1
|
The Transient Mechanics of Muscle Require Only a Single Force-Producing Cross-Bridge State and a 100 Å Working Stroke. BIOLOGY 2020; 9:biology9120475. [PMID: 33339405 PMCID: PMC7765809 DOI: 10.3390/biology9120475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023]
Abstract
Simple Summary With modern increased computational power, newly developed computer programs can be used to simulate how muscle contracts. Here, we created, in silico, a “virtual” muscle that includes modelled myosin cross-bridges, and, using statistical mechanical methods, we calculated the macroscopic response of the muscle during contraction and as a result of applied transients. Good fits to many experimental observations were obtained with this simple model with one attached force-producing state and using a single cross-bridge step size of 100 Å. Abstract An informative probe of myosin cross-bridge behaviour in active muscle is a mechanical transient experiment where, for example, a fully active muscle initially held at constant length is suddenly shortened to a new fixed length, providing a force transient, or has its load suddenly reduced, providing a length transient. We describe the simplest cross-bridge mechanical cycle we could find to model these transients. We show using the statistical mechanics of 50,000 cross-bridges that a simple cycle with two actin-attached cross-bridge states, one producing no force and the other producing force, will explain much of what has been observed experimentally, and we discuss the implications of this modelling for our understanding of how muscle works. We show that this same simple model will explain, reasonably well, the isotonic mechanical and X-ray transients under different loads observed by Reconditi et al. (2004, Nature 428, 578) and that there is no need to invoke different cross-bridge step sizes under these different conditions; a step size of 100 Å works well for all loads. We do not claim that this model provides a total mechanical explanation of how muscle works. However, we do suggest that only if there are other observations that cannot be explained by this simple model should something more complicated be considered.
Collapse
|
2
|
Special Issue: The Actin-Myosin Interaction in Muscle: Background and Overview. Int J Mol Sci 2019; 20:ijms20225715. [PMID: 31739584 PMCID: PMC6887992 DOI: 10.3390/ijms20225715] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Muscular contraction is a fundamental phenomenon in all animals; without it life as we know it would be impossible. The basic mechanism in muscle, including heart muscle, involves the interaction of the protein filaments myosin and actin. Motility in all cells is also partly based on similar interactions of actin filaments with non-muscle myosins. Early studies of muscle contraction have informed later studies of these cellular actin-myosin systems. In muscles, projections on the myosin filaments, the so-called myosin heads or cross-bridges, interact with the nearby actin filaments and, in a mechanism powered by ATP-hydrolysis, they move the actin filaments past them in a kind of cyclic rowing action to produce the macroscopic muscular movements of which we are all aware. In this special issue the papers and reviews address different aspects of the actin-myosin interaction in muscle as studied by a plethora of complementary techniques. The present overview provides a brief and elementary introduction to muscle structure and function and the techniques used to study it. It goes on to give more detailed descriptions of what is known about muscle components and the cross-bridge cycle using structural biology techniques, particularly protein crystallography, electron microscopy and X-ray diffraction. It then has a quick look at muscle mechanics and it summarises what can be learnt about how muscle works based on the other studies covered in the different papers in the special issue. A picture emerges of the main molecular steps involved in the force-producing process; steps that are also likely to be seen in non-muscle myosin interactions with cellular actin filaments. Finally, the remarkable advances made in studying the effects of mutations in the contractile assembly in causing specific muscle diseases, particularly those in heart muscle, are outlined and discussed.
Collapse
|
3
|
Eakins F, Knupp C, Squire JM. Monitoring the myosin crossbridge cycle in contracting muscle: steps towards 'Muscle-the Movie'. J Muscle Res Cell Motil 2019; 40:77-91. [PMID: 31327096 PMCID: PMC6726672 DOI: 10.1007/s10974-019-09543-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022]
Abstract
Some vertebrate muscles (e.g. those in bony fish) have a simple lattice A-band which is so well ordered that low-angle X-ray diffraction patterns are sampled in a simple way amenable to crystallographic techniques. Time-resolved X-ray diffraction through the contractile cycle should provide a movie of the molecular movements involved in muscle contraction. Generation of 'Muscle-The Movie' was suggested in the 1990s and since then efforts have been made to work out how to achieve it. Here we discuss how a movie can be generated, we discuss the problems and opportunities, and present some new observations. Low angle X-ray diffraction patterns from bony fish muscles show myosin layer lines that are well sampled on row-lines expected from the simple hexagonal A-band lattice. The 1st, 2nd and 3rd myosin layer lines at d-spacings of around 42.9 nm, 21.5 nm and 14.3 nm respectively, get weaker in patterns from active muscle, but there is a well-sampled intensity remnant along the layer lines. We show here that the pattern from the tetanus plateau is not a residual resting pattern from fibres that have not been fully activated, but is a different well-sampled pattern showing the presence of a second, myosin-centred, arrangement of crossbridges within the active crossbridge population. We also show that the meridional M3 peak from active muscle has two components of different radial widths consistent with (i) active myosin-centred (probably weak-binding) heads giving a narrow peak and (ii) heads on actin in strong states giving a broad peak.
Collapse
Affiliation(s)
- Felicity Eakins
- Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - John M Squire
- Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Taylor KA, Rahmani H, Edwards RJ, Reedy MK. Insights into Actin-Myosin Interactions within Muscle from 3D Electron Microscopy. Int J Mol Sci 2019; 20:ijms20071703. [PMID: 30959804 PMCID: PMC6479483 DOI: 10.3390/ijms20071703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023] Open
Abstract
Much has been learned about the interaction between myosin and actin through biochemistry, in vitro motility assays and cryo-electron microscopy (cryoEM) of F-actin, decorated with myosin heads. Comparatively less is known about actin-myosin interactions within the filament lattice of muscle, where myosin heads function as independent force generators and thus most measurements report an average signal from multiple biochemical and mechanical states. All of the 3D imaging by electron microscopy (EM) that has revealed the interplay of the regular array of actin subunits and myosin heads within the filament lattice has been accomplished using the flight muscle of the large water bug Lethocerus sp. The Lethocerus flight muscle possesses a particularly favorable filament arrangement that enables all the myosin cross-bridges contacting the actin filament to be visualized in a thin section. This review covers the history of this effort and the progress toward visualizing the complex set of conformational changes that myosin heads make when binding to actin in several static states, as well as the fast frozen actively contracting muscle. The efforts have revealed a consistent pattern of changes to the myosin head structures as determined by X-ray crystallography needed to explain the structure of the different actomyosin interactions observed in situ.
Collapse
Affiliation(s)
- Kenneth A Taylor
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA.
| | - Hamidreza Rahmani
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306-4380, USA.
| | - Robert J Edwards
- Duke University Medical Center, Department of Cell Biology, Durham, NC 27607, USA.
| | - Michael K Reedy
- Duke University Medical Center, Department of Cell Biology, Durham, NC 27607, USA.
| |
Collapse
|
5
|
Different Myosin Head Conformations in Bony Fish Muscles Put into Rigor at Different Sarcomere Lengths. Int J Mol Sci 2018; 19:ijms19072091. [PMID: 30022010 PMCID: PMC6073893 DOI: 10.3390/ijms19072091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
At a resting sarcomere length of approximately 2.2 µm bony fish muscles put into rigor in the presence of BDM (2,3-butanedione monoxime) to reduce rigor tension generation show the normal arrangement of myosin head interactions with actin filaments as monitored by low-angle X-ray diffraction. However, if the muscles are put into rigor using the same protocol but stretched to 2.5 µm sarcomere length, a markedly different structure is observed. The X-ray diffraction pattern is not just a weaker version of the pattern at full overlap, as might be expected, but it is quite different. It is compatible with the actin-attached myosin heads being in a different conformation on actin, with the average centre of cross-bridge mass at a higher radius than in normal rigor and the myosin lever arms conforming less to the actin filament geometry, probably pointing back to their origins on their parent myosin filaments. The possible nature of this new rigor cross-bridge conformation is discussed in terms of other well-known states such as the weak binding state and the 'roll and lock' mechanism; we speculate that we may have trapped most myosin heads in an early attached strong actin-binding state in the cross-bridge cycle on actin.
Collapse
|
6
|
Coffee Castro-Zena PG, Root DD. Asymmetric myosin binding to the thin filament as revealed by a fluorescent nanocircuit. Arch Biochem Biophys 2013; 535:14-21. [PMID: 23274408 PMCID: PMC3627744 DOI: 10.1016/j.abb.2012.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 11/15/2022]
Abstract
The interplay between myosin, actin, and striated muscle regulatory proteins involves complex cooperative interactions that propagate along the thin filament. A repeating unit of the tropomyosin dimer, troponin heterotrimer, and the actin protofilament heptamer is sometimes assumed to be able to bind myosin at any of its seven actins when activated even though the regulatory proteins are asymmetrically positioned along this repeating unit. Analysis of the impact of this asymmetry on actin and myosin interactions by sensitized emission luminescence resonance energy transfer spectroscopy and a unique fluorescent nanocircuit design reveals that the troponin affects the structure and function of myosin heads bound nearby in a different manner than myosin heads bound further away from the troponin. To test this hypothesis, a fluorescent nanocircuit reported the position of the myosin lever arm only when the myosin was bound adjacent to the troponin, or in controls, only when the myosin was bound distant from the troponin. Confirming the hypothesis, the myosin lever arm is predominantly in the pre powerstroke orientation when bound near troponin, but is predominantly in the post powerstroke orientation when bound distant from troponin. These data are consistent with the hypothesis that troponin is responsible for the formation of myosin binding target zones along the thin filament.
Collapse
|
7
|
Koubassova NA, Tsaturyan AK. Molecular mechanism of actin-myosin motor in muscle. BIOCHEMISTRY (MOSCOW) 2012; 76:1484-506. [PMID: 22339600 DOI: 10.1134/s0006297911130086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interaction of actin and myosin powers striated and smooth muscles and some other types of cell motility. Due to its highly ordered structure, skeletal muscle is a very convenient object for studying the general mechanism of the actin-myosin molecular motor. The history of investigation of the actin-myosin motor is briefly described. Modern concepts and data obtained with different techniques including protein crystallography, electron microscopy, biochemistry, and protein engineering are reviewed. Particular attention is given to X-ray diffraction studies of intact muscles and single muscle fibers with permeabilized membrane as they give insight into structural changes that underlie force generation and work production by the motor. Time-resolved low-angle X-ray diffraction on contracting muscle fibers using modern synchrotron radiation sources is used to follow movement of myosin heads with unique time and spatial resolution under near physiological conditions.
Collapse
Affiliation(s)
- N A Koubassova
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
8
|
Suzuki M, Ishiwata S. Quasiperiodic distribution of rigor cross-bridges along a reconstituted thin filament in a skeletal myofibril. Biophys J 2012; 101:2740-8. [PMID: 22261063 DOI: 10.1016/j.bpj.2011.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/05/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022] Open
Abstract
Electron microscopy has shown that cross-bridges (CBs) are formed at the target zone that is periodically distributed on the thin filament in striated muscle. Here, by manipulating a single bead-tailed actin filament with optical tweezers, we measured the unbinding events of rigor CBs one by one on the surface of the A-band in rabbit skeletal myofibrils. We found that the spacings between adjacent CBs were not always the same, and instead were 36, 72, or 108 nm. Tropomyosin and troponin did not affect the CB spacing except for a relative increase in the appearance of longer spacing in the presence of Ca(2+). In addition, in an in vitro assay where myosin molecules were randomly distributed, were obtained the same spacing, i.e., a multiple of 36 nm. These results indicate that the one-dimensional distribution of CBs matches with the 36-nm half pitch of a long helical structure of actin filaments. A stereospecific model composed of three actin protomers per target zone was shown to explain the experimental results. Additionally, the unbinding force (i.e., the binding affinity) of CBs for the reconstituted thin filaments was found to be larger and smaller relative to that for actin filaments with and without Ca(2+), respectively.
Collapse
Affiliation(s)
- Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore, Singapore
| | | |
Collapse
|
9
|
Wu S, Liu J, Reedy MC, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions. PLoS One 2010; 5. [PMID: 20844746 PMCID: PMC2936580 DOI: 10.1371/journal.pone.0012643] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.
Collapse
Affiliation(s)
- Shenping Wu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Mary C. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard T. Tregear
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England
| | - Hanspeter Winkler
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Clara Franzini-Armstrong
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hiroyuki Sasaki
- Division of Fine Morphology, Core Research Facilities, Jikei University School of Medicine, Tokyo, Japan
| | - Carmen Lucaveche
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Probing muscle myosin motor action: x-ray (m3 and m6) interference measurements report motor domain not lever arm movement. J Mol Biol 2009; 390:168-81. [PMID: 19394345 DOI: 10.1016/j.jmb.2009.04.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 04/10/2009] [Accepted: 04/16/2009] [Indexed: 11/22/2022]
Abstract
The key question in understanding how force and movement are produced in muscle concerns the nature of the cyclic interaction of myosin molecules with actin filaments. The lever arm of the globular head of each myosin molecule is thought in some way to swing axially on the actin-attached motor domain, thus propelling the actin filament past the myosin filament. Recent X-ray diffraction studies of vertebrate muscle, especially those involving the analysis of interference effects between myosin head arrays in the two halves of the thick filaments, have been claimed to prove that the lever arm moves at the same time as the sliding of actin and myosin filaments in response to muscle length or force steps. It was suggested that the sliding of myosin and actin filaments, the level of force produced and the lever arm angle are all directly coupled and that other models of lever arm movement will not fit the X-ray data. Here, we show that, in addition to interference across the A-band, which must be occurring, the observed meridional M3 and M6 X-ray intensity changes can all be explained very well by the changing diffraction effects during filament sliding caused by heads stereospecifically attached to actin moving axially relative to a population of detached or non-stereospecifically attached heads that remain fixed in position relative to the myosin filament backbone. Crucially, and contrary to previous interpretations, the X-ray interference results provide little direct information about the position of the myosin head lever arm; they are, in fact, reporting relative motor domain movements. The implications of the new interpretation are briefly assessed.
Collapse
|
11
|
Majima T. Load-dependent sliding direction change of a myosin head on an actin molecule and its energetic aspects: Energy borrowing model of a cross-bridge cycle. Biophysics (Nagoya-shi) 2009; 5:11-24. [PMID: 27857575 PMCID: PMC5036636 DOI: 10.2142/biophysics.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 12/20/2008] [Indexed: 12/01/2022] Open
Abstract
A model of muscle contraction is proposed, assuming loose coupling between power strokes and ATP hydrolysis of a myosin head. The energy borrowing mechanism is introduced in a cross-bridge cycle that borrows energy from the environment to cover the necessary energy for enthalpy production during sliding movement. Important premises for modeling are as follows: 1) the interaction area where a myosin head slides is supposed to be on an actin molecule; 2) the actomyosin complex is assumed to generate force F(θ), which slides the myosin head M* in the interaction area; 3) the direction of the force F(θ) varies in proportion to the load P; 4) the energy supplied by ATP hydrolysis is used to retain the myosin head in the high-energy state M*, and is not used for enthalpy production; 5) the myosin head enters a hydration state and dehydration state repeatedly during the cross-bridge cycle. The dehydrated myosin head recovers its hydrated state by hydration in the surrounding medium; 6) the energy source for work and heat production liberated by the AM* complex is of external origin. On the basis of these premises, the model adequately explains the experimental results observed at various levels in muscular samples: 1) twist in actin filaments observed in shortening muscle fibers; 2) the load-velocity relationship in single muscle fiber; 3) energy balance among enthalpy production, the borrowed energy and the energy supplied by ATP hydrolysis during muscle contraction. Force F(θ) acting on the myosin head is depicted.
Collapse
Affiliation(s)
- Toshikazu Majima
- Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
12
|
Squire JM, Knupp C, Roessle M, Al-Khayat HA, Irving TC, Eakins F, Mok NS, Harford JJ, Reedy MK. X-ray diffraction studies of striated muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 565:45-60; discussion 359-69. [PMID: 16106966 DOI: 10.1007/0-387-24990-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- John M Squire
- Biological Structure and Function Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reconditi M. RECENT IMPROVEMENTS IN SMALL ANGLE X-RAY DIFFRACTION FOR THE STUDY OF MUSCLE PHYSIOLOGY. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2006; 69:2709-2759. [PMID: 19946470 PMCID: PMC2783642 DOI: 10.1088/0034-4885/69/10/r01] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The molecular mechanism of muscle contraction is one of the most important unresolved problems in Biology and Biophysics. Notwithstanding the great advances of recent years, it is not yet known in detail how the molecular motor in muscle, the class II myosin, converts the free energy of ATP hydrolysis into work by interacting with its track, the actin filament, neither it is understood how the high efficiency in energy conversion depends on the cooperative action of myosin motors working in parallel along the actin filament. Researches in muscle contraction imply the combination of mechanical, biochemical and structural methods in studies that span from tissue to single molecule. Therefore, more than for any other research field, progresses in the comprehension of muscle contraction at molecular level are related to, and in turn contribute to, the advancement of methods in Biophysics.This review will focus on the progresses achieved by time resolved small angle X-ray scattering (SAXS) from muscle, an approach made possible by the highly ordered arrangement of both the contractile proteins myosin and actin in the ca 2 mum long structural unit the sarcomere that repeats along the whole length of the muscle cell. Among the time resolved structural techniques, SAXS has proved to be the most powerful method of investigation, as it allows the molecular motor to be studied in situ, in intact single muscle cells, where it is possible to combine the structural study with fast mechanical methods that synchronize the action of the molecular motors. The latest development of this technique allows Angstrom-scale measurements of the axial movement of the motors that pull the actin filament toward the centre of the sarcomere, by exploiting the X-ray interference between the two arrays of myosin motors in the two halves of the sarcomere.
Collapse
Affiliation(s)
- Massimo Reconditi
- Università di Firenze, Lab di Fisiologia - DBAG, c/o Dip. di Fisica, via Sansone 1, I-50019 Sesto Fiorentino, ITALY
| |
Collapse
|
14
|
Squire JM, Bekyarova T, Farman G, Gore D, Rajkumar G, Knupp C, Lucaveche C, Reedy MC, Reedy MK, Irving TC. The myosin filament superlattice in the flight muscles of flies: A-band lattice optimisation for stretch-activation? J Mol Biol 2006; 361:823-38. [PMID: 16887144 DOI: 10.1016/j.jmb.2006.06.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 06/29/2006] [Accepted: 06/29/2006] [Indexed: 11/28/2022]
Abstract
Low-angle X-ray diffraction patterns from relaxed fruitfly (Drosophila) flight muscle recorded on the BioCat beamline at the Argonne Advanced Photon Source (APS) show many features similar to such patterns from the "classic" insect flight muscle in Lethocerus, the giant water bug, but there is a characteristically different pattern of sampling of the myosin filament layer-lines, which indicates the presence of a superlattice of myosin filaments in the Drosophila A-band. We show from analysis of the structure factor for this lattice that the sampling pattern is exactly as expected if adjacent four-stranded myosin filaments, of repeat 116 nm, are axially shifted in the hexagonal A-band lattice by one-third of the 14.5 nm axial spacing between crowns of myosin heads. In addition, electron micrographs of Drosophila and other flies (e.g. the house fly (Musca) and the flesh fly (Sarcophaga)) combined with image processing confirm that the same A-band superlattice occurs in all of these flies; it may be a general property of the Diptera. The different A-band organisation in flies compared with Lethocerus, which operates at a much lower wing beat frequency (approximately 30 Hz) and requires a warm-up period, may be a way of optimising the myosin and actin filament geometry needed both for stretch activation at the higher wing beat frequencies (50 Hz to 1000 Hz) of flies and their need for a rapid escape response.
Collapse
Affiliation(s)
- John M Squire
- Biological Structure & Function Section, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nosaka M. Geometrical correspondence identified and a new interaction unit suggested in striated muscle. J Theor Biol 2006; 238:464-73. [PMID: 16112137 DOI: 10.1016/j.jtbi.2005.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 06/01/2005] [Accepted: 06/03/2005] [Indexed: 11/25/2022]
Abstract
It has long been believed that the periodic structure of the myosin helix is a consequence only of compressing the actin-myosin interaction sites. Here, we identify a length correspondence between the smallest helical unit on the thick filament and the helical pitch of the actin filaments in two different contractile muscles. This suggests a rotation/swing of the filaments that creates a new interaction unit in addition to the single interaction between an actin filament and a myosin head. Numerical characteristics of the single interaction are estimated from discussion about an in vivo interaction utilizing the new unit. The estimated twisted angle of the actin filaments is consistent with that calculated from its torsion rigidity and the evaluated step sizes per cross-bridge can be performed by a single bend of a myosin head. By comparing our evaluated step sizes with experimental results, we conclude that the most plausible mechanism at the force-recovery stage involves swings or rotations of both filaments in the same direction (clockwise).
Collapse
Affiliation(s)
- Michiko Nosaka
- Sasebo National College of Technology, Material and Biological Engineering, 1-1 Okishin-chou, Sasebo, Nagasaki 857-1193, Japan.
| |
Collapse
|
16
|
Affiliation(s)
- John M Squire
- Biological Structure & Function Section, Biomedical Sciences Division, Imperial College Faculty of Medicine, London SW7 2AZ London, United Kingdom
| | | |
Collapse
|
17
|
Yagi N, Iwamoto H, Wakayama J, Inoue K. Structural changes of actin-bound myosin heads after a quick length change in frog skeletal muscle. Biophys J 2005; 89:1150-64. [PMID: 15894638 PMCID: PMC1366600 DOI: 10.1529/biophysj.105.059089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in the x-ray diffraction pattern from a frog skeletal muscle were recorded after a quick release or stretch, which was completed within one millisecond, at a time resolution of 0.53 ms using the high-flux beamline at the SPring-8 third-generation synchrotron radiation facility. Reversibility of the effects of the length changes was checked by quickly restoring the muscle length. Intensities of seven reflections were measured. A large, instantaneous intensity drop of a layer line at an axial spacing of 1/10.3 nm(-1) after a quick release and stretch, and its partial recovery by reversal of the length change, indicate a conformational change of myosin heads that are attached to actin. Intensity changes on the 14.5-nm myosin layer line suggest that the attached heads alter their radial mass distribution upon filament sliding. Intensity changes of the myosin reflections at 1/21.5 and 1/7.2 nm(-1) are not readily explained by a simple axial swing of cross-bridges. Intensity changes of the actin-based layer lines at 1/36 and 1/5.9 nm(-1) are not explained by it either, suggesting a structural change in actin molecules.
Collapse
Affiliation(s)
- Naoto Yagi
- Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Sayo-gun, Hyogo.
| | | | | | | |
Collapse
|
18
|
Tregear RT, Reedy MC, Goldman YE, Taylor KA, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Reedy MK. Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys J 2004; 86:3009-19. [PMID: 15111415 PMCID: PMC1304167 DOI: 10.1016/s0006-3495(04)74350-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Electron micrographic tomograms of isometrically active insect flight muscle, freeze substituted after rapid freezing, show binding of single myosin heads at varying angles that is largely restricted to actin target zones every 38.7 nm. To quantify the parameters that govern this pattern, we measured the number and position of attached myosin heads by tracing cross-bridges through the three-dimensional tomogram from their origins on 14.5-nm-spaced shelves along the thick filament to their thin filament attachments in the target zones. The relationship between the probability of cross-bridge formation and axial offset between the shelf and target zone center was well fitted by a Gaussian distribution. One head of each myosin whose origin is close to an actin target zone forms a cross-bridge most of the time. The probability of cross-bridge formation remains high for myosin heads originating within 8 nm axially of the target zone center and is low outside 12 nm. We infer that most target zone cross-bridges are nearly perpendicular to the filaments (60% within 11 degrees ). The results suggest that in isometric contraction, most cross-bridges maintain tension near the beginning of their working stroke at angles near perpendicular to the filament axis. Moreover, in the absence of filament sliding, cross-bridges cannot change tilt angle while attached nor reach other target zones while detached, so may cycle repeatedly on and off the same actin target monomer.
Collapse
Affiliation(s)
- Richard T Tregear
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Squire JM, Knupp C. MusLABEL: a program to model striated muscle A-band lattices, to explore crossbridge interaction geometries and to simulate muscle diffraction patterns. J Muscle Res Cell Motil 2004; 25:423-38. [PMID: 15548872 DOI: 10.1007/s10974-004-3147-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The program MusLABEL has been devised as a simple aid both in understanding the origin and appearance of fibre diffraction patterns from helical structures and also to simulate the structure and some features of the diffraction patterns from striated muscles and their filament components. Helices are common as preferred conformations in both natural and synthetic macromolecules (e.g. DNA, alpha -helices, polysaccharides, synthetic polymers), and they also occur frequently in extended macromolecular aggregates (e.g. actin filaments, myosin filaments, microtubules, amyloid filaments etc). For this reason, a simple way of visualising the kinds of diffraction patterns that these filament structures can give, particularly for the actin and myosin filaments in muscle, can have educational value and can also be useful as a quick means of evaluating possible symmetries in structural interpretations of diffraction data before embarking on full helical diffraction analysis. A feature of the MusLABEL program is that, when a particular kind of A-band lattice has been set up, for example for vertebrate striated muscle or insect flight muscle, additional parameters can be defined both to describe the limits to the azimuthal and axial ranges over which a myosin head can search for an actin binding site and also to describe the size and position of an actin 'target area' assuming that the azimuthal position of an actin monomer has a large effect in determining whether or not a myosin head can bind to it. By this means the effects of lattice geometry on head attachment can be explored and the diffraction effects of specific labelling patterns on actin can be calculated and simulated. The MusLABEL program, running under Microsoft Windows, is available free on the CCP13 website (www.ccp13.ac.uk) where further documentation is given.
Collapse
Affiliation(s)
- John M Squire
- Biological Structure & Function Section, Biomedical Sciences Division, Imperial College London, London, UK.
| | | |
Collapse
|
20
|
Squire JM, Luther PK, Knupp C. Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain. J Mol Biol 2003; 331:713-24. [PMID: 12899839 DOI: 10.1016/s0022-2836(03)00781-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
C-protein (MyBP-C) is a myosin-binding protein that is usually seen in two sets of seven to nine positions in the C-zones in each half of the vertebrate striated muscle A-band. Skeletal muscle C-protein is a modular structure containing ten sub-domains (C1 to C10) of which seven are immunoglobulin-type domains and three (C6, C7 and C9) are fibronectin-like domains. Cardiac muscle C-protein has an extra N-terminal domain (C0) and also some sequence insertions, one of which provides phosphorylation sites. It is conceivable that C-protein has both a structural and regulatory role within the sarcomere. The precise mode of binding of C-protein to the myosin filament has not been determined. However, detailed ultrastructural studies have suggested that C-protein, which binds to myosin, can give rise to a longer periodicity (about 435A) than the intrinsic myosin filament repeat of 429A. The reason for this has remained a puzzle for over 25 years. Here we show by modelling and computation that the presence of this longer periodicity could be explained if the myosin-binding part of C-protein binds to myosin with the expected 429A repeat, but if there are systematic interactions of the N-terminal end of C-protein with the neighbouring actin filaments in the hexagonal lattice of filaments in the A-band. We also show that if they occur these interactions would probably only arise in defined muscle states. Further analysis of the MyBP-C sequence identifies a possible actin-binding domain in the Pro-Ala-rich sequence found at the N terminus of skeletal MyBP-C and between domains C0 and C1 in the cardiac sequence.
Collapse
Affiliation(s)
- John M Squire
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College London, Fleming Building, London SW7 2AZ, UK.
| | | | | |
Collapse
|
21
|
Reconditi M, Koubassova N, Linari M, Dobbie I, Narayanan T, Diat O, Piazzesi G, Lombardi V, Irving M. The conformation of myosin head domains in rigor muscle determined by X-ray interference. Biophys J 2003; 85:1098-110. [PMID: 12885655 PMCID: PMC1303229 DOI: 10.1016/s0006-3495(03)74547-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the absence of adenosine triphosphate, the head domains of myosin cross-bridges in muscle bind to actin filaments in a rigor conformation that is expected to mimic that following the working stroke during active contraction. We used x-ray interference between the two head arrays in opposite halves of each myosin filament to determine the rigor head conformation in single fibers from frog skeletal muscle. During isometric contraction (force T(0)), the interference effect splits the M3 x-ray reflection from the axial repeat of the heads into two peaks with relative intensity (higher angle/lower angle peak) 0.76. In demembranated fibers in rigor at low force (<0.05 T(0)), the relative intensity was 4.0, showing that the center of mass of the heads had moved 4.5 nm closer to the midpoint of the myosin filament. When rigor fibers were stretched, increasing the force to 0.55 T(0), the heads' center of mass moved back by 1.1-1.6 nm. These motions can be explained by tilting of the light chain domain of the head so that the mean angle between the Cys(707)-Lys(843) vector and the filament axis increases by approximately 36 degrees between isometric contraction and low-force rigor, and decreases by 7-10 degrees when the rigor fiber is stretched to 0.55 T(0).
Collapse
Affiliation(s)
- M Reconditi
- Laboratorio di Fisiologia, Dipartimento di Biologia Animale e Genetica, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Robinson JM, Wang Y, Kerrick WGL, Kawai R, Cheung HC. Activation of striated muscle: nearest-neighbor regulatory-unit and cross-bridge influence on myofilament kinetics. J Mol Biol 2002; 322:1065-88. [PMID: 12367529 DOI: 10.1016/s0022-2836(02)00855-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have formulated a three-compartment model of muscle activation that includes both strong cross-bridge (XB) and Ca(2+)-activated regulatory-unit (RU) mediated nearest-neighbor cooperative influences. The model is based on the tight coupling premise--that XB retain activating Ca(2+) on the thin filament. Using global non-linear least-squares, the model produced excellent fits to experimental steady-state force-pCa and ATPase-pCa data from skinned rat soleus fibers. In terms of the model, nearest-neighbor influences over the range of Ca(2+) required for activation cause the Ca(2+) dissociation rate from regulatory-units (k(off)) to decrease and the cross-bridge association rate (f) to increase each more than ten-fold. Moreover, the rate variations occur in separate Ca(2+) regimes. The energy of activation governing f is strongly influenced by both neighboring RU and XB. In contrast, the energy of activation governing k(off) is less affected by neighboring XB than by neighboring RU. Nearest-neighbor cooperative influences provide both an overall sensitization to Ca(2+) and the well-known steep response of force to free Ca(2+). The apparent sensitivity for Ca(2+)-activation of force and ATPase is a function of cross-bridge kinetic rates. The model and derived parameter set produce simulated behavior in qualitative agreement with steady-state experiments reported in the literature for partial TnC replacement, increased [P(i)], increased [ADP], and MalNEt-S1 addition. The model is an initial attempt to construct a general theory of striated muscle activation-one that can be consistently used to interpret data from various types of muscle manipulation experiments.
Collapse
Affiliation(s)
- John M Robinson
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294-0005, USA.
| | | | | | | | | |
Collapse
|
23
|
Koubassova NA, Tsaturyan AK. Direct modeling of x-ray diffraction pattern from skeletal muscle in rigor. Biophys J 2002; 83:1082-97. [PMID: 12124288 PMCID: PMC1302210 DOI: 10.1016/s0006-3495(02)75232-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Available high-resolution structures of F-actin, myosin subfragment 1 (S1), and their complex, actin-S1, were used to calculate a 2D x-ray diffraction pattern from skeletal muscle in rigor. Actin sites occupied by myosin heads were chosen using a "principle of minimal elastic distortion energy" so that the 3D actin labeling pattern in the A-band of a sarcomere was determined by a single parameter. Computer calculations demonstrate that the total off-meridional intensity of a layer line does not depend on disorder of the filament lattice. The intensity of the first actin layer A1 line is independent of tilting of the "lever arm" region of the myosin heads. Myosin-based modulation of actin labeling pattern leads not only to the appearance of the myosin and "beating" actin-myosin layer lines in rigor diffraction patterns, but also to changes in the intensities of some actin layer lines compared to random labeling. Results of the modeling were compared to experimental data obtained from small bundles of rabbit muscle fibers. A good fit of the data was obtained without recourse to global parameter search. The approach developed here provides a background for quantitative interpretation of the x-ray diffraction data from contracting muscle and understanding structural changes underlying muscle contraction.
Collapse
Affiliation(s)
- Natalia A Koubassova
- Institute of Mechanics, Lomonosov Moscow State University, Vorobjovy Gory, Moscow 119992, Russia
| | | |
Collapse
|
24
|
Luther PK, Squire JM. Muscle Z-band ultrastructure: titin Z-repeats and Z-band periodicities do not match. J Mol Biol 2002; 319:1157-64. [PMID: 12079354 DOI: 10.1016/s0022-2836(02)00372-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vertebrate muscle Z-bands show zig-zag densities due to different sets of alpha-actinin cross-links between anti-parallel actin molecules. Their axial extent varies with muscle and fibre type: approximately 50 nm in fast and approximately 100 nm in cardiac and slow muscles, corresponding to the number of alpha-actinin cross-links present. Fish white (fast) muscle Z-bands have two sets of alpha-actinin links, mammalian slow muscle Z-bands have six. The modular structure of the approximately 3 MDa protein titin that spans from M-band to Z-band correlates with the axial structure of the sarcomere; it may form the template for myofibril assembly. The Z-band-located amino-terminal 80 kDa of titin includes 45 residue repeating modules (Z-repeats) that are expressed differentially; heart, slow and fast muscles have seven, four to six and two to four Z-repeats, respectively. Gautel et al. proposed a Z-band model in which each Z-repeat links to one level of alpha-actinin cross-links, requiring that the axial extent of a Z-repeat is the same as the axial separation of alpha-actinin layers, of which there are two in every actin crossover repeat. The span of a Z-repeat in vitro is estimated by Atkinson et al. to be 12 nm or less; much less than half the normal vertebrate muscle actin crossover length of 36 nm. Different actin-binding proteins can change this length; it is reduced markedly by cofilin binding, or can increase to 38.5 nm in the abnormally large nemaline myopathy Z-band. Here, we tested whether in normal vertebrate Z-bands there is a marked reduction in crossover repeat so that it matches twice the apparent Z-repeat length of 12 nm. We found that the measured periodicities in wide Z-bands in slow and cardiac muscles are all very similar, about 39 nm, just like the nemaline myopathy Z-bands. Hence, the 39 nm periodicity is an important conserved feature of Z-bands and either cannot be explained by titin Z-repeats as previously suggested or may correlate with two Z-repeats.
Collapse
Affiliation(s)
- Pradeep K Luther
- Biological Structure and Function Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| | | |
Collapse
|
25
|
Takezawa Y, Kim DS, Ogino M, Sugimoto Y, Kobayashi T, Arata T, Wakabayashi K. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction. Biophys J 1999; 76:1770-83. [PMID: 10096877 PMCID: PMC1300155 DOI: 10.1016/s0006-3495(99)77338-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effects of the applied stretch and MgADP binding on the structure of the actomyosin cross-bridges in rabbit and/or frog skeletal muscle fibers in the rigor state have been investigated with improved resolution by x-ray diffraction using synchrotron radiation. The results showed a remarkable structural similarity between cross-bridge states induced by stretch and MgADP binding. The intensities of the 14.4- and 7.2-nm meridional reflections increased by approximately 23 and 47%, respectively, when 1 mM MgADP was added to the rigor rabbit muscle fibers in the presence of ATP-depletion backup system and an inhibitor for muscle adenylate kinase or by approximately 33 and 17%, respectively, when rigor frog muscle was stretched by approximately 4.5% of the initial muscle length. In addition, both MgADP binding and stretch induced a small but genuine intensity decrease in the region close to the meridian of the 5.9-nm layer line while retaining the intensity profile of its outer portion. No appreciable influence was observed in the intensities of the higher order meridional reflections of the 14.4-nm repeat and the other actin-based reflections as well as the equatorial reflections, indicating a lack of detachment of cross-bridges in both cases. The changes in the axial spacings of the actin-based and the 14.4-nm-based reflections were observed and associated with the tension change. These results indicate that stretch and ADP binding mediate similar structural changes, being in the correct direction to those expected for that the conformational changes are induced in the outer portion distant from the catalytic domain of attached cross-bridges. Modeling of conformational changes of the attached myosin head suggested a small but significant movement (about 10-20 degrees) in the light chain-binding domain of the head toward the M-line of the sarcomere. Both chemical (ADP binding) and mechanical (stretch) intervensions can reverse the contractile cycle by causing a backward movement of this domain of attached myosin heads in the rigor state.
Collapse
Affiliation(s)
- Y Takezawa
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim DS, Takezawa Y, Ogino M, Kobayashi T, Arata T, Wakabayashi K. X-ray diffraction studies on the structural changes of rigor muscles induced by binding of phosphate analogs in the presence of MgADP. Biophys Chem 1998; 74:71-82. [PMID: 9742687 DOI: 10.1016/s0301-4622(98)00166-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To clarify the structure of the ATP hydrolysis intermediates (ADP.Pi bound state) formed by actomyosin crossbridges, the effects of various phosphate analogs in the presence of MgADP on the structures of the thin and thick filaments in glycerinated rabbit psoas muscle fibers in the rigor state have been investigated by X-ray diffraction with a short exposure time using synchrotron radiation. When MgADP and phosphate analogs such as metallofluorides (BeFx = 3,4 and AlF4) and vanadate (VO4(Vi)) were added to rigor fibers in the presence of the ATP-depletion backup system, the intensities of the actin-based layer lines were markedly weakened. The greatest effect (approximately 50% decrease in intensity) was observed in the presence of BeFx among the analogs examined. The intensity distribution of the 5.9 nm actin-based layer line shifted towards that observed in the Ca(2+)-activated fibers, while the first actin layer line at approximately 1/36.7 nm-1 retained a rigor-like profile with an intensity weakened by approximately 50%. The intensity of the equatorial 10 reflection increased while that of the 11 reflection changed little, resulting in only a small increase (approximately 1.7 fold) in the intensity ratio of the 10 to the 11 reflection. No resting-like pattern appeared upon the addition of MgADP and BeFx. These results indicate that a substantial fraction (approximately 40%) of the myosin heads dissociate from actin but the detached heads remain in the vicinity of the actin filaments when MgADP and BeFx bind. The states produced by binding phosphate analogs to a rigor muscle differ from the resting-like state produced by adding them to a contracting muscle (Takemori et al., J. Biochem. (Tokyo) 117 (1995) 603-608). Our conclusion put forward to explain the data is that one of the two heads of a crossbridge is detached and the other retains a rigor-like attachment.
Collapse
Affiliation(s)
- D S Kim
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Tregear RT, Edwards RJ, Irving TC, Poole KJ, Reedy MC, Schmitz H, Towns-Andrews E, Reedy MK. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys J 1998; 74:1439-51. [PMID: 9512040 PMCID: PMC1299490 DOI: 10.1016/s0006-3495(98)77856-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the first time-resolved study of the two-dimensional x-ray diffraction pattern during active contraction in insect flight muscle (IFM). Activation of demembranated Lethocerus IFM was triggered by 1.5-2.5% step stretches (risetime 10 ms; held for 1.5 s) giving delayed active tension that peaked at 100-200 ms. Bundles of 8-12 fibers were stretch-activated on SRS synchrotron x-ray beamline 16.1, and time-resolved changes in diffraction were monitored with a SRS 2-D multiwire detector. As active tension rose, the 14.5- and 7.2-nm meridionals fell, the first row line dropped at the 38.7 nm layer line while gaining a new peak at 19.3 nm, and three outer peaks on the 38.7-nm layer line rose. The first row line changes suggest restricted binding of active myosin heads to the helically preferred region in each actin target zone, where, in rigor, two-headed lead bridges bind, midway between troponin bulges that repeat every 38.7 nm. Halving this troponin repeat by binding of single active heads explains the intensity rise at 19.3 nm being coupled to a loss at 38.7 nm. The meridional changes signal movement of at least 30% of all myosin heads away from their axially ordered positions on the myosin helix. The 38.7- and 19.3-nm layer line changes signal stereoselective attachment of 7-23% of the myosin heads to the actin helix, although with too little ordering at 6-nm resolution to affect the 5.9-nm actin layer line. We conclude that stretch-activated tension of IFM is produced by cross-bridges that bind to rigor's lead-bridge target zones, comprising < or = 1/3 of the 75-80% that attach in rigor.
Collapse
Affiliation(s)
- R T Tregear
- MRC Laboratory of Molecular Biology, Cambridge, England.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Myosin Crossbridge Configurations in Equilibrium States of Vertebrate Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4684-6039-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Hawkins CJ, Bennett PM. Evaluation of freeze substitution in rabbit skeletal muscle. Comparison of electron microscopy to X-ray diffraction. J Muscle Res Cell Motil 1995; 16:303-18. [PMID: 7560003 DOI: 10.1007/bf00121139] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rabbit psoas muscle fibres, relaxed and in rigor, have been freeze substituted for electron microscopy. Fourier transforms and average density maps of micrographs of transverse sections have been obtained and compared to X-ray diffraction data. The Fourier amplitudes from rigor and relaxed muscle are comparable to equatorial data from X-ray diffraction of muscle if there is more disorder in the electron micrographs which can be described by a 'temperature' factor. The phases of reflections out to the 3,2 have been determined; those reflections at the same radius and therefore not separable in the X-ray patterns, such as the 2,1 and the 1,2, are separated in the transforms of sections through the A band. In transforms from both rigor and relaxed muscle they have the same phase. In rigor muscle they have different amplitudes. All the phases are positive or negative showing that the lattice is centrosymmetric at the resolution obtained. The phases obtained generally support those suggested by model building studies using X-ray diffraction data. In rigor muscle, areas where the cross-bridges are regularly attached are clearly seen in thin transverse sections. A handedness to this structure is indicated by a lack of mirror symmetry, in both the Fourier transform of thick sections, and in the averaged density map. This correlates well with the arrangement where the myosin head is bound as in the acto-S1 structure but only to actin monomers within a limited azimuthal range.
Collapse
Affiliation(s)
- C J Hawkins
- MRC Muscle and Cell Motility Unit, Randall Institute, King's College London, UK
| | | |
Collapse
|
30
|
Hirose K, Wakabayashi T. Structural change of crossbridges of rabbit skeletal muscle during isometric contraction. J Muscle Res Cell Motil 1993; 14:432-45. [PMID: 8227302 DOI: 10.1007/bf00121295] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Structural changes of crossbridges during isometric contraction have been studied by electron microscopy. Chemically skinned rabbit fibres were rapidly frozen either in activating solution or in ATP-free (rigor) solution, freeze-substituted and embedded. Longitudinal sections of muscle fibres show that the number of crossbridges in active fibres (isometric contraction) is approximately the same as in rigor fibres. Crossbridges of the active and rigor states differ in their shapes, angles and manner of arrangement on the thin filaments. In rigor many crossbridges are wide near the thin filaments and narrow near the thick filament shafts; in active fibres they have more uniform width along their length. The angle of the crossbridges in active fibres is somewhat variable. The average angle is approximately 90 degrees to the filament axis. The crossbridges are arranged on the thin filament retaining the 14.3 nm thick filament periodicity. The crossbridges in rigor are tilted and their arrangement near the thin filament reveals the 36 nm actin periodicity. The variability in the shapes of the crossbridges in active fibres is still higher when we look at them in cross-sections of muscle fibres. The crossbridge shapes in the cross-sections were classified and the relative frequency of different shapes was determined. The shapes that are commonly observed in active fibres are similar in that the majority of the mass of the crossbridges is farther away from the thin filament than the crossbridges in rigor fibres.
Collapse
Affiliation(s)
- K Hirose
- Department of Physics, Faculty of Science, University of Tokyo, Japan
| | | |
Collapse
|
31
|
Bordas J, Diakun GP, Diaz FG, Harries JE, Lewis RA, Lowy J, Mant GR, Martin-Fernandez ML, Towns-Andrews E. Two-dimensional time-resolved X-ray diffraction studies of live isometrically contracting frog sartorius muscle. J Muscle Res Cell Motil 1993; 14:311-24. [PMID: 8360320 DOI: 10.1007/bf00123096] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Results were obtained from contracting frog muscles by collecting high quality time-resolved, two-dimensional, X-ray diffraction patterns at the British Synchrotron Radiation Source (SERC, Daresbury, Laboratory). The structural transitions associated with isometric tension generation were recorded under conditions in which the three-dimensional order characteristic of the rest state is either present or absent. In both cases, new layer lines appear during tension generation, subsequent to changes from activation events in the thin filaments. Compared with the 'decorated' actin layer lines of the rigor state, the spacings of the new layer lines are similar whereas their intensities differ substantially. We conclude that in contracting muscle an actomyosin complex is formed whose structure is not like that in rigor, although it is possible that the interacting sites are the same. Transition from rest to plateau of tension is accompanied by approximately 1.6% increase in the axial spacing of the myosin layer lines. This is explained as arising from axial disposition of the interacting myosin heads in the actomyosin complex. Model calculations are presented which support this view. We argue that in a situation where an actomyosin complex is formed during contraction, one cannot describe the diffraction features as being either thick or thin filament based. Accordingly, the layer lines seen during tension generation are referred to as actomyosin layer lines. It is shown that these layer lines can be indexed as submultiples of a minimum axial repeat of approximately 218.7 nm. After lattice disorder effects are taken into account, the intensity increases on the 15th and 21st AM layer lines at spacings of approximately 14.58 and 10.4 nm respectively, show the same time course as tension rise. However, the time course of the intensity increase of the other actomyosin layer lines and of the spacing change (which is the same for both phenomena) shows a substantial lead over tension rise. These findings suggest that the actomyosin complex formed prior to tension rise is a non-tension-generating state and that this is followed by a transition of the complex to a tension-generating state. The intensity increase in the 15th actomyosin layer line, which parallels tension rise, can be accounted for assuming that in the tension-generating state the attached heads adopt (axially) a more perpendicular orientation with respect to the muscle axis than is seen at rest or in the non-tension-generating state. This suggests the existence of at least two structurally distinct interacting myosin head conformations.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Bordas
- SERC Daresbury Laboratory, Warrington, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Squire J, Harford J. Time-resolved studies of crossbridge movement: why use X-rays? Why use fish muscle? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 332:435-48; discussion 448-50. [PMID: 8109356 DOI: 10.1007/978-1-4615-2872-2_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The advantages of using time-resolved X-ray diffraction as a means of probing myosin cross-bridge behaviour in active muscle are outlined, together with the reasons that bony fish muscle has advantages in such studies. We show that the observed X-ray diffraction patterns from fish muscle can be analysed in a way that is rigorous enough to allow reliable information about crossbridge activity to be defined. Among the advantages of this muscle are that diffraction patterns from resting, active and rigor muscles are all well-sampled at least out to the 30 row-line, that the resting myosin layer-line pattern can be 'solved' crystallographically to define the starting position of the crossbridges in resting muscle, and that the equatorial intensity distribution, which in all patterns from vertebrate skeletal muscles comprises overlapping peaks from the A-band and the Z-band, can be analysed sufficiently rigorously to allow separation of the two patterns, both of which change when the muscle is active. Finally, we present results both on a new set of myosin-based layer-lines in patterns from active muscle (consistent with the presence of low-force bridges as also indicated by the time-courses of the intensity changes on the equator and the changing mass distribution in the A-band unit cell) and also on changes of the actin-based layer-lines (consistent with stereospecific labelling of the actin filaments by force-producing crossbridges). Our results to date, which demonstrate the enormous power of time-resolved X-ray diffraction studies, strongly support the swinging of myosin heads on actin as part of the contractile cycle.
Collapse
Affiliation(s)
- J Squire
- Biophysics Section, Blackett Laboratory, Imperial College, London, UK
| | | |
Collapse
|
33
|
Yagi N. Effects of N-ethylmaleimide on the structure of skinned frog skeletal muscles. J Muscle Res Cell Motil 1992; 13:457-63. [PMID: 1401041 DOI: 10.1007/bf01738040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of N-ethylmaleimide (NEM) and other sulfhydryl modifiers on the structure of skinned frog skeletal muscles were studied using the X-ray diffraction technique. In sartorius muscle with full overlap between the thick and thin filaments, 0.1-1.0 mM NEM changed the intensity ratio of the (1,0) and (1,1) equatorial reflections from 4.35 to 0.72, and the (1,0) spacing of the hexagonal filament lattice from 40.4 to 41.4 nm. The axial X-ray diffraction pattern showed weak myosin layer-lines after the NEM treatment but enhancement of the actin layer-lines was not observed. In overstretched semitendinosus muscle, NEM did not affect the equatorial spacing but the myosin layer-lines were weakened. These results indicate that modification of myosin by NEM destroys the helical arrangement of myosin heads around the shaft of the thick filament and that when thin filaments are available, myosin heads move towards, and possibly bind to them. This binding is different from that in rigor since the 'ladder-like' appearance of the higher actin layer-lines, which is typical of patterns from rigor muscles, was not observed. On removal of ATP after the NEM treatment, the diffraction pattern showed features characteristic of that from normal rigor muscles but no tension was produced. The pattern showed well-defined samplings on layer-lines in the small-angle region, indicating the presence of an extensive lattice order and exact axial alignment of the filaments. The first actin layer-line did not show samplings from the superlattice of the thick filaments, which are observed on the myosin layer-lines in patterns from resting muscles.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Yagi
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
34
|
Harford JJ, Squire JM. Evidence for structurally different attached states of myosin cross-bridges on actin during contraction of fish muscle. Biophys J 1992; 63:387-96. [PMID: 1420885 PMCID: PMC1262162 DOI: 10.1016/s0006-3495(92)81613-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using data from fast time-resolved x-ray diffraction experiments on the synchrotrons at Daresbury and (Deutsches Elektronen Synchrotron [DESY]), it is shown that during contraction of fish muscle there are at least two distinct configurations of myosin cross-bridges on actin, that they appear to have different tension producing properties and that they probably differ in the axial tilt of the cross-bridges on actin. Evidence is presented for newly observed myosin-based layer lines in patterns from active fish muscle, together with intensity changes of the actin layer lines. On the equator, the 110 reflection changes much faster (time for 50% change t1/2 = 21 +/- 4 ms after activation) than the 100 reflection (t1/2 = 35 +/- 8 ms) and tension (t1/2 = 41 +/- 3 ms) during the rising phase of tetanic contractions. These and higher order reflections have been used to show the time course of mass attachment at actin during this rising phase. Mass arrival (t1/2 = 25 ms) precedes tension by approximately 15 ms. Analysis has been carried out to evaluate the effects of changes in sarcomere length during the tetanus. It is shown that any such effects are very small. Difference "equatorial" electron density maps between active muscle at a time when mass arrival at actin is just complete, but the tension is still rising, and at a later time well into the tension plateau, show that the structural difference between the lower and higher force states corresponds to mass movement consistent with axial swinging of heads from a nonstereospecific actin attached state (low force) to a more stereospecific (high force) state.
Collapse
Affiliation(s)
- J J Harford
- Biophysics Section, Blackett Laboratory, Imperial College, London, United Kingdom
| | | |
Collapse
|
35
|
Squire JM. Muscle filament lattices and stretch-activation: the match-mismatch model reassessed. J Muscle Res Cell Motil 1992; 13:183-9. [PMID: 1597512 DOI: 10.1007/bf01874155] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A mechanism for the observed enhanced stretch-activation phenomenon in insect asynchronous flight muscles has been postulated and developed in terms of the matched helical structures of the actin and myosin filaments in the asynchronous flight muscles of Lethocerus. It was suggested that at different sarcomere lengths with different filament overlaps there would be a changing probability of myosin crossbridge attachment to actin according to whether there was match or mismatch between the myosin and actin arrays. Evidence is provided here that, when Lethocerus structure is considered in detail, the explanation appears to fail. Results on other insect asynchronous flight muscles of different structure (e.g. Apis) also seem to contradict the match-mismatch model. All striated muscle types considered here (fish, frog, Lethocerus, Apis, blowfly) appear to be designed to give constant probability of crossbridge attachment to actin as the filaments move axially, apart from the well-known effects of changing total filament overlap. Alternative stretch-activation mechanisms are considered, especially in terms of the unusual thin filament regulatory system in some insect asynchronous flight muscles.
Collapse
Affiliation(s)
- J M Squire
- Biophysics Section, Blackett Laboratory, Imperial College, London, UK
| |
Collapse
|
36
|
Tskhovrebova LA. Vertebrate muscle Z-line structure: an electron microscopic study of negatively-stained myofibrils. J Muscle Res Cell Motil 1991; 12:425-38. [PMID: 1939606 DOI: 10.1007/bf01738327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Structural features of the Z-lines of rabbit psoas muscle myofibrils have been studied in the electron microscope with a negative staining technique. The results obtained suggest the presence of about 20 nm periodicity in the structural organization of the Z-line region: a band pattern of five bands of extra density spaced about 20 nm apart was revealed in the Z-region and the Z-filaments connecting actin filaments from neighbouring sarcomeres often appeared to be positioned at intervals of 17-20 nm. An electron microscopic investigation of the interaction in vitro of two major Z-line proteins, alpha-actinin and F-actin, indicated that the positions of alpha-actinin bridges between actin filaments are defined by relative azimuthal positions of actin subunits. A possible arrangement of actin-linking macromolecular bridges in the Z-region is considered. It is supposed that the arrangement of the Z-filaments is related to the helical symmetry of actin-containing filaments. Also, the banded appearance of the Z-region is interpreted as arising from the arrangement of crossbridges connecting thin filaments of the same sarcomeres.
Collapse
Affiliation(s)
- L A Tskhovrebova
- Institute of Biological Physics, USSR Academy of Sciences, Pushchino, Moscow Region
| |
Collapse
|
37
|
Lowy J, Popp D, Stewart AA. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys J 1991; 60:812-24. [PMID: 1742454 PMCID: PMC1260133 DOI: 10.1016/s0006-3495(91)82116-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using x-rays from a laboratory source and an area detector, myosin layer lines and the diffuse scattering between them in the moderate angle region have been recorded. At full overlap, incubation of rigor muscles with S-1 greatly reduces the diffuse scattering. Also, three of the four actin-based layer lines lying close to the meridian (Huxley, H. E., and W. Brown, 1967. J. Mol. Biol. 30:384-434; Haselgrove, J. C. 1975. J. Mol. Biol. 92:113-143) increase, suggesting fuller labeling of the actin filaments. These results are consistent with the idea (Poulsen, F. R., and J. Lowy, 1983. Nature [Lond.]. 303:146-152) that some of the diffuse scattering in rigor muscles is due to a random mixture of actin monomers with and without attached myosin heads (substitution disorder). In relaxed muscles, regardless of overlap, lowering the temperature from 24 to 4 degrees C practically abolishes the myosin layer lines (a result first obtained by Wray, J.S. 1987. J. Muscle Res. Cell Motil. 8:62 (a). Abstr.), whilst the diffuse scattering between these layer lines increases appreciably. Similar changes occur in the passage from rest to peak tetanic tension in live frog muscle (Lowy, J., and F.R. Poulsen. 1990. Biophys. J. 57:977-985). Cooling the psoas demonstrates that the intensity relation between the layer lines and the diffuse scattering is of an inverse nature, and that the transition occurs over a narrow temperature range (12-14 degrees C) with a sigmoidal function. From these results it would appear that the helical arrangement of the myosin heads is very temperature sensitive, and that the disordering effect does not depend on the presence of actin. Measurements along the meridian reveal that the intensity of the diffuse scattering increases relatively little and does so in a nearly linear manner: evidently the axial order of the myosin heads is much less temperature sensitive. The combined data support the view (Poulsen, F. R., and J. Lowy. 1983. Nature [Lond.]. 303:146-152) that in relaxed muscles a significant part of the diffuse scattering originates from disordered myosin heads. The observation that the extent of the diffuse scattering is greater in the equatorial than in the meridional direction suggests that the disordered myosin heads have an orientation which is on average more parallel to the filament axis.
Collapse
Affiliation(s)
- J Lowy
- Open University Research Unit, Oxford, United Kingdom
| | | | | |
Collapse
|
38
|
Tregear R. Constraints on the attachment of myosin to actin. J Muscle Res Cell Motil 1988; 9:293-5. [PMID: 3220948 DOI: 10.1007/bf01773872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- R Tregear
- AFRC Institute of Animal Physiology & Genetics Research, Babraham, Cambridge
| |
Collapse
|