1
|
Abstract
Altered glucose metabolism due to insulin resistance is a common feature of essential hypertension in humans and in animal models. Elevated endogenous aldehydes in genetic (spontaneously hypertensive rats) and acquired (fructose-induced hypertensive rats) models of essential hypertension may be due to increased production of the reactive aldehyde methylglyoxal, resulting from altered glucose metabolism. Excess methylglyoxal binds sulfhydryl groups of membrane proteins, altering calcium channels and increasing cytosolic free Ca(2+) and blood pressure. It has been demonstrated that methylglyoxal, when given in drinking water to Wistar-Kyoto rats, leads to an increase in kidney aldehyde conjugates, cytosolic free Ca(2+) concentration, decreased serum nitric oxide, renal vascular hyperplasia and hypertension. N-acetylcysteine (NAC) in the diet of these animals prevented hypertension and associated biochemical and morphological changes. NAC normalizes blood pressure by directly binding to excess methylglyoxal, thus normalizing Ca(2+) channels, cytosolic Ca(2+) and nitric oxide. NAC also leads to increased levels of tissue glutathione, a storage form of cysteine. Glutathione acts as a cofactor in the enzymatic catabolism of methylglyoxal. Cysteine and other antioxidants, such as vitamins B(6), C and E, and lipoic acid, prevented hypertension and associated biochemical and morphological changes in both genetic and acquired rat models of hypertension. The antihypertensive effect of dietary antioxidants may be due to an increase in tissue cysteine and glutathione, which improves glucose metabolism and decreases tissue methylglyoxal. A diet rich in these antioxidants may be effective in preventing and controlling hypertension in humans.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland and Labrador
| | | |
Collapse
|
2
|
RAHAMIMOFF HANNAH, REN XIAOYAN, KIMCHI-SARFATY CHAVA, AMBUDKAR SURESH, KASIR JUDITH. NCX1 Surface Expression. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2002.tb04739.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Ren X, Kasir J, Rahamimoff H. The transport activity of the Na+-Ca2+ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulfhydryl reagents. J Biol Chem 2001; 276:9572-9. [PMID: 11134012 DOI: 10.1074/jbc.m007823200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane permeable N-ethylmaleimide (NEM) and (2-aminoethyl)methanethiosulfonatehydrobromide (MTSEA) inhibited the rat brain Na(+)-Ca(2+) exchanger RBE-2 (NCX1.5) expressed in HEK 293 cells in a dose dependent manner. 50% inhibition was obtained at 1 mm MTSEA and 1.65 mm NEM. External application of membrane impermeable [2-(trimethylammonium) ethyl]methanethiosulfonatebromide (MTSET) and sodium(2-sulfonatoethyl)methanethiosulfonate (MTSES) did not inhibit the transport activity in whole cells. Following reconstitution, however, of RBE-2 transfected cell proteins into proteoliposomes, external application of MTSET and MTSES led to a decrease in transport activity to 42.7 (S.D. = 9.1) and 51% (S.D. = 10.14), respectively. Similar results were obtained also when the rat heart isoform RHE-1 (NCX1.1) or the rat brain isoform RBE-1 (NCX1.4) was expressed. NEM and MTSEA inhibited Na(+) gradient-dependent Ca(2+) uptake also in HEK 293 cells expressing RBE-2/C14A/C20S/ C122S/C780S (numbering corresponds to RBE-2), a mutant in which all putative extracellular cysteines were exchanged. To study the accessibility of different cysteines to covalent modification, surface biotinylation of cells expressing the wild type exchanger and its mutants was carried out using 3-(N-maleimidylpropionyl)biocytin. Surface biotinylation revealed immunoreactive protein derived from the wild type Na(+)-Ca(2+) exchanger only if the transfected cells were exposed to the reducing agent Tris(2-carboxyethyl)phosphine. No reduction was needed when the single cysteine mutants of RBE-2, C14A, C20S, and C780S, were expressed. Treatment of the cells expressing these mutants with MTSET before biotinylation, led to a decrease in the amount of exchanger protein that was revealed. No immunoreactive protein was detected when the quadruple mutant RBE-2, C14A/C20S/C122S/C780S, was biotinylated, suggesting that no additional cysteines are accessible directly from the extracellular face of the membrane. Permeabilizing the cells expressing RBE-2/C14A/C20S/ C122S/C780S with streptolysin O resulted in biotinylation of the exchanger protein. Its amount decreased if exposure to NEM preceded streptolysin O treatment. Our results suggest that Na(+)-Ca(2+) exchange activity is inhibited by covalent modification with sulfhydryl reagents of cysteine residues that are accessible from the cytoplasmic face of the membrane.
Collapse
Affiliation(s)
- X Ren
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
4
|
Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD. A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 1999; 274:910-7. [PMID: 9873031 DOI: 10.1074/jbc.274.2.910] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current topological model of the Na+-Ca2+ exchanger consists of 11 transmembrane segments with extracellular loops a, c, e, g, i, and k and cytoplasmic loops b, d, f, h, and j. Cytoplasmic loop f, which plays a role in regulating the exchanger, is large and separates the first five from the last six transmembrane segments. We have tested this topological model by mutating residues near putative transmembrane segments to cysteine and then examining the effects of intracellular and extracellular applications of sulfhydryl-modifying reagents on exchanger activity. To aid in our topological studies, we also constructed a cysteineless Na+-Ca2+ exchanger. This mutant is fully functional in Na+ gradient-dependent 45Ca2+ uptake measurements and displays wild-type regulatory properties. It is concluded that the 15 endogenous cysteine residues are not essential for either activity or regulation of the exchanger. Our data support the current model by placing loops c and e at the extracellular surface and loops d, j, and l at the intracellular surface. However, the data also support placing Ser-788 of loop h at the extracellular surface and Gly-837 of loop i at the intracellular surface. To account for these data, we propose a revision of the model that places transmembrane segment 6 in cytoplasmic loop f. Additionally, we propose that putative transmembrane segment 9 does not span the membrane, but may form a "P-loop"-like structure.
Collapse
Affiliation(s)
- D A Nicoll
- Departments of Physiology and Medicine and the Cardiovascular Research Laboratories, UCLA School of Medicine, Los Angeles, California 90095-1760, USA.
| | | | | | | | | |
Collapse
|
5
|
Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1-24. [PMID: 9688830 DOI: 10.1152/ajpcell.1998.275.1.c1] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of electrophysiological and molecular biology techniques has shed light on reactive oxygen species (ROS)-induced impairment of surface and internal membranes that control cellular signaling. These deleterious effects of ROS are due to their interaction with various ion transport proteins underlying the transmembrane signal transduction, namely, 1) ion channels, such as Ca2+ channels (including voltage-sensitive L-type Ca2+ currents, dihydropyridine receptor voltage sensors, ryanodine receptor Ca2+-release channels, and D-myo-inositol 1,4,5-trisphosphate receptor Ca2+-release channels), K+ channels (such as Ca2+-activated K+ channels, inward and outward K+ currents, and ATP-sensitive K+ channels), Na+ channels, and Cl- channels; 2) ion pumps, such as sarcoplasmic reticulum and sarcolemmal Ca2+ pumps, Na+-K+-ATPase (Na+ pump), and H+-ATPase (H+ pump); 3) ion exchangers such as the Na+/Ca2+ exchanger and Na+/H+ exchanger; and 4) ion cotransporters such as K+-Cl-, Na+-K+-Cl-, and Pi-Na+ cotransporters. The mechanism of ROS-induced modifications in ion transport pathways involves 1) oxidation of sulfhydryl groups located on the ion transport proteins, 2) peroxidation of membrane phospholipids, and 3) inhibition of membrane-bound regulatory enzymes and modification of the oxidative phosphorylation and ATP levels. Alterations in the ion transport mechanisms lead to changes in a second messenger system, primarily Ca2+ homeostasis, which further augment the abnormal electrical activity and distortion of signal transduction, causing cell dysfunction, which underlies pathological conditions.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
6
|
Kaneko M, Matsumoto Y, Hayashi H, Kobayashi A, Yamazaki N. Oxygen free radicals and calcium homeostasis in the heart. Mol Cell Biochem 1994; 139:91-100. [PMID: 7854345 DOI: 10.1007/bf00944207] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many experiments have been done to clarify the effects of oxygen free radicals on Ca2+ homeostasis in the hearts. A burst of oxygen free radicals occurs immediately after reperfusion, but we have to be reminded that the exact levels of oxygen free radicals in the hearts are yet unknown in both physiological and pathophysiological conditions. Therefore, we should give careful consideration to this point when we perform the experiments and analyze the results. It is, however, evident that Ca2+ overload occurs when the hearts are exposed to an excess amount of oxygen free radicals. Through ATP-independent Ca2+ binding is increased, Ca2+ influx through Ca2+ channel does not increase in the presence of oxygen free radicals. Another possible pathway through which Ca2+ can enter the myocytes is Na(+)-Ca2+ exchanger. Although, the activities of Na(+)-K+ ATPase and Na(+)-H(+) exchange are inhibited by oxygen free radicals, it is not known whether intracellular Na(+) level increases under oxidative stress or not. The question has to be solved for the understanding of the importance of Na(+)-Ca2+ exchange in Ca2+ influx process from extracellular space. Another question is 'which way does Na(+)-Ca2+ exchange work under oxidative stress? Net influx or efflux of Ca2+?' Membrane permeability for Ca2+ may be maintained in a relatively early phase of free radical injury. Since sarcolemmal Ca(2+)-pump ATPase activity is depressed by oxygen free radicals, Ca2+ extrusion from cytosol to extracellular space is considered to be reduced. It has also been shown that oxygen free radicals promote Ca2+ release from sarcoplasmic reticulum and inhibit Ca2+ sequestration to sarcoplasmic reticulum. Thus, these changes in Ca2+ handling systems could cause the Ca2+ overload due to oxygen free radicals.
Collapse
Affiliation(s)
- M Kaneko
- Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
7
|
Kaneko M, Matsumoto Y, Hayashi H, Kobayashi A, Yamazaki N. Oxygen free radicals and calcium homeostasis in the heart. Mol Cell Biochem 1994; 135:99-108. [PMID: 7816061 DOI: 10.1007/bf00925965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many experiments have been done to clarify the effects of oxygen free radicals on Ca2+ homeostasis in the hearts. A burst of oxygen free radicals occurs immediately after reperfusion, but we have to be reminded that the exact levels of oxygen free radicals in the hearts are yet unknown in both physiological and pathophysiological conditions. Therefore, we should give careful consideration to this point when we perform the experiments and analayze the results. It is, however, evident that Ca2+ overload occurs when the hearts are exposed to an excess amount of oxygen free radicals. Though ATP-independent Ca2+ binding is increased, Ca2+ influx through Ca2+ channel does not increase in the presence of oxygen free radicals. Another possible pathway through which Ca2+ can enter the myocytes is Na(+)-Ca2+ exchanger. Although, the activities of Na(+)-K+ ATPase and Na(+)-Ca2+ exchanger. Although, the activities of Na(+)-H+ exchange are inhibited by oxygen free radicals, it is not known whether intracellular Na+ level increases under oxidative stress or not. The question has to be solved for the understanding of the importance of Na(+)-Ca2+ exchange in Ca2+ influx process from extracellular space. Another question is 'which way does Na(+)-Ca2+ exchange work under oxidative stress? Net influx or efflux of Ca2+?' Membrane permeability for Ca2+ may be maintained in a relatively early phase of free radical injury. Since sarcolemmal Ca(2+)-pump ATPase activity is depressed by oxygen free radicals, Ca2+ extrusion from cytosol to extracellular space is considered to be reduced. It has also been shown that oxygen free radicals promote Ca2+ release from sarcoplasmic reticulum and inhibit Ca2+ sequestration to sarcoplasmic reticulum. Thus, these changes in Ca2+ handling systems could cause the Ca2+ overload due to oxygen free radicals.
Collapse
Affiliation(s)
- M Kaneko
- Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
8
|
Milanick MA, Frame MD. Kinetic models of Na-Ca exchange in ferret red blood cells. Interaction of intracellular Na, extracellular Ca, Cd, and Mn. Ann N Y Acad Sci 1991; 639:604-15. [PMID: 1785889 DOI: 10.1111/j.1749-6632.1991.tb17358.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The kinetic equation that best describes the intracellular Na dependence of Ca influx into ferret red cells is sequential; whether this implies that there is a conformation of the protein that has both Na and Ca ions bound remains to be determined. Cd and Mn substitute very well for Ca on the exchanger in ferret red cells; this suggests that the Ca-binding site does not contain an important thiol and that the one of the Na steps may be rate limiting.
Collapse
Affiliation(s)
- M A Milanick
- University of Missouri, Department of Physiology, School of Medicine, Columbia
| | | |
Collapse
|
9
|
Abstract
The recovery from trauma, whether ischemia or some other form of tissue injury, is never instantaneous; time is always required for repair and the return of normal metabolism and function. To what extent the delay in recovery of contractile activity (stunning) after a brief period of ischemia represents convalescence from ischemia-induced injury, as opposed to the expression of reperfusion-induced injury, is perhaps not as clear as the proponents of stunning would hope. Definitive evidence for a distinct reperfusion-induced pathology, which compromises the recovery of contractile function from the depressed state induced by ischemia, is elusive. If reperfusion-induced injury accounts for a significant proportion of stunning, then the molecular mechanisms responsible for initiating the event and those responsible for orchestrating the event at the level of the contractile protein are far from clear. Perturbations of calcium homeostasis are frequently cited as responsible for the depressed contractile state, however, some metabolic derangement must precede any pathologically induced ionic disturbance. In this connection, evidence indicates that free-radical-induced oxidant stress, during the early moments of reperfusion, may modify the activity of a number of thiol-regulated proteins that are directly, or indirectly, responsible for controlling the movement of calcium. Sarcolemmal sodium-calcium exchange and the calcium release channel of the sarcoplasmic reticulum may be activated, whereas the sarcolemmal calcium pump and sodium-potassium ATPase, together with the calcium pump of the sarcoplasmic reticulum, may be inhibited. Under the conditions prevailing during ischemia and reperfusion, this would be expected to promote an early intracellular calcium overload. It is difficult to reconcile such a change with the decreased inotropic state that characterizes stunning; however, it seems likely that the calcium overload is transient and that the stunned myocardium rapidly reestablishes normal levels of intracellular calcium. It is still difficult to explain adequately the reduced inotropic state; clearly, the mechanism of stunning is not quite as simple as its definition.
Collapse
Affiliation(s)
- D J Hearse
- Cardiovascular Research, Rayne Institute, St Thomas' Hospital, London, UK
| |
Collapse
|
10
|
Antolini M, Debetto P, Trevisi L, Luciani S. Diamide: positive inotropic effect in isolated atria and inhibition of Na+/Ca2+ exchange in cardiomyocytes. Pharmacol Res 1991; 23:163-72. [PMID: 2062792 DOI: 10.1016/s1043-6618(05)80118-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The influence of frequency of stimulation and external calcium on the positive inotropic response of guinea-pig left atria to diamide and the inhibitory action on Na+/Ca2+ exchange activity of rat cardiomyocytes by this oxidant of sulphhydryl groups have been investigated. Diamide (50-500 microM) induces a concentration-dependent positive inotropic effect which is more pronounced when atria are driven at 1.0 Hz rather than at 0.5 and 0.1 Hz, and are bathed in 2.72 mM rather than in 1.36 mM external calcium. A decrease in the positive inotropic effect at 35 degrees C with respect to 29 degrees C is also observed. In addition, diamide in positive inotropic concentrations (100-300 microM) significantly reduces Na+/Ca2+ exchange activity and cytoplasmic glutathione levels in adult rat cardiomyocytes. The thiol reducing agent dithiothreitol either reverses or prevents diamide effects both in isolated atria and cardiomyocytes, suggesting that the actions of diamide are correlated to its property to oxidize sulphhydryl groups to disulphides. In view of the functional importance of Na+/Ca2+ exchange in myocardial contractility, it is proposed that diamide may increase the heart force of contraction by an inhibition of the sarcolemmal Na+/Ca2+ exchange activity.
Collapse
Affiliation(s)
- M Antolini
- Dipartimento di Farmacologia, Università degli Studi di Padova, Italy
| | | | | | | |
Collapse
|
11
|
Murphy BJ, Washkurak AW, Tuana BS. Dihydropyridine binding to the L-type Ca2+ channel in rabbit heart sarcolemma and skeletal muscle transverse-tubules: role of disulfide, sulfhydryl and phosphate groups. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1052:333-9. [PMID: 2159349 DOI: 10.1016/0167-4889(90)90230-b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The dihydropyridine receptor is associated with the L-type Ca2+ channel in the cell membrane. In this study we have examined the effects of group-specific modification on dihydropyridine binding in heart sarcolemmal membranes isolated from the rabbit. Specifically, dithiothreitol and glutathione were employed to assess the possible role of disulfide (-SS-) bonds in the binding of [3H]dihydropyridines. NEM, PCMS and iodoacetamide were employed to examine the effect of blocking free sulfhydryl groups (-SH) on the binding of [3H]dihydropyridines to their receptor in heart sarcolemma. Glutathione inhibited [3H]PN200-110 binding to sarcolemmal membranes 100%, with an IC50 value of 50 microM, while DTT inhibited maximally by 75% with an IC50 value in the millimolar range. Alkylation of free sulfhydryl groups by NEM or iodoacetamide inhibited binding of [3H]PN200-110 binding in cardiac sarcolemma approx. 40-60%. Blocking of free sulfhydryl groups by PCMS completely inhibited [3H]PN200-110 binding to their receptor in sarcolemmal membranes in a dose-dependent manner with an IC50 value of 20 microM. These results suggest the involvement of disulfide bonds and free sulfhydryl groups in DHP binding to the L-type Ca2+ channel in heart muscle. We also examined the effect of membrane phosphorylation on the specific binding of the dihydropyridine [3H]nitrendipine to its receptor. Phosphorylation was studied in cardiac sarcolemmal as well as skeletal muscle transverse-tubule membranes. Phosphorylation due to endogenous protein kinase and cAMP-dependent protein kinase was without effect on [3H]nitrendipine binding in both cardiac sarcolemmal and skeletal muscle membranes. Addition of exogenous calmodulin under conditions known to promote Ca2+/calmodulin-dependent phosphorylation increased [3H]nitrendipine binding 20% with no alteration in KD in both types of membrane preparation. These results suggest a role for calmodylin in dihydropyridine binding to L-type Ca2+ channels.
Collapse
Affiliation(s)
- B J Murphy
- Department of Pharmacology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
12
|
Shi ZQ, Davison AJ, Tibbits GF. Effects of active oxygen generated by DTT/Fe2+ on cardiac Na+/Ca2+ exchange and membrane permeability to Ca2+. J Mol Cell Cardiol 1989; 21:1009-16. [PMID: 2531229 DOI: 10.1016/0022-2828(89)90799-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sarcolemmal vesicles isolated from bovine heart were preincubated at 37 degrees C with an oxygen radical generating system consisting of 1 mM dithiothreitol (DTT) and 50 microM FeSO4. Exposure of the vesicles for 1 to 40 mins stimulated Na+/Ca2+ exchange about 2.5-fold. The DTT/Fe2+ treatment decreased the apparent Km for Ca2+ of Nai+-dependent Ca2+ uptake by 80% (from 63 to 13 microM). The effect on Vmax was much smaller however. The resulting stimulation of exchange activity was diminished by the presence of desferrioxamine (95%) or catalase (60%). In contrast, superoxide dismutase and sodium formate did not prevent the effects of DTT/Fe2+ on the exchanger. Neither Zn2+ nor Ga3+ could replace Fe2+ in the stimulation of Na+/Ca2+ exchange. Passive Ca2+ efflux was determined by first allowing Na+/Ca2+ exchange to continue to plateau values and then diluting the loaded vesicles in the presence of EGTA. Ca2+ leakage from the vesicles was slightly but significantly (P less than 0.05) increased by the action of DTT/Fe2+, the rate constants for the passive Ca2+ efflux being 0.22 and 0.26/min in control and treated groups, respectively. The calcium loading observed in myocytes in ischemia/reperfusion injury suggests that the stimulation of Na+/Ca2+ exchange by active oxygen may moderate the myocardial response to oxygen mediated injuries including ischemia/reperfusion injury. However, the clinical relevance of these phenomena is far from clear as the stimulation depends in part on the Km for Ca2+ prior to treatment.
Collapse
Affiliation(s)
- Z Q Shi
- Cardiac Membrane Research Lab., Simon Fraser University, Burnaby, BC, Canada
| | | | | |
Collapse
|
13
|
|
14
|
Kaczorowski GJ, Slaughter RS, King VF, Garcia ML. Inhibitors of sodium-calcium exchange: identification and development of probes of transport activity. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 988:287-302. [PMID: 2655709 DOI: 10.1016/0304-4157(89)90022-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G J Kaczorowski
- Department of Membrane Biochemistry and Biophysics, Merck Sharp and Dohme Research Laboratories, Rahway, NJ
| | | | | | | |
Collapse
|
15
|
Metz SA. Mobilization of cellular Ca2+ by lysophospholipids in rat islets of Langerhans. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 968:239-52. [PMID: 3277674 DOI: 10.1016/0167-4889(88)90013-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To determine whether lysophospholipids mobilize cellular Ca2+, intact rat islets were prelabelled with 45Ca2+ and subjected to three maneuvers designed to simulate the physiologic accumulation of lysophospholipids: (1) exogenous provision; (2) addition of porcine pancreatic phospholipase A2; and (3) provision of p-hydroxymercuribenzoic acid, which impedes both the reacylation and hydrolysis of endogenous lysophospholipids, leading to their accumulation in islets. Each maneuver provoked 45Ca2+ efflux at concentrations nearly identical to those previously reported to induce insulin release in the absence of toxic effects on the islets. Lysophosphatidylcholine (lysoPC) and lysophosphatidylinositol were active, whereas the ethanolamine and serine derivatives, and lysophosphatidic acid, were much less effective. The effects of lysoPC were reversible; they also were reduced by lanthanum or gentamicin (which are probes of superficial, plasma membrane-bound stores of Ca2+) or by prior depletion of membrane-bound cellular Ca2+ stores using ionomycin, but not by removal of extracellular Ca2+ or Na+. The effects of lysoPC, phospholipase A2 and p-hydroxymercuribenzoic acid were largely independent of any hydrolysis to, or accumulation of, free fatty acids as assessed by resistance to dantrolene or trifluoperazine (which selectively reduce arachidonic acid-induced 45Ca2+ efflux and insulin release). Thus, lysophospholipids are a newly recognized class of lipid mediators which may promote insulin release at least in part via mobilization of a pool(s) of Ca2+ ('trigger Ca2+') bound in the plasma membrane and possibly in other cellular membranes.
Collapse
Affiliation(s)
- S A Metz
- Research Service, Denver Veterans Administration Medical Center, CO
| |
Collapse
|
16
|
Parker JC. Diamide stimulates calcium-sodium exchange in dog red blood cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C580-7. [PMID: 2821821 DOI: 10.1152/ajpcell.1987.253.4.c580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Calcium influx can be stimulated in dog red blood cells by preexposure to diamide under certain conditions. Diamide-activated calcium influx resembles swelling-induced Ca2+-Na+ exchange in several respects. These include saturation of calcium influx at external calcium levels greater than 0.5 mM, suppression of calcium influx by external sodium, and inhibition by quinidine. The ability of diamide to stimulate this transport pathway depends critically on the ionic composition of the medium in which the cells are bathed at the time of diamide exposure. The effect is greatest if the diamide preincubation is conducted in a hypotonic lithium chloride medium containing at least 1 microM calcium. Stimulation of Ca2+-Na+ exchange is seen at diamide concentrations (0.10-0.33 mM) that are lower than those reported to cause major spectrin cross-linking, glutathione depletion, Ca2+-ATPase inhibition, or ion channel formation. The results suggest that dog red cells have a large latent capacity for Ca2+-Na+ exchange.
Collapse
Affiliation(s)
- J C Parker
- Department of Medicine, University of North Carolina, Chapel Hill 27514
| |
Collapse
|