly greater in BIC (81.2 +/- 24.7 min) compared with PLA (53.5 +/- 30.4 min), and TTE for both groups was greater than CON (6.5 +/- 2.5 min). Fiber respiration was determined in the soleus (SOL) and extensor digitorum longus (EDL), with either pyruvate (Pyr) or palmitoyl carnitine (PC) as substrates. Compared with CON (14.3 +/- 2.6 nmol O(2).min(-1).mg dry wt(-1)), there was a significantly greater SOL-Pyr state 3 respiration in both PLA (19.6 +/- 3.0 nmol O(2).min(-1).mg dry wt(-1)) and BIC (24.4 +/- 2.8 nmol O(2).min(-1).mg dry wt(-1)), with a significantly greater value in BIC. However, state 3 respiration was significantly lower in the EDL from both trained groups compared with CON. These differences remained significant in the SOL, but not the EDL, when respiration was corrected for citrate synthase activity (an indicator of mitochondrial mass). These novel findings suggest that reducing muscle hydrogen ion accumulation during running training is associated with greater improvements in both mitochondrial mass and mitochondrial respiration in the soleus.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Animals
- Body Weight/physiology
- Citrate (si)-Synthase/metabolism
- Diet
- Drinking
- Hydrogen-Ion Concentration
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle Fibers, Skeletal/classification
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Oxygen Consumption/physiology
- Phosphofructokinase-1/metabolism
- Physical Conditioning, Animal/physiology
- Rats
- Rats, Wistar
- Sodium Bicarbonate/pharmacology
Collapse
Affiliation(s)
- David J Bishop
- Institute of Sport, Exercise, & Active Living, Victoria University, Melbourne, Victoria 8001, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Hohl R, Ferraresso RLP, De Oliveira RB, Lucco R, Brenzikofer R, De Macedo DV. Development and characterization of an overtraining animal model. Med Sci Sports Exerc 2009; 41:1155-63. [PMID: 19346970 DOI: 10.1249/mss.0b013e318191259c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Development of an endurance training-overtraining protocol for Wistar rats that includes increased workload and is characterized by analyses of performance and biomarkers. METHODS The running protocol lasted 11 wk: 8 wk of daily exercise sessions followed by 3 wk of increasing training frequency (two, three, and four times), with decreasing recovery time between sessions (4, 3, and 2 h) to cause an imbalance between overload and recovery. The performance tests were made before training (T1) and after the 4th (T2), 8th (T3), 9th (T4), 10th (T5), and 11th (T6) training weeks. All rats showed significantly increased performance at T4, at which time eight rats, termed the trained group (Tr), were sacrificed for blood and muscle assays. After T6, two groups were distinguishable by differences in the slope (alpha) of a line fitted to the individual performances at T4, T5, and T6: nonfunctional overreaching (NFOR; alpha < -15.05 kg x m) and functional overreaching (FOR; alpha >or= -15.05 kg x m). RESULTS Data were presented as mean +/- SD. FOR maintained the performance at T6 similar to Tr at T4 (530.6 +/- 85.3 and 487.5 +/- 61.4 kg x m, respectively). The FOR and the Tr groups showed higher muscle citrate synthase activity (approximately 40%) and plasma glutamine/glutamate ratio (Gm/Ga; 4.5 +/- 1.7 and 4.5 +/- 0.9, respectively) than the sedentary control (CO) group (2.8 +/- 0.5). The NFOR group lost the performance acquired at T4 (407.3 +/- 88.2 kg x m) after T6 (280.5 +/- 93.1 kg x m) and exhibited sustained leukocytosis. NFOR's Gm/Ga (3.1 +/- 0.2) and muscle citrate synthase activity were similar to CO values. CONCLUSIONS The decline in performance in the NFOR group could be related to the decrease in muscle oxidative capacity. We observed a trend in the Gm/Ga and leukocytosis that is similar to what has been sometimes observed in overtrained humans. This controlled training-overtraining animal model may be useful for seeking causative mechanisms of performance decline.
Collapse
Affiliation(s)
- Rodrigo Hohl
- Laboratory of Exercise Biochemistry (LABEX), Biochemistry Department, Biology Institute, State University of Campinas (UNICAMP), Campinas, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Adaptation of Equine Locomotor Muscle Fiber Types to Endurance and Intensive High Speed Training. J Equine Vet Sci 2008. [DOI: 10.1016/j.jevs.2008.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ogura Y, Naito H, Aoki J, Uchimaru J, Sugiura T, Katamoto S. Sprint-interval training-induced alterations of Myosin heavy chain isoforms and enzyme activities in rat diaphragm: effect of normobaric hypoxia. ACTA ACUST UNITED AC 2005; 55:309-16. [PMID: 16324224 DOI: 10.2170/jjphysiol.r2132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 11/30/2005] [Indexed: 11/05/2022]
Abstract
The purpose of this study was twofold: (i) to investigate if sprint-interval training (SIT) alters myosin heavy chain (MyHC) isoform composition and bioenergetic properties within the rat diaphragm, and (ii) to determine if mild normobaric hypoxia would enhance the effects of SIT-induced diaphragmatic adaptation. Male Wistar rats (8 weeks old) were randomly assigned to one of four groups (n = 7/group): (i) normoxic control (NC); (ii) normoxic training (NT); (iii) hypoxic control (HC); or (iv) hypoxic training (HT). The NT and HT groups were engaged in SIT (1 min sprint and 2-5 min rest, 6-10 sets/day, 5-6 days/week) on a treadmill for 9 weeks. Animals in the HC and HT groups were exposed to normobaric hypoxia (14.5% O(2)) during an SIT program from the 4th week of the training period. After completion of the training program, MyHC composition, citrate synthase (CS) activity, and lactate dehydrogenase (LDH) activity in the diaphragm and plantaris muscle were analyzed. An analysis of diaphragmatic MyHC composition demonstrated increased type IIa and decreased type IId/x for both training groups (P < 0.05), with the HT group producing greater changes than the NT group (P < 0.05). The plantaris muscle, however, showed increased Type IIa and IId/x and decreased Type IIb for both the NT and HT groups (P < 0.05). CS activity increased only for the training groups (P < 0.05), and this change was greater for the HT group in the diaphragm and for the NT group in the plantaris muscle (P < 0.05). Further, diaphragmatic LDH activity in HT was significantly lower (P < 0.05) than in HC and NT. These findings demonstrated that SIT could induce alterations in MyHC composition from fast to slow within type II isoforms and also improve the oxidative capacity in the diaphragm and plantaris muscles. It is of importance that our data revealed that SIT-induced diaphragmatic adaptations were enhanced when SIT was performed in normobaric hypoxia.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Exercise Physiology, School of Health and Sports Science, Juntendo University, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Lo ASY, Liew CT, Ngai SM, Tsui SKW, Fung KP, Lee CY, Waye MMY. Developmental regulation and cellular distribution of human cytosolic malate dehydrogenase (MDH1). J Cell Biochem 2005; 94:763-73. [PMID: 15565635 DOI: 10.1002/jcb.20343] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human cyotsolic malate dehydrogenase (MDH1) is important in transporting NADH equivalents across the mitochondrial membrane, controlling tricarboxylic acid (TCA) cycle pool size and providing contractile function. Cellular localization studies indicate that MDH1 mRNA expression has a strong tissue-specific distribution, being expressed primarily in cardiac and skeletal muscle and in the brain, at intermediate levels in the spleen, kidney, intestine, liver, and testes and at low levels in lung and bone marrow. The observed MDH1 localizations reflect the role of NADH in the support of a variety of functions in different organs. These functions are primarily related to aerobic energy production for muscle contraction, neuronal signal transmission, absorption/resorption functions, collagen-supporting functions, phagocytosis of dead cells, and processes related to gas exchange and cell division. During neonatal development, MDH1 is expressed in human embryonic heart as early as the 3rd month and then is over-expressed from the 5th month until the birth. The expression of MDH1 is maintained in the adult heart but is not present in levels as high as in the fetus. Finally, over-expression of MDH1 is found in left ventricular cardiac muscle of dilated cardiomyopathy (DCM) patients when contrasted to the diseased non-DCM and normal heart muscle by in situ hybridization and Western blot. These observations are compatible with the activation of glucose oxidation in relatively hypoxic environments of fetal and hypertrophied myocardium.
Collapse
Affiliation(s)
- Agnes Shuk-Yee Lo
- Department of Biochemistry, Croucher Laboratory for Human Genomics and The Hong Kong Bioinformatics Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Muñiz J, Del Rio J, Huerta M, Marin JL. Effects of sprint and endurance training on passive stress-strain relation of fast- and slow-twitch skeletal muscle in Wistar rat. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 173:207-12. [PMID: 11683678 DOI: 10.1046/j.1365-201x.2001.00875.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effects of endurance and sprint training on the passive mechanical properties of fast-twitch (FT) and slow-twitch (ST) skeletal muscles. Eight-week-old male Wistar rats (n=18) were divided into three groups: control (C), sprint-trained (S) and endurance-trained (E). The trained animals exercised for 10 weeks on a treadmill. Under anaesthesia, Plantaris and Soleus muscles were deformed cyclically in vivo at 0.33 mm x s(-1) with length increments of 1 mm in successive cycles until rupture. The rupture of muscle occurs at belly. Stress-strain relation were constructed using the maximum stress and maximum strain in each cycle. The data were fitted to an S-shaped curve. The curve-fitting parameters for trained and untrained muscles showed significant statistical differences. Stress and strain at rupture and maximum deformation energy were statistically greater for trained ST muscles (both groups) than for the controls. The changes induced by the present training protocols were not significant in Plantaris. The above results suggest the plasticity of passive structure caused by activity-demands.
Collapse
Affiliation(s)
- J Muñiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | | | | | | |
Collapse
|
12
|
Pääsuke M, Ereline J, Gapeyeva H. Neuromuscular fatigue during repeated exhaustive submaximal static contractions of knee extensor muscles in endurance-trained, power-trained and untrained men. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 166:319-26. [PMID: 10468669 DOI: 10.1046/j.1365-201x.1999.00573.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural and muscular changes during fatigue produced in repeated submaximal static contractions of knee extensors were measured. Three groups of differently adapted male subjects (power-trained, endurance-trained and untrained, 15 in each) performed the exercise that consisted of 10 trials of submaximal static contractions at the level of 40% of maximal voluntary contraction (MVC) force till exhaustion with the inter-trial rest intervals of 1 min. MVC force, reaction time and patellar reflex time components before and after the fatiguing exercise and following 5, 10 and 15 min of recovery were recorded. Endurance-trained athletes had a significantly longer holding times for all the 10 trials compared with power-trained athletes and untrained subjects. However, no significant differences in static endurance between power-trained athletes and untrained subjects were noted. The fatigue test significantly prolonged the time between onset of electrical and mechanical activity (electromechanical delay) in voluntary and reflex contractions. The electromechanical delay in voluntary contraction condition for power-trained and untrained subjects and in reflex condition for endurance-trained subjects had not recovered 15 min after cessation of exercise. No significant changes in the central component of visual reaction time (premotor time of MVC) and latency of patellar reflex were noted after fatiguing static exercise. It is concluded, that in this type of exercise the fatigue development may be largely owing to muscle contractile failure.
Collapse
Affiliation(s)
- M Pääsuke
- University of Tartu, Institute of Exercise Biology, Tartu, Estonia
| | | | | |
Collapse
|
13
|
Boyington AR, Dougherty MC, Kasper CE. Pelvic muscle profile types in response to pelvic muscle exercise. Int Urogynecol J 1995. [DOI: 10.1007/bf01962574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Lynch GS, Williams DA. The effect of exercise on the contractile properties of single skinned fast- and slow-twitch skeletal muscle fibres from the adult rat. ACTA PHYSIOLOGICA SCANDINAVICA 1994; 150:141-50. [PMID: 8191893 DOI: 10.1111/j.1748-1716.1994.tb09671.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of long-term endurance exercise on the contractile properties of single skinned muscle fibres from adult rats, were investigated. Adult (4-month-old) male rats were subjected to a 16-week, high-intensity endurance swimming programme, where animals carried a load (corresponding to 2% of body wt), during all 2-h training sessions. At the conclusion of the training period, muscle fibres isolated from the extensor digitorum longus (EDL), and soleus (SOL), could be classified into distinct classes or fibre types on the basis of their Ca(2+)- and Sr(2+)-activated contractile characteristics. The fast-twitch EDL comprised two fibre populations, while the slow-twitch SOL was found to be composed of three distinct fibre types. Endurance swimming modified the contractile characteristics of fibres from both the EDL and SOL, but exerted greater influence on those of the SOL. This was illustrated by significant increases in the sensitivity to Ca2+ and Sr2+, and a lower threshold for contraction by these activating ions, in the exercised group. Not one of the total of 272 fibres sampled, exhibited mixed fast- and slow-twitch contractile characteristics, often associated with exercise-induced fibre type transformations. Thus, high-intensity endurance swimming induced changes in some single muscle fibre contractile properties of adult rats, but did not cause major changes in fibre type distribution.
Collapse
Affiliation(s)
- G S Lynch
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
15
|
Yamashita K, Yoshioka T. Activities of creatine kinase isoenzymes in single skeletal muscle fibres of trained and untrained rats. Pflugers Arch 1992; 421:270-3. [PMID: 1528720 DOI: 10.1007/bf00374837] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biochemical changes in the creatine kinase isoenzyme compositions in single muscle fibres of different types in rats were induced by endurance running training. Single muscle fibres were dissected from the soleus and extensor digitorum longus muscles of Wistar-strain male rats trained on a motor-driven treadmill for 16 weeks. Each fibre was typed histochemically (SO, slow-twitch oxidative; FOG, fast-twitch oxidative glycolytic; FG, fast-twitch glycolytic), and the activities of total creatine kinase and its four isoenzymes (CK-MM, -MB, -BB, and mitochondrial creatine kinase) were measured. The endurance training did not affect the total creatine kinase activity, but resulted in significantly increased activities of CK-MB and CK-BB in SO and FOG fibres, and the mitochondrial enzyme activity in FOG and FG fibres. Endurance training induced biochemical changes in the isoenzyme compositions, specifically in FOG fibres. These results suggest that changes in creatine kinase isoenzymes with endurance training reflect changes in the energy metabolism in the different muscle fibres, supporting the hypothesis that the different isoenzymes play different roles in energy transduction.
Collapse
Affiliation(s)
- K Yamashita
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | | |
Collapse
|
16
|
Rodnick KJ, Henriksen EJ, James DE, Holloszy JO. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C9-14. [PMID: 1733237 DOI: 10.1152/ajpcell.1992.262.1.c9] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.
Collapse
Affiliation(s)
- K J Rodnick
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|