1
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024:10.1038/s41570-024-00648-5. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
2
|
Michaelian K. The Pigment World: Life's Origins as Photon-Dissipating Pigments. Life (Basel) 2024; 14:912. [PMID: 39063667 PMCID: PMC11277707 DOI: 10.3390/life14070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Many of the fundamental molecules of life share extraordinary pigment-like optical properties in the long-wavelength UV-C spectral region. These include strong photon absorption and rapid (sub-pico-second) dissipation of the induced electronic excitation energy into heat through peaked conical intersections. These properties have been attributed to a "natural selection" of molecules resistant to the dangerous UV-C light incident on Earth's surface during the Archean. In contrast, the "thermodynamic dissipation theory for the origin of life" argues that, far from being detrimental, UV-C light was, in fact, the thermodynamic potential driving the dissipative structuring of life at its origin. The optical properties were thus the thermodynamic "design goals" of microscopic dissipative structuring of organic UV-C pigments, today known as the "fundamental molecules of life", from common precursors under this light. This "UV-C Pigment World" evolved towards greater solar photon dissipation through more complex dissipative structuring pathways, eventually producing visible pigments to dissipate less energetic, but higher intensity, visible photons up to wavelengths of the "red edge". The propagation and dispersal of organic pigments, catalyzed by animals, and their coupling with abiotic dissipative processes, such as the water cycle, culminated in the apex photon dissipative structure, today's biosphere.
Collapse
Affiliation(s)
- Karo Michaelian
- Department of Nuclear Physics and Application of Radiation, Instituto de Física, Universidad Nacional Autónoma de México, Circuito Interior de la Investigación Científica, Cuidad Universitaria, Cuidad de México CP 04510, Mexico
| |
Collapse
|
3
|
Banfalvi G. The Origin of RNA and the Formose-Ribose-RNA Pathway. Int J Mol Sci 2024; 25:6727. [PMID: 38928433 PMCID: PMC11203418 DOI: 10.3390/ijms25126727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6 billion years ago when cellular life was about to come into being. Pre-Darwinian evolution assumes the development of hereditary elements but does not regard them as self-organizing processes. The presence of biochemical self-organization after the pre-Darwinian evolution did not justify distinguishing between different types of evolution. From the many possible solutions, evolution selected from among those stable reactions that led to catalytic networks, and under gradually changing external conditions produced a reproducible, yet constantly evolving and adaptable, living system. Major abiotic factors included sunlight, precipitation, air, minerals, soil and the Earth's atmosphere, hydrosphere and lithosphere. Abiotic sources of chemicals contributed to the formation of prebiotic RNA, the development of genetic RNA, the RNA World and the initial life forms on Earth and the transition of genRNA to the DNA Empire, and eventually to the multitude of life forms today. The transition from the RNA World to the DNA Empire generated new processes such as oxygenic photosynthesis and the hierarchical arrangement of processes involved in the transfer of genetic information. The objective of this work is to unite earlier work dealing with the formose, the origin and synthesis of ribose and RNA reactions that were published as a series of independent reactions. These reactions are now regarded as the first metabolic pathway.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Ono C, Sunami S, Ishii Y, Kim HJ, Kakegawa T, Benner SA, Furukawa Y. Abiotic Ribose Synthesis Under Aqueous Environments with Various Chemical Conditions. ASTROBIOLOGY 2024; 24:489-497. [PMID: 38696654 DOI: 10.1089/ast.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ribose is the defining sugar in ribonucleic acid (RNA), which is often proposed to have carried the genetic information and catalyzed the biological reactions of the first life on Earth. Thus, abiological processes that yield ribose under prebiotic conditions have been studied for decades. However, aqueous environments required for the formation of ribose from materials available in quantity under geologically reasonable models, where the ribose formed is not immediately destroyed, remain unclear. This is due in large part to the challenge of analysis of carbohydrates formed under a wide range of aqueous conditions. Thus, the formation of ribose on prebiotic Earth has sometimes been questioned. We investigated the quantitative effects of pH, temperature, cation, and the concentrations of formaldehyde and glycolaldehyde on the synthesis of diverse sugars, including ribose. The results suggest a range of conditions that produce ribose and that ribose could have formed in constrained aquifers on prebiotic Earth.
Collapse
Affiliation(s)
- Chinatsu Ono
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Sako Sunami
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yuka Ishii
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
- Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
- Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | | |
Collapse
|
5
|
Kumar P, Sankaranarayanan R. When Paul Berg meets Donald Crothers: an achiral connection through protein biosynthesis. Nucleic Acids Res 2024; 52:2130-2141. [PMID: 38407292 PMCID: PMC10954443 DOI: 10.1093/nar/gkae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and 'Discriminator hypothesis', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of 'Uracil'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on 'chiral proofreading' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.
Collapse
Affiliation(s)
- Pradeep Kumar
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rajan Sankaranarayanan
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
6
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
7
|
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life (Basel) 2023; 13:2281. [PMID: 38137883 PMCID: PMC10744825 DOI: 10.3390/life13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Would another origin of life resemble Earth's biochemical use of amino acids? Here, we review current knowledge at three levels: (1) Could other classes of chemical structure serve as building blocks for biopolymer structure and catalysis? Amino acids now seem both readily available to, and a plausible chemical attractor for, life as we do not know it. Amino acids thus remain important and tractable targets for astrobiological research. (2) If amino acids are used, would we expect the same L-alpha-structural subclass used by life? Despite numerous ideas, it is not clear why life favors L-enantiomers. It seems clearer, however, why life on Earth uses the shortest possible (alpha-) amino acid backbone, and why each carries only one side chain. However, assertions that other backbones are physicochemically impossible have relaxed into arguments that they are disadvantageous. (3) Would we expect a similar set of side chains to those within the genetic code? Many plausible alternatives exist. Furthermore, evidence exists for both evolutionary advantage and physicochemical constraint as explanatory factors for those encoded by life. Overall, as focus shifts from amino acids as a chemical class to specific side chains used by post-LUCA biology, the probable role of physicochemical constraint diminishes relative to that of biological evolution. Exciting opportunities now present themselves for laboratory work and computing to explore how changing the amino acid alphabet alters the universe of protein folds. Near-term milestones include: (a) expanding evidence about amino acids as attractors within chemical evolution; (b) extending characterization of other backbones relative to biological proteins; and (c) merging computing and laboratory explorations of structures and functions unlocked by xeno peptides.
Collapse
|
8
|
Yi R, Mojica M, Fahrenbach AC, James Cleaves H, Krishnamurthy R, Liotta CL. Carbonyl Migration in Uronates Affords a Potential Prebiotic Pathway for Pentose Production. JACS AU 2023; 3:2522-2535. [PMID: 37772180 PMCID: PMC10523364 DOI: 10.1021/jacsau.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Carbohydrate biosynthesis is fundamental to modern terrestrial biochemistry, but how this collection of metabolic pathways originated remains an open question. Prebiotic sugar synthesis has focused primarily on the formose reaction and Kiliani-Fischer homologation; however, how they can transition to extant biochemical pathways has not been studied. Herein, a nonenzymatic pathway for pentose production with similar chemical transformations as those of the pentose phosphate pathway is demonstrated. Starting from a C6 aldonate, namely, gluconate, nonselective chemical oxidation yields a mixture of 2-oxo-, 4-oxo-, 5-oxo-, and 6-oxo-uronate regioisomers. Regardless at which carbinol the oxidation takes place, carbonyl migration enables β-decarboxylation to yield pentoses. In comparison, the pentose phosphate pathway selectively oxidizes 6-phosphogluconate to afford the 3-oxo-uronate derivative, which undergoes facile subsequent β-decarboxylation and carbonyl migration to afford ribose 5-phosphate. The similarities between these two pathways and the potential implications for prebiotic chemistry and protometabolism are discussed.
Collapse
Affiliation(s)
- Ruiqin Yi
- Earth-Life
Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mike Mojica
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Albert C. Fahrenbach
- School
of Chemistry, Australian Centre for Astrobiology and the UNSW RNA
Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - H. James Cleaves
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | | | - Charles L. Liotta
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Tran QP, Yi R, Fahrenbach AC. Towards a prebiotic chemoton - nucleotide precursor synthesis driven by the autocatalytic formose reaction. Chem Sci 2023; 14:9589-9599. [PMID: 37712016 PMCID: PMC10498504 DOI: 10.1039/d3sc03185c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The formose reaction is often cited as a prebiotic source of sugars and remains one of the most plausible forms of autocatalysis on the early Earth. Herein, we investigated how cyanamide and 2-aminooxazole, molecules proposed to be present on early Earth and precursors for nonenzymatic ribonucleotide synthesis, mediate the formose reaction using HPLC, LC-MS and 1H NMR spectroscopy. Cyanamide was shown to delay the exponential phase of the formose reaction by reacting with formose sugars to form 2-aminooxazole and 2-aminooxazolines thereby diverting some of these sugars from the autocatalytic cycle, which nonetheless remains intact. Masses for tetrose and pentose aminooxazolines, precursors for nucleotide synthesis including TNA and RNA, were also observed. The results of this work in the context of the chemoton model are further discussed. Additionally, we highlight other prebiotically plausible molecules that could have mediated the formose reaction and alternative prebiotic autocatalytic systems.
Collapse
Affiliation(s)
- Quoc Phuong Tran
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney NSW 2052 Australia
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology Tokyo 152-8550 Japan
| | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney NSW 2052 Australia
- UNSW RNA Institute, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Ozturk SF, Sasselov DD, Sutherland JD. The central dogma of biological homochirality: How does chiral information propagate in a prebiotic network? J Chem Phys 2023; 159:061102. [PMID: 37551802 PMCID: PMC7615580 DOI: 10.1063/5.0156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 08/09/2023] Open
Abstract
Biological systems are homochiral, raising the question of how a racemic mixture of prebiotically synthesized biomolecules could attain a homochiral state at the network level. Based on our recent results, we aim to address a related question of how chiral information might have flowed in a prebiotic network. Utilizing the crystallization properties of the central ribonucleic acid (RNA) precursor known as ribose-aminooxazoline (RAO), we showed that its homochiral crystals can be obtained from its fully racemic solution on a magnetic mineral surface due to the chiral-induced spin selectivity (CISS) effect [Ozturk et al., arXiv:2303.01394 (2023)]. Moreover, we uncovered a mechanism facilitated by the CISS effect through which chiral molecules, such as RAO, can uniformly magnetize such surfaces in a variety of planetary environments in a persistent manner [Ozturk et al., arXiv:2304.09095 (2023)]. All this is very tantalizing because recent experiments with tRNA analogs demonstrate high stereoselectivity in the attachment of L-amino acids to D-ribonucleotides, enabling the transfer of homochirality from RNA to peptides [Wu et al., J. Am. Chem. Soc. 143, 11836 (2021)]. Therefore, the biological homochirality problem may be reduced to ensuring that a single common RNA precursor (e.g., RAO) can be made homochiral. The emergence of homochirality at RAO then allows for the chiral information to propagate through RNA, then to peptides, and ultimately through enantioselective catalysis to metabolites. This directionality of the chiral information flow parallels that of the central dogma of molecular biology-the unidirectional transfer of genetic information from nucleic acids to proteins [F. H. Crick, in Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules, edited by F. K. Sanders (Cambridge University Press, Cambridge, 1958), pp. 138-163; and F. Crick, Nature 227, 561 (1970)].
Collapse
Affiliation(s)
- S. Furkan Ozturk
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dimitar D. Sasselov
- Department of Astronomy, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
11
|
Fuentes-Carreón CA, Cruz-Castañeda JA, Mateo-Martí E, Negrón-Mendoza A. Stability of DL-Glyceraldehyde under Simulated Hydrothermal Conditions: Synthesis of Sugar-like Compounds in an Iron(III)-Oxide-Hydroxide-Rich Environment under Acidic Conditions. Life (Basel) 2022; 12:life12111818. [PMID: 36362973 PMCID: PMC9696992 DOI: 10.3390/life12111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
Researchers have suggested that the condensation of low-molecular-weight aldehydes under basic conditions (e.g., pH > 11) is the prebiotic reaction responsible for the abiotic formation of carbohydrates. It has also been suggested that surface hydrothermal systems were ubiquitous during the early Archean period. Therefore, the catalysis of prebiotic carbohydrate synthesis by metallic oxide minerals under acidic conditions in these environments seems considerably more probable than the more widely hypothesized reaction routes. This study investigates the stability of DL-glyceraldehyde and its reaction products under the simulated conditions of an Archean surface hydrothermal system. The Hveradalur geothermal area in Iceland was selected as an analog of such a system. HPLC-ESIMS, UV−Vis spectroscopy, Raman spectroscopy and XPS spectroscopy were used to analyze the reaction products. In hot (323 K) and acidic (pH 2) solutions under the presence of suspended iron(III) oxide hydroxide powder, DL-glyceraldehyde readily decomposes into low-molecular-weight compounds and transforms into sugar-like molecules via condensation reactions.
Collapse
Affiliation(s)
- Claudio Alejandro Fuentes-Carreón
- Posgrado en Ciencias de la Tierra, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence:
| | | | - Eva Mateo-Martí
- Centro de Astrobiología (CAB) CSIC-INTA, Ctra. de Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
12
|
A novel approach to the synthesis of substituted ribose and furan derivatives: biological activity of dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Krishnamurthy R, Goldman AD, Liberles DA, Rogers KL, Tor Y. Nucleobases in Meteorites to Nucleobases in RNA and DNA? J Mol Evol 2022; 90:328-331. [PMID: 35960316 DOI: 10.1007/s00239-022-10069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Nucleic acids likely played a foundational role in the origin of life. However, the prebiotic chemistry of nucleoside and nucleotide synthesis has proved challenging on a number of fronts. The recent discovery of both pyrimidine and purine nucleobases in carbonaceous chondrite meteorites has garnered much attention from both the popular press and the scientific community. Here, we discuss these findings in the context of nucleoside/nucleotide prebiotic chemistry. We consider that the main challenge of prebiotic nucleoside synthesis, that of nucleosidic bond formation, is not addressed by the identification nucleobases in meteorites. We further discuss issues of selection that arise from the observation that such meteorites contain both canonical and non-canonical nucleobases. In sum, we argue that, despite the major analytical achievement of identifying and characterizing nucleobases in meteorites, this observation does little to advance our understanding of the prebiotic chemistry that could have led to the first genetic molecules that gave rise to us.
Collapse
Affiliation(s)
- Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. .,NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA.
| | - Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, USA
| | - Karyn L Rogers
- Department of Earth and Environmental Sciences and Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Amante G, Sponer JE, Sponer J, Saija F, Cassone G. A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1012. [PMID: 35892991 PMCID: PMC9394336 DOI: 10.3390/e24081012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022]
Abstract
The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter-including its quantum nature-under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schro¨dinger equation at different levels of approximation (i.e., density functional theory)-such as ab initio molecular dynamics-and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts. In addition, recently developed metadynamics methods coupled with first-principles simulations are here reviewed and exploited to answer to old enigmas and to propose novel scenarios in the exponentially growing research field embedding the study of the chemical origins of life.
Collapse
Affiliation(s)
- Gabriele Amante
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, Università degli Studi di Messina, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Judit E. Sponer
- Institute of Biophysics of the Czech Academy of Sciences (IBP-CAS), Kràlovopolskà 135, 61265 Brno, Czech Republic; (J.E.S.); (J.S.)
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences (IBP-CAS), Kràlovopolskà 135, 61265 Brno, Czech Republic; (J.E.S.); (J.S.)
| | - Franz Saija
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), V. le F. Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), V. le F. Stagno d’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
15
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
16
|
Robinson WE, Daines E, van Duppen P, de Jong T, Huck WTS. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network. Nat Chem 2022; 14:623-631. [PMID: 35668214 DOI: 10.1038/s41557-022-00956-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
The evolution of life from the prebiotic environment required a gradual process of chemical evolution towards greater molecular complexity. Elaborate prebiotically relevant synthetic routes to the building blocks of life have been established. However, it is still unclear how functional chemical systems evolved with direction using only the interaction between inherent molecular chemical reactivity and the abiotic environment. Here we demonstrate how complex systems of chemical reactions exhibit well-defined self-organization in response to varying environmental conditions. This self-organization allows the compositional complexity of the reaction products to be controlled as a function of factors such as feedstock and catalyst availability. We observe how Breslow's cycle contributes to the reaction composition by feeding C2 building blocks into the network, alongside reaction pathways dominated by formaldehyde-driven chain growth. The emergence of organized systems of chemical reactions in response to changes in the environment offers a potential mechanism for a chemical evolution process that bridges the gap between prebiotic chemical building blocks and the origin of life.
Collapse
Affiliation(s)
- William E Robinson
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Elena Daines
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Peer van Duppen
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Thijs de Jong
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|
17
|
Melosso M, Bizzocchi L, Gazzeh H, Tonolo F, Guillemin JC, Alessandrini S, Rivilla VM, Dore L, Barone V, Puzzarini C. Gas-phase identification of ( Z)-1,2-ethenediol, a key prebiotic intermediate in the formose reaction. Chem Commun (Camb) 2022; 58:2750-2753. [PMID: 35119446 DOI: 10.1039/d1cc06919e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prebiotic sugars are thought to be formed on primitive Earth by the formose reaction. However, their formation is not fully understood and it is plausible that key intermediates could have formed in extraterrestrial environments and subsequently delivered on early Earth by cometary bodies. 1,2-Ethenediol, the enol form of glycolaldehyde, represents a highly reactive intermediate of the formose reaction and is likely detectable in the interstellar medium. Here, we report the identification and first characterization of (Z)-1,2-ethenediol by means of rotational spectroscopy. The title compound has been produced in the gas phase by flash vacuum pyrolysis of bis-exo-5-norbornene-2,3-diol at 750 °C, through a retro-Diels-Alder reaction. The spectral analysis was guided by high-level quantum-chemical calculations, which predicted spectroscopic parameters in very good agreement with the experiment. Our study provides accurate spectral data to be used for searches of (Z)-1,2-ethenediol in the interstellar space.
Collapse
Affiliation(s)
- Mattia Melosso
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Superiore Meridionale, Università di Napoli Federico II, Largo San Marcellino 10, 80138 Naples, Italy
| | - Luca Bizzocchi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Houda Gazzeh
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.,Université de Monastir, Avenue Taher Hadded B. P 56, Monastir 5000, Tunisia
| | - Francesca Tonolo
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Jean-Claude Guillemin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Víctor M Rivilla
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.,INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Florence, Italy
| | - Luca Dore
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
18
|
Knezic B, Keyhani-Goldau S, Schwalbe H. Mapping the conformational landscape of the neutral network of RNA sequences that connect two functional distinctly different ribozymes. Chembiochem 2022; 23:e202200022. [PMID: 35112772 PMCID: PMC9305247 DOI: 10.1002/cbic.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/02/2022] [Indexed: 11/08/2022]
Abstract
During evolution of an RNA world, the development of enzymatic function was essential. Such enzymatic function was linked to RNA sequences capable of adopting specific RNA folds that possess catalytic pockets to promote catalysis. Within this primordial RNA world, initially evolved self-replicating ribozymes presumably mutated to ribozymes with new functions. In 2000, Schultes and Bartel investigated such conversion from one ribozyme to a new ribozyme with distinctly different catalytic functions. Within a neutral network that linked these two prototype ribozymes, a single RNA chain could be identified that exhibited both enzymatic functions. This system serves as a paradigm for an evolutionary system that allows neutral drifts by stepwise mutation from one ribozyme into a different ribozyme without loss of intermittent function. Here, we investigated this complex functional diversification by analyzing several RNA sequences within this neutral network between two ribozymes with class III ligase activity and with self-cleavage reactivity. We utilized rapid RNA sample preparation for NMR spectroscopic studies together with SHAPE analysis and in-line probing to characterize secondary structure changes within the neutral network. Our investigations allowed delineation of the 2 nd structure space and by comparison with the previously determined catalytic function allowed correlation of the structure-function relation of ribozyme function in this neutral network.
Collapse
Affiliation(s)
- Bozana Knezic
- Goethe-Universitat Frankfurt am Main, Biochemistry, Chemistry, and Pharmacy, GERMANY
| | - Sara Keyhani-Goldau
- Goethe-Universitat Frankfurt am Main, Biochemistry, Chemistry, and Pharmacy, GERMANY
| | - Harald Schwalbe
- Goethe-Universitat Frankfurt am Main, Institut für Organische Chemie und Chemische Biologie, Max-von-Laue-Str. 7, 60438, Frankfurt, GERMANY
| |
Collapse
|
19
|
Xu J, Green NJ, Russell DA, Liu Z, Sutherland JD. Prebiotic Photochemical Coproduction of Purine Ribo- and Deoxyribonucleosides. J Am Chem Soc 2021; 143:14482-14486. [PMID: 34469129 PMCID: PMC8607323 DOI: 10.1021/jacs.1c07403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
hypothesis that life on Earth may have started with a heterogeneous
nucleic acid genetic system including both RNA and DNA has attracted
broad interest. The recent finding that two RNA subunits (cytidine,
C, and uridine, U) and two DNA subunits (deoxyadenosine, dA, and deoxyinosine,
dI) can be coproduced in the same reaction network, compatible with
a consistent geological scenario, supports this theory. However, a
prebiotically plausible synthesis of the missing units (purine ribonucleosides
and pyrimidine deoxyribonucleosides) in a unified reaction network
remains elusive. Herein, we disclose a strictly stereoselective and
furanosyl-selective synthesis of purine ribonucleosides (adenosine,
A, and inosine, I) and purine deoxynucleosides (dA and dI), alongside
one another, via a key photochemical reaction of thioanhydroadenosine
with sulfite in alkaline solution (pH 8–10). Mechanistic studies
suggest an unexpected recombination of sulfite and nucleoside alkyl
radicals underpins the formation of the ribo C2′–O bond.
The coproduction of A, I, dA, and dI from a common intermediate, and
under conditions likely to have prevailed in at least some primordial
locales, is suggestive of the potential coexistence of RNA and DNA
building blocks at the dawn of life.
Collapse
Affiliation(s)
- Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Nicholas J Green
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - David A Russell
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| |
Collapse
|
20
|
Green NJ, Xu J, Sutherland JD. Illuminating Life's Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules. J Am Chem Soc 2021; 143:7219-7236. [PMID: 33880920 PMCID: PMC8240947 DOI: 10.1021/jacs.1c01839] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 01/15/2023]
Abstract
Solar radiation is the principal source of energy available to Earth and has unmatched potential for the synthesis of organic material from primordial molecular building blocks. As well as providing the energy for photochemical synthesis of (proto)biomolecules of interest in origins of life-related research, light has also been found to often provide remarkable selectivity in these processes, for molecules that function in extant biology and against those that do not. As such, light is heavily implicated as an environmental input on the nascent Earth that was important for the emergence of complex yet selective chemical systems underpinning life. Reactivity and selectivity in photochemical prebiotic synthesis are discussed, as are their implications for origins of life scenarios and their plausibility, and the future directions of this research.
Collapse
Affiliation(s)
- Nicholas J. Green
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| |
Collapse
|
21
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
22
|
Tran QP, Adam ZR, Fahrenbach AC. Prebiotic Reaction Networks in Water. Life (Basel) 2020; 10:E352. [PMID: 33339192 PMCID: PMC7765580 DOI: 10.3390/life10120352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
A prevailing strategy in origins of life studies is to explore how chemistry constrained by hypothetical prebiotic conditions could have led to molecules and system level processes proposed to be important for life's beginnings. This strategy has yielded model prebiotic reaction networks that elucidate pathways by which relevant compounds can be generated, in some cases, autocatalytically. These prebiotic reaction networks provide a rich platform for further understanding and development of emergent "life-like" behaviours. In this review, recent advances in experimental and analytical procedures associated with classical prebiotic reaction networks, like formose and Miller-Urey, as well as more recent ones are highlighted. Instead of polymeric networks, i.e., those based on nucleic acids or peptides, the focus is on small molecules. The future of prebiotic chemistry lies in better understanding the genuine complexity that can result from reaction networks and the construction of a centralised database of reactions useful for predicting potential network evolution is emphasised.
Collapse
Affiliation(s)
| | - Zachary R. Adam
- Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | | |
Collapse
|
23
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
24
|
Haas M, Lamour S, Christ SB, Trapp O. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting. Commun Chem 2020; 3:140. [PMID: 36703456 PMCID: PMC9814773 DOI: 10.1038/s42004-020-00387-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023] Open
Abstract
The formation of carbohydrates represents an essential step to provide building blocks and a source of chemical energy in several models for the emergence of life. Formaldehyde, glycolaldehyde and a basic catalyst are the initial components forming a variety of sugar molecules in the cascade-type multi-step formose reaction. While numerous side reactions and even deterioration can be observed in aqueous media, selective prebiotic sugar formation is feasible in solid-state, mechanochemical reactions and might have occurred in early geochemistry. However, the precise role of different basic catalysts and the influence of the atmospheric conditions in the solid-state formose reaction remain unknown. Here we show, that in a primordial scenario the mechanochemical formose reaction is capable to form monosaccharides with a broad variety of mineral classes as catalysts with only minute amounts of side products such as lactic acid or methanol, independent of the atmospheric conditions. The results give insight into recent findings of formose sugars on meteorites and offer a water-free and robust pathway for monosaccharides independent of the external conditions both for the early Earth or an extra-terrestrial setting.
Collapse
Affiliation(s)
- Maren Haas
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| | - Saskia Lamour
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Babette Christ
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Oliver Trapp
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| |
Collapse
|
25
|
Yi R, Tran QP, Ali S, Yoda I, Adam ZR, Cleaves HJ, Fahrenbach AC. A continuous reaction network that produces RNA precursors. Proc Natl Acad Sci U S A 2020; 117:13267-13274. [PMID: 32487725 PMCID: PMC7306801 DOI: 10.1073/pnas.1922139117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Continuous reaction networks, which do not rely on purification or timely additions of reagents, serve as models for chemical evolution and have been demonstrated for compounds thought to have played important roles for the origins of life such as amino acids, hydroxy acids, and sugars. Step-by-step chemical protocols for ribonucleotide synthesis are known, but demonstrating their synthesis in the context of continuous reaction networks remains a major challenge. Herein, compounds proposed to be important for prebiotic RNA synthesis, including glycolaldehyde, cyanamide, 2-aminooxazole, and 2-aminoimidazole, are generated from a continuous reaction network, starting from an aqueous mixture of NaCl, NH4Cl, phosphate, and HCN as the only carbon source. No well-timed addition of any other reagents is required. The reaction network is driven by a combination of γ radiolysis and dry-down. γ Radiolysis results in a complex mixture of organics, including the glycolaldehyde-derived glyceronitrile and cyanamide. This mixture is then dried down, generating free glycolaldehyde that then reacts with cyanamide/NH3 to furnish a combination of 2-aminooxazole and 2-aminoimidazole. This continuous reaction network models how precursors for generating RNA and other classes of compounds may arise spontaneously from a complex mixture that originates from simple reagents.
Collapse
Affiliation(s)
- Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Quoc Phuong Tran
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarfaraz Ali
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Isao Yoda
- Co-60 Radiation Facility, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Zachary R Adam
- Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721
- Blue Marble Space Institute of Science, Seattle, WA 98154
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA 98154
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, NJ 08540
| | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
26
|
Sadek KU, Mekheimer RA, Abd‐Elmonem M, Elnagdi MH. Recent developments in the utility of Zn( L‐proline) 2as benign and recyclable metallo‐organocatalyst in organic synthesis. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kamal Usef Sadek
- Chemistry Department, Faculty of ScienceMinia University Minia 61519 Egypt
| | | | | | | |
Collapse
|
27
|
Javed M, Ahmad MI, Javed H, Naseem S. D-ribose and pathogenesis of Alzheimer's disease. Mol Biol Rep 2020; 47:2289-2299. [PMID: 31933261 DOI: 10.1007/s11033-020-05243-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022]
Abstract
It is estimated that the global prevalence of dementia will rise as high as 24 million and predicted to be double in every 20 years which is attributed to the fact that the ageing population is increasing and so more individuals are at risk of developing neurodegenerative diseases like Alzheimer's. Many scientists favored glycation of proteins such as tau, amyloid beta (Aβ) etc. as one of the important risk factor in Alzheimer's disease (AD). Since, D-ribose shows highest glycation ability among other sugars hence, produces advanced glycation end products (AGEs) rapidly. However, there are several other mechanisms suggested by researchers through which D-ribose may cause cognitive impairments. There is a concern related to diabetic patients since they also suffer from D-ribose metabolism, may be more prone to AD risk. Thus, it is imperative that the pathogenesis and the pathways involved in AD progression are explored in the light of ribosylation and AGEs formation for identifying suitable diagnostics marker for early diagnosis or finding promising therapeutic outcomes.
Collapse
Affiliation(s)
- Mehjbeen Javed
- Aquatic Toxicology Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, U.P., India
| | - Md Irshad Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., India.,Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Hina Javed
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Sufia Naseem
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
28
|
Abstract
The chemistry of abiotic nucleotide synthesis of RNA and DNA in the context of their prebiotic origins on early earth is a continuing challenge. How did (or how can) the nucleotides form and assemble from the small molecule inventories and under conditions that prevailed on early earth 3.5-4 billion years ago? This review provides a background and up-to-date progress that will allow the reader to judge where the field stands currently and what remains to be achieved. We start with a brief primer on the biological synthesis of nucleotides, followed by an extensive focus on the prebiotic formation of the components of nucleotides-either via the synthesis of ribose and the canonical nucleobases and then joining them together or by building both the conjoined sugar and nucleobase, part-by-part-toward the ultimate goal of forming RNA and DNA by polymerization. The review will emphasize that there are-and will continue to be-many more questions than answers from the synthetic, mechanistic, and analytical perspectives. We wrap up the review with a cautionary note in this context about coming to conclusions as to whether the problem of chemistry of prebiotic nucleotide synthesis has been solved.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ravi Kumar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
29
|
Furukawa Y, Chikaraishi Y, Ohkouchi N, Ogawa NO, Glavin DP, Dworkin JP, Abe C, Nakamura T. Extraterrestrial ribose and other sugars in primitive meteorites. Proc Natl Acad Sci U S A 2019; 116:24440-24445. [PMID: 31740594 PMCID: PMC6900709 DOI: 10.1073/pnas.1907169116] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sugars are essential molecules for all terrestrial biota working in many biological processes. Ribose is particularly essential as a building block of RNA, which could have both stored information and catalyzed reactions in primitive life on Earth. Meteorites contain a number of organic compounds including key building blocks of life, i.e., amino acids, nucleobases, and phosphate. An amino acid has also been identified in a cometary sample. However, the presence of extraterrestrial bioimportant sugars remains unclear. We analyzed sugars in 3 carbonaceous chondrites and show evidence of extraterrestrial ribose and other bioessential sugars in primitive meteorites. The 13C-enriched stable carbon isotope compositions (δ13C vs.VPDB) of the detected sugars show that the sugars are of extraterrestrial origin. We also conducted a laboratory simulation experiment of a potential sugar formation reaction in space. The compositions of pentoses in meteorites and the composition of the products of the laboratory simulation suggest that meteoritic sugars were formed by formose-like processes. The mineral compositions of these meteorites further suggest the formation of these sugars both before and after the accretion of their parent asteroids. Meteorites were carriers of prebiotic organic molecules to the early Earth; thus, the detection of extraterrestrial sugars in meteorites establishes the existence of natural geological routes to make and preserve them as well as raising the possibility that extraterrestrial sugars contributed to forming functional biopolymers like RNA on the early Earth or other primitive worlds.
Collapse
Affiliation(s)
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, 060-0819 Sapporo, Japan
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Nanako O Ogawa
- Biogeochemistry Program, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771
| | - Chiaki Abe
- Department of Earth Science, Tohoku University, 980-8578 Sendai, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, 980-8578 Sendai, Japan
| |
Collapse
|
30
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
31
|
Cleaves HJ, Butch C, Burger PB, Goodwin J, Meringer M. One Among Millions: The Chemical Space of Nucleic Acid-Like Molecules. J Chem Inf Model 2019; 59:4266-4277. [PMID: 31498614 DOI: 10.1021/acs.jcim.9b00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biology encodes hereditary information in DNA and RNA, which are finely tuned to their biological functions and modes of biological production. The central role of nucleic acids in biological information flow makes them key targets of pharmaceutical research. Indeed, other nucleic acid-like polymers can play similar roles to natural nucleic acids both in vivo and in vitro; yet despite remarkable advances over the last few decades, much remains unknown regarding which structures are compatible with molecular information storage. Chemical space describes the structures and properties of molecules that could exist within a given molecular formula or other classification system. Using structure generation methods, we explore nucleic acid analogues within the formula ranges BC3-7H5-15O2-4 and BC3-6H5-15N1-2O0-4, where B is a recognition element (e.g., a nucleobase). Other restrictions included two obligatory points of attachment for inclusion into a linear polymer and substructures predicting chemical stability. These sets contain 86,007 (CHO) and 75,309 (CHNO) compositionally isomeric structures, representing 706,568 CHO and 454,422 CHNO stereoisomers, that diversely and densely occupy this space. These libraries point toward there being large spaces of unexplored chemistry relevant to pharmacology and biochemistry and efforts to understand the origins of life.
Collapse
Affiliation(s)
- Henderson James Cleaves
- Earth-Life Science Institute , Tokyo Institute of Technology , 2-12-IE-1 Ookayama , Meguro-ku , Tokyo 152-8551 , Japan.,Institute for Advanced Study , Princeton , New Jersey 08540 , United States.,Blue Marble Space Institute for Science , 1515 Gallatin St. NW , Washington , DC 20011 , United States
| | - Christopher Butch
- Earth-Life Science Institute , Tokyo Institute of Technology , 2-12-IE-1 Ookayama , Meguro-ku , Tokyo 152-8551 , Japan.,Blue Marble Space Institute for Science , 1515 Gallatin St. NW , Washington , DC 20011 , United States.,Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Pieter Buys Burger
- Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Jay Goodwin
- Department of Chemistry , Emory University , 1515 Dickey Dr. , Atlanta , Georgia 30322 , United States
| | - Markus Meringer
- German Aerospace Center (DLR) , Earth Observation Center (EOC) , Münchner Straße 20 , 82234 Oberpfaffenhofen-Wessling , Germany
| |
Collapse
|
32
|
Nitrogen heterocycles form peptide nucleic acid precursors in complex prebiotic mixtures. Sci Rep 2019; 9:9281. [PMID: 31243303 PMCID: PMC6594999 DOI: 10.1038/s41598-019-45310-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022] Open
Abstract
The ability to store information is believed to have been crucial for the origin and evolution of life; however, little is known about the genetic polymers relevant to abiogenesis. Nitrogen heterocycles (N-heterocycles) are plausible components of such polymers as they may have been readily available on early Earth and are the means by which the extant genetic macromolecules RNA and DNA store information. Here, we report the reactivity of numerous N-heterocycles in highly complex mixtures, which were generated using a Miller-Urey spark discharge apparatus with either a reducing or neutral atmosphere, to investigate how N-heterocycles are modified under plausible prebiotic conditions. High throughput mass spectrometry was used to identify N-heterocycle adducts. Additionally, tandem mass spectrometry and nuclear magnetic resonance spectroscopy were used to elucidate reaction pathways for select reactions. Remarkably, we found that the majority of N-heterocycles, including the canonical nucleobases, gain short carbonyl side chains in our complex mixtures via a Strecker-like synthesis or Michael addition. These types of N-heterocycle adducts are subunits of the proposed RNA precursor, peptide nucleic acids (PNAs). The ease with which these carbonylated heterocycles form under both reducing and neutral atmospheres is suggestive that PNAs could be prebiotically feasible on early Earth.
Collapse
|
33
|
Chemical Basis of Biological Homochirality during the Abiotic Evolution Stages on Earth. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios.
Collapse
|
34
|
Wang Y, Shi C, Chen Y, Yu L, Li Y, Wei Y, Li W, He R. Formaldehyde produced from d-ribose under neutral and alkaline conditions. Toxicol Rep 2019; 6:298-304. [PMID: 31008059 PMCID: PMC6454226 DOI: 10.1016/j.toxrep.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/09/2022] Open
Abstract
Formaldehyde is toxic and has been implicated in the pathologies of various diseases, such as cognitive impairment and cancer. Though d-ribose is widely studied and provided as a supplement to food such as flavor and drinks, no laboratories have reported that d-ribose is involved in the formaldehyde production. Here, we show that formaldehyde is produced from d-ribose in lysine or glycine solution and Tris-HCl buffer under neutral and alkaline conditions. Intraperitoneal injection of C57BL/6J mice with d-ribose significantly increased the concentration of brain formaldehyde, compared to the injection with d-glucose or saline. These data suggest that formaldehyde levels should be monitored for the people who take d-ribose as a supplement.
Collapse
Affiliation(s)
- Yujing Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenggang Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Chen
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lexiang Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiman Li
- The Department of Biomedical Sciences in Imperial College London, UK
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiwei Li
- Integrated Laboratory of TCM and Western Medicine, Peking University First Hospital, Xicheng District, Beijing, 100034, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
35
|
Abstract
D-ribose and D-arabinose differ only by the steric orientation of their C2-OH groups. The initial reactions and emergence of RNA depended on the position, reactivity, and flexibility of the C2-OH moiety in the ribose molecule. The steric relationship of the C2- and C3-OH groups favored the selection of ribose, ribonucleotide, and RNA synthesis and excluded the possibility of xenonucleic acid-based life on Earth. This brief review provides a hypothesis based on the absence of nucleotides and enzymes under prebiotic conditions and on the polymerization of ribose 5-phosphate units leading to the polarized formation of the ribose-phosphate backbone. The strong covalent bond formation in the sugar-phosphate backbone was followed by the somewhat less reactive interaction between ribose and nucleobase and supplemented by even weaker hydrogen-bonded and stacking interactions. This hypothesis proposes a scheme how prebiotic random-sequence RNA was formed under abiotic conditions and hydrolyzed to oligomers and nucleotides. The term random-sequence prebiotic RNA refers to nucleobases attached randomly to the ribose-phosphate backbone and not to cellular RNA sequences as proteins and cells did not probably exist at the time of abiotic RNA formation. It is hypothesized that RNA generated under abiotic conditions containing random nucleobases was hydrolyzed to nucleotides that served as a pool for the selected synthesis of genetic RNA.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Eckhardt AK, Wende RC, Schreiner PR. 1,3-Dioxolane-4-ol Hemiacetal Stores Formaldehyde and Glycolaldehyde in the Gas-Phase. J Am Chem Soc 2018; 140:12333-12336. [PMID: 30187747 DOI: 10.1021/jacs.8b07480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the spontaneous gas-phase formation of 1,3-dioxolane-4-ol, a mixed hemiacetal resulting from the addition of glycolaldehyde to formaldehyde. It was spectroscopically characterized by matching matrix IR spectra with coupled cluster computations. The formation of the hemiacetal must be surface-catalyzed owing to the very high computed reaction barrier of 39.8 kcal mol-1. The reaction barrier is lowered by almost 20 kcal mol-1 when a single water molecule acts as a proton shuttle in a favorable six-membered transition state. We characterized the hemiacetal in solution via NMR spectroscopy and followed its decomposition into its constituents within a few hours; it also dissociates upon contact with water. Sugars form in the presence of Ca(OH)2, in line with formose-type reactivity. 1,3-Dioxolane-4-ol may be considered a storage form for formaldehyde and glycolaldehyde that is rather stable in the gas-phase.
Collapse
Affiliation(s)
- André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Raffael C Wende
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
37
|
Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer. Nat Chem 2018; 10:1141-1147. [DOI: 10.1038/s41557-018-0128-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
|
38
|
Ritson DJ, Battilocchio C, Ley SV, Sutherland JD. Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry. Nat Commun 2018; 9:1821. [PMID: 29739945 PMCID: PMC5940729 DOI: 10.1038/s41467-018-04147-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/06/2018] [Indexed: 11/09/2022] Open
Abstract
When considering life's aetiology, the first questions that must be addressed are "how?" and "where?" were ostensibly complex molecules, considered necessary for life's beginning, constructed from simpler, more abundant feedstock molecules on primitive Earth. Previously, we have used multiple clues from the prebiotic synthetic requirements of (proto)biomolecules to pinpoint a set of closely related geochemical scenarios that are suggestive of flow and semi-batch chemistries. We now wish to report a multistep, uninterrupted synthesis of a key heterocycle (2-aminooxazole) en route to activated nucleotides starting from highly plausible, prebiotic feedstock molecules under conditions which mimic this scenario. Further consideration of the scenario has uncovered additional pertinent and novel aspects of prebiotic chemistry, which greatly enhance the efficiency and plausibility of the synthesis.
Collapse
Affiliation(s)
- Dougal J Ritson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Claudio Battilocchio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Syngenta Crop Protection, Process Research, Schaffhauserstrasse 101, CH-4332, Stein, Switzerland
| | - Steven V Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
39
|
Šponer JE, Szabla R, Góra RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civiš S, Šponer J. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 2018; 18:20047-66. [PMID: 27136968 DOI: 10.1039/c6cp00670a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments. Modern computations can provide unique atomic-level insights into the structural and electronic aspects as well as the energetics of key prebiotic chemical reactions. Many of these insights are not directly obtainable from the experimental techniques and the computations are thus becoming indispensable for proper interpretation of many experiments and for qualified predictions. This review illustrates the synergy between experiment and theory in the origin of life research focusing on the prebiotic synthesis of various nucleic acid building blocks and on the self-assembly of nucleotides leading to the first functional oligonucleotides.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Robert W Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Fabio Pietrucci
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
40
|
Fialho DM, Clarke KC, Moore MK, Schuster GB, Krishnamurthy R, Hud NV. Glycosylation of a model proto-RNA nucleobase with non-ribose sugars: implications for the prebiotic synthesis of nucleosides. Org Biomol Chem 2018; 16:1263-1271. [DOI: 10.1039/c7ob03017g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of the earliest nucleosides is an important, but unresolved, element of the origins of life that may have been facilitated by heterocycle reactivity and self-assembly.
Collapse
Affiliation(s)
- David M. Fialho
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA 30033
- NSF-NASA Center for Chemical Evolution
| | - Kimberly C. Clarke
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA 30033
- NSF-NASA Center for Chemical Evolution
| | - Megan K. Moore
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA 30033
- NSF-NASA Center for Chemical Evolution
| | - Gary B. Schuster
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA 30033
- NSF-NASA Center for Chemical Evolution
| | | | - Nicholas V. Hud
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA 30033
- NSF-NASA Center for Chemical Evolution
| |
Collapse
|
41
|
Cassone G, Sponer J, Sponer JE, Pietrucci F, Saitta AM, Saija F. Synthesis of (d)-erythrose from glycolaldehyde aqueous solutions under electric field. Chem Commun (Camb) 2018; 54:3211-3214. [DOI: 10.1039/c8cc00045j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Miller-like numerical experiment demonstrates that ubiquitarious molecules such as water and glycolaldehyde can synthesize (d)-erythrose, one of the direct precursors of ribose.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics, Czech Academy of Sciences
- 61265 Brno
- Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Czech Academy of Sciences
- 61265 Brno
- Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University
- 77146 Olomouc
| | - Judit E. Sponer
- Institute of Biophysics, Czech Academy of Sciences
- 61265 Brno
- Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University
- 77146 Olomouc
| | - Fabio Pietrucci
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Muséum national d’Histoire naturelle, Institut de Recherche pour le Développement
- F-75005 Paris
- France
| | - A. Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Muséum national d’Histoire naturelle, Institut de Recherche pour le Développement
- F-75005 Paris
- France
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37
- 98158 Messina
- Italy
| |
Collapse
|
42
|
Rivas M, Becerra A, Lazcano A. On the Early Evolution of Catabolic Pathways: A Comparative Genomics Approach. I. The Cases of Glucose, Ribose, and the Nucleobases Catabolic Routes. J Mol Evol 2017; 86:27-46. [PMID: 29189888 DOI: 10.1007/s00239-017-9822-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/26/2017] [Indexed: 11/29/2022]
Abstract
Compared with the large corpus of published work devoted to the study of the origin and early development of anabolism, little attention has been given to the discussion of the early evolution of catabolism in spite of its significance. In the present study, we have used comparative genomics to explore the evolution and phylogenetic distribution of the enzymes that catalyze the extant catabolic pathways of the monosaccharides glucose and ribose, as well as those of the nucleobases adenine, guanine, cytosine, uracil, and thymine. Based on the oxygen dependence of the enzymes, their conservation, and evolution, we speculate on the relative antiquity of the pathways. Our results allow us to suggest which catabolic pathways and enzymes may have already been present in the last common ancestor. We conclude that the enzymatic degradations of ribose, as well as those of purines adenine and guanine, are among the most ancient catabolic pathways which can be traced by protein-based methodologies.
Collapse
Affiliation(s)
- Mario Rivas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407, Cd. Universitaria, 04510, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407, Cd. Universitaria, 04510, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407, Cd. Universitaria, 04510, Mexico City, Mexico. .,Miembro de El Colegio Nacional, Mexico City, Mexico.
| |
Collapse
|
43
|
Kawamura K, Maurel MC. Walking over 4 Gya: Chemical Evolution from Photochemistry to Mineral and Organic Chemistries Leading to an RNA World. ORIGINS LIFE EVOL B 2017; 47:281-296. [PMID: 28432500 DOI: 10.1007/s11084-017-9537-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/20/2017] [Indexed: 01/25/2023]
Abstract
Here we overview the chemical evolution of RNA molecules from inorganic material through mineral-mediated RNA formation compatible with the plausible early Earth environments. Pathways from the gas-phase reaction to the formation of nucleotides, activation and oligomerization of nucleotides, seem to be compatible with specific environments. However, how these steps interacted is not clear since the chemical conditions are frequently different and can be incompatible between them; thus the products would have migrated from one place to another, suitable for further chemical evolution. In this review, we summarize certain points to scrutinize the RNA World hypothesis.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Human Environmental Studies, Hiroshima Shudo University, 1-1-1 Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan.
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHE, Sorbonne Universités, 50, 57 rue Cuvier, 75005, Paris, CP, France
| |
Collapse
|
44
|
Walker SI. Origins of life: a problem for physics, a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:092601. [PMID: 28593934 DOI: 10.1088/1361-6633/aa7804] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.
Collapse
Affiliation(s)
- Sara Imari Walker
- School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, United States of America. Blue Marble Space Institute of Science, Seattle, WA, United States of America
| |
Collapse
|
45
|
|
46
|
Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat Chem 2017. [DOI: 10.1038/nchem.2703] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Akouche M, Jaber M, Zins EL, Maurel MC, Lambert JF, Georgelin T. Thermal Behavior of d-Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for Prebiotic Chemistry. Chemistry 2016; 22:15834-15846. [PMID: 27624284 DOI: 10.1002/chem.201601418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 12/13/2022]
Abstract
Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl2 , CaCl2 , SrCl2 , CuCl2 , FeCl2 , FeCl3 , ZnCl2 ). A combination of 13 C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn2+ stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis.
Collapse
Affiliation(s)
- Mariame Akouche
- Sorbonne Universités, UPMC Univ Paris 06 and CNRS UMR 7197, LRS case courrier 178, UPMC 4 Pl. Jussieu, 75252, PARIS CEDEX 05, France
| | - Maguy Jaber
- Sorbonne Universités, UPMC Univ Paris 06 and CNRS UMR 8220, LAMS, case courrier 225, UPMC 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | - Emilie-Laure Zins
- Sorbonne Universités, UPMC Univ Paris 06 and CNRS UMR 8233, MONARIS, case courrier, UPMC 4 Pl. Jussieu, 75252, Paris CEDEX 05, France
| | | | - Jean-Francois Lambert
- Sorbonne Universités, UPMC Univ Paris 06 and CNRS UMR 7197, LRS case courrier 178, UPMC 4 Pl. Jussieu, 75252, PARIS CEDEX 05, France.
| | - Thomas Georgelin
- Sorbonne Universités, UPMC Univ Paris 06 and CNRS UMR 7197, LRS case courrier 178, UPMC 4 Pl. Jussieu, 75252, PARIS CEDEX 05, France.
| |
Collapse
|
48
|
Rana AK, Ankri S. Reviving the RNA World: An Insight into the Appearance of RNA Methyltransferases. Front Genet 2016; 7:99. [PMID: 27375676 PMCID: PMC4893491 DOI: 10.3389/fgene.2016.00099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
RNA, the earliest genetic and catalytic molecule, has a relatively delicate and labile chemical structure, when compared to DNA. It is prone to be damaged by alkali, heat, nucleases, or stress conditions. One mechanism to protect RNA or DNA from damage is through site-specific methylation. Here, we propose that RNA methylation began prior to DNA methylation in the early forms of life evolving on Earth. In this article, the biochemical properties of some RNA methyltransferases (MTases), such as 2′-O-MTases (Rlml/RlmN), spOUT MTases and the NSun2 MTases are dissected for the insight they provide on the transition from an RNA world to our present RNA/DNA/protein world.
Collapse
Affiliation(s)
- Ajay K Rana
- Division of Biology, State Forensic Science Laboratory, Ministry of Home Affairs, Government of Jharkhand Ranchi, India
| | - Serge Ankri
- Department of Molecular Microbiology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology Haifa, Israel
| |
Collapse
|
49
|
Zeffiro A, Lazzaroni S, Merli D, Profumo A, Buttafava A, Serpone N, Dondi D. Formation of Hexamethylenetetramine (HMT) from HCHO and NH3--Relevance to Prebiotic Chemistry and B3LYP Consideration. ORIGINS LIFE EVOL B 2016; 46:223-31. [PMID: 26680445 DOI: 10.1007/s11084-015-9479-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/09/2015] [Indexed: 11/26/2022]
Abstract
Despite its importance in the prebiotic and biochemical fields, a complete theoretical study of the formation of hexamethylenetetramine (HMT) starting from its precursors ammonia and formaldehyde has not received due considerations in the literature with regard to the thermodynamic feasibility of many of the mechanistically proposed intermediates in its formation. Most of the studies in this area have been mostly concerned with the initial steps of the reaction between formaldehyde and ammonia, while poor attention is dedicated to successive steps. In this article, different results from published literature were critically considered and the most probable hypothesis regarding the mechanism of HMT formation is discussed on the basis of B3LYP calculations of free energies.
Collapse
Affiliation(s)
- Alberto Zeffiro
- Dipartimento di Chimica, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, 27100, Italy
| | - Simone Lazzaroni
- Istituto Nazionale di Ricerca Metrologica (INRIM), Unità di Radiochimica e Spettroscopia, c/o Dipartimento di Chimica, Università degli Studi di Pavia, V.le Taramelli 12, 27100, Pavia, Italy.
| | - Daniele Merli
- Dipartimento di Chimica, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, 27100, Italy
| | - Antonella Profumo
- Dipartimento di Chimica, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, 27100, Italy
| | - Armando Buttafava
- Dipartimento di Chimica, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, 27100, Italy
| | - Nick Serpone
- Dipartimento di Chimica, Università degli Studi di Pavia, V.le Taramelli 10, Pavia, 27100, Italy
| | - Daniele Dondi
- Dipartimento di Chimica, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
50
|
Mishima S, Ohtomo Y, Kakegawa T. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments. ORIGINS LIFE EVOL B 2016; 46:247-71. [PMID: 26631409 DOI: 10.1007/s11084-015-9474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been possible during the Hadean, providing a stabilization agent for ribose.
Collapse
Affiliation(s)
- Shinpei Mishima
- Department of Earth Science, Tohoku University, Aza-aoba 6-3, Aramaki, Aoba-ku, Sendai, Japan.
| | - Yoko Ohtomo
- Faculty, Graduate School and School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Japan
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, Aza-aoba 6-3, Aramaki, Aoba-ku, Sendai, Japan
| |
Collapse
|