1
|
Della Pelle G, Kostevšek N. Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers. Int J Mol Sci 2021; 22:5264. [PMID: 34067699 PMCID: PMC8156122 DOI: 10.3390/ijms22105264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has the potential to become a staple of 21st-century medicine. However, to overcome the limitations of existing gene-delivery therapies, that is, poor stability and inefficient and delivery and accumulation of nucleic acids (NAs), safe drug-delivery systems (DDSs) allowing the prolonged circulation and expression of the administered genes in vivo are needed. In this review article, the development of DDSs over the past 70 years is briefly described. Since synthetic DDSs can be recognized and eliminated as foreign substances by the immune system, new approaches must be found. Using the body's own cells as DDSs is a unique and exciting strategy and can be used in a completely new way to overcome the critical limitations of existing drug-delivery approaches. Among the different circulatory cells, red blood cells (RBCs) are the most abundant and thus can be isolated in sufficiently large quantities to decrease the complexity and cost of the treatment compared to other cell-based carriers. Therefore, in the second part, this article describes 70 years of research on the development of RBCs as DDSs, covering the most important RBC properties and loading methods. In the third part, it focuses on RBCs as the NA delivery system with advantages and drawbacks discussed to decide whether they are suitable for NA delivery in vivo.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Lee H, He X, Ni K, Carnino JM, Jin Y. Low concentration of polyethylene glycol facilitates separation of extracellular vesicles from bronchoalveolar lavage fluid. Am J Physiol Lung Cell Mol Physiol 2021; 320:L522-L529. [PMID: 33438468 DOI: 10.1152/ajplung.00318.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) in bodily fluids play an essential role in cell-cell cross talk and potentially serve as novel biomarkers in "liquid biopsy." It is crucial to have a consistent, efficient, and reliable method to separate EVs from bodily fluids. Currently, there is no universally accepted, "best" method to separate EVs. Besides differential ultracentrifugation (UC), polyethylene glycol (PEG) is among the commonly used methods for EV separation from bodily fluids. However, the optimal concentration of PEG to be used remains inadequately addressed. We initially observed that the concentration of PEG has a significant impact on the amount of separated EVs and EV-cargos, which are recovered from bronchoalveolar lavage fluid (BALF). To determine the optimal PEG concentration to be used in EV separation from BALF, we first separated the BALF and serum from wild-type C57BL/6 mice. Next, various concentrations of PEG (5%, 10%, and 15% PEG), a commercial kit, and UC were used to obtain EVs from BALF and serum. EVs were characterized, and EV-cargo protein, RNA, and miRNA levels were determined. We found that high concentration of PEG (10% and 15%) altered various EV parameters that are frequently used in EV studies, including EV yield, purity, and morphology. Using miR-15a, miR-142, and miR-223 as examples, we found that 10% and 15% PEG robustly reduced the detected levels of EV-cargo miRNAs compared with those in the EVs separated using UC or 5% PEG. Collectively, low concentration of PEG facilitates the optimal BALF EV separation.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts.,Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Xue He
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Kareemah Ni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| |
Collapse
|
3
|
High-throughput downstream process development for cell-based products using aqueous two-phase systems. J Chromatogr A 2016; 1464:1-11. [PMID: 27567679 DOI: 10.1016/j.chroma.2016.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/28/2023]
Abstract
As the clinical development of cell-based therapeutics has evolved immensely within the past years, downstream processing strategies become more relevant than ever. Aqueous two-phase systems (ATPS) enable the label-free, scalable, and cost-effective separation of cells, making them a promising tool for downstream processing of cell-based therapeutics. Here, we report the development of an automated robotic screening that enables high-throughput cell partitioning analysis in ATPS. We demonstrate that this setup enables fast and systematic investigation of factors influencing cell partitioning. Moreover, we examined and optimized separation conditions for the differentiable promyelocytic cell line HL-60 and used a counter-current distribution-model to investigate optimal separation conditions for a multi-stage purification process. Finally, we show that the separation of CD11b-positive and CD11b-negative HL-60 cells is possible after partial DMSO-mediated differentiation towards the granulocytic lineage. The modeling data indicate that complete peak separation is possible with 30 transfers, and >93% of CD11b-positive HL-60 cells can be recovered with >99% purity. The here described screening platform facilitates faster, cheaper, and more directed downstream process development for cell-based therapeutics and presents a powerful tool for translational research.
Collapse
|
4
|
|
5
|
|
6
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652048609049586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Baysal SH, Uslan AH, Pala HH, Tunçoku O. Encapsulation of PEG-urease/PEG-AlaDH within sheep erythrocytes and determination of the system's activity in lowering blood levels of urea in animal models. ACTA ACUST UNITED AC 2007; 35:391-403. [PMID: 17701485 DOI: 10.1080/10731190701460259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Urease and AlaDH enzymes immobilized on active PEG derivatives were encapsulated at different ratios within sheep erythrocytes and their activity, encapsulation yields and erythrocyte recovery levels were assessed. Encapsulated derivatives were administered at given dosages and at given intervals to sheep having raised blood urea levels as a result of addition of urea to their feed, and the lowering of their blood urea levels and the change in the amount of ammonia were followed. Results were analyzed using day related NPar. Wilcoxon Signet Ranks test. It was found that 1 ml of PEG-enzyme preparation comprising PEG-urease/PEG-AlaDH at an activity ratio of 3/9 U:U/ml remained active for a period of 2 days, whereas 1 ml erythrocyte preparation, prepared under the same conditions and containing PEG-urease/PEG-AlaDH at an activity ratio of 2.15/4.5 U:U/ml, showed activity for a period of 6 days. It was shown that a single dose achieved a daily decrease of 21.7-61.6 mg/L in the blood urea level, and created no significant increase in the blood ammonia levels. No antigenic effect was observed for the PEG-enzyme preparations in the immunological test carried out.
Collapse
|
8
|
Nagy P, Mátyus L, Jenei A, Panyi G, Varga S, Matkó J, Szöllosi J, Gáspár R, Jovin TM, Damjanovich S. Cell fusion experiments reveal distinctly different association characteristics of cell-surface receptors. J Cell Sci 2001; 114:4063-71. [PMID: 11739638 DOI: 10.1242/jcs.114.22.4063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of small- and large-scale membrane protein clusters, containing dimers, oligomers and hundreds of proteins, respectively, has become widely accepted. However, it is largely unknown whether the internal structure of these formations is dynamic or static. Cell fusion was used to perturb the distribution of existing membrane protein clusters, and to investigate their mobility and associations. Scanning near-field optical microscopy, confocal and electron microscopy were applied to detect the exchange of proteins between large-scale protein clusters, whereas photobleaching fluorescence energy transfer was used to image the redistribution of existing small-scale membrane protein clusters. Large-scale clusters of major histocompatibility complex (MHC)-I exchanged proteins with each other and with MHC-II clusters. Similarly to MHC-I, large-scale MHC-II clusters were also dynamic. Exchange of components between small-scale protein clusters was not universal: intermixing did not take place in the case of MHC-II homoclusters; however, it was observed for homoclusters of MHC-I and for heteroclusters of MHC-I and MHC-II. These processes required a fluid state of the plasma membrane, and did not depend on endocytosis-mediated recycling of proteins. The redistribution of large-scale MHC-I clusters precedes the intermixing of small-scale clusters of MHC-I indicating a hierarchy in protein association. Investigation of a set of other proteins (α subunit of the interleukin 2 receptor, CD48 and transferrin receptor) suggested that a large-scale protein cluster usually exchanges components with the same type of clusters. These results offer new insight into processes requiring time-dependent changes in membrane protein interactions.
Collapse
Affiliation(s)
- P Nagy
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, La Barthe MC, Walden P, Dalgleish AG. Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1500:265-79. [PMID: 10699368 DOI: 10.1016/s0925-4439(99)00108-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hybrid cells created by fusion of antigen presenting and tumour cells have been shown to induce potent protective and curative anti-tumour immunity in rodent cancer models. The application of hybrid cell vaccines for human tumour therapy and the timely intervention in disease control are limited by the requirement to derive sufficient autologous cells to preserve homologous tumour antigen presentation. In this study, the efficiency of various methods of electrofusion in generating hybrid human cells have been investigated with a variety of human haemopoietic, breast and prostate cell lines. Cell fusion using an electrical pulse is enhanced by a variety of stimuli to align cells electrically or bring cells into contact. Centrifugation of cells after an exponential pulse from a Gene Pulser electroporation apparatus provided the highest yield of mixed cell hybrids by FACS analysis. An extensive fusogenic condition generated in human cells after an electrical pulse contradicts the presumption that prior cell contact is necessary for cell fusion. Alignment of cells in a concurrent direct current charge and osmotic expansion of cells in polyethylene glycol also generated high levels of cell fusion. Waxing of one electrode of the electroporation cuvette served to polarize the fusion chamber and increase cell fusion 5-fold. Optimisation of a direct current charge in combination with a fusogenic pulse in which fusion of a range of human cells approached or exceeded 30% of the total pulsed cells. The yield of hybrid prostate and breast cancer cells with dendritic cells was similar to the homologous cell fusion efficiencies indicating that dendritic cells were highly amenable to fusion with human tumour cells under similar electrical parameters. Elimination of unfused cells by density gradient and culture is possible to further increase the quantity of hybrid cells. The generation and purification of quantities of hybrid cells sufficient for human vaccination raises the possibility of rapid, autologous tumour antigen presenting vaccines for trial with common human tumours.
Collapse
Affiliation(s)
- T H Scott-Taylor
- Department of Oncology, St George's Hospital Medical School, Cranmer Terrace, London, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Lentz BR, Lee JK. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Mol Membr Biol 1999; 16:279-96. [PMID: 10766128 DOI: 10.1080/096876899294508] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Membrane fusion is fundamental to the life of eukaryotic cells. Cellular trafficking and compartmentalization, import of food stuffs and export of waste, inter-cellular communication, sexual reproduction, and cell division are all dependent on this basic process. Yet, little is known about the molecular mechanism(s) by which fusion occurs. It is known that fusing membranes must somehow be docked and brought into close contact. Specific proteins, many of which have been identified within the past decade, accomplish this. An electrical connection or 'fusion pore' is established between compartments surrounded by the fusing membranes. Three primary views of the mechanism of pore formation during secretory and viral fusion have been proposed within the past decade. In one view, a protein ring forms an initial transient connection that expands slowly by recruiting lipid so as to form a lipidic junction. In another view, the initial fusion pore consists of a protein-lipid complex that transforms slowly until the fusion proteins dissociate from the complex to form an irreversible lipidic pore. In a third view, the initial pore is a transient lipid pore that fluctuates between open and closed states before either expanding irreversibly or closing. Recent work has helped define the mechanism by which poly(ethylene glycol) (PEG) mediates fusion of highly curved model membranes composed only of synthetic phospholipids. PEG is a highly hydrated polymer that can bring vesicle membranes to near molecular contact by making water between them thermodynamically unfavourable. Disrupted packing in the contacting monolayers of these vesicle membranes is necessary to induce fusion. The time course and sequence of molecular events of the ensuing fusion process have also been defined. This sequence of events involves the formation of an initial, transient intermediate in which outer leaflet lipids have mixed and small transient pores join fusing compartments ('stalk'). The transient intermediate transforms in 1-3 min to a fusion-committed, second intermediate ('septum') that then 'pops' to form the fusion pore. Inner leaflet mixing, which is shown to be distinct from outer leaflet mixing, accompanies contents mixing that marks formation of the fusion pore. Both the sequence of events and the activation energies of these events correspond well to those observed in viral membrane fusion and secretory granule fusion. These results strongly support the contention that both viral and secretory fusion events occur by lipid molecule rearrangements that can be studied and defined through the use of PEG-mediated vesicle fusion as a model system. A possible mechanism by which fusion proteins might mediate this lipidic process is described.
Collapse
Affiliation(s)
- B R Lentz
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, 27599-7260, USA.
| | | |
Collapse
|
11
|
Hui S, Kuhl T, Guo Y, Israelachvili J. Use of poly(ethylene glycol) to control cell aggregation and fusion. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(99)00037-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Dyring C. Increased production of recombinant hIGFBP-1 in PEG induced autofusion of Chinese hamster ovary (CHO) cells. Cytotechnology 1997; 24:183-91. [PMID: 22358761 DOI: 10.1023/a:1007931623160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recombinant Chinese hamster ovary (CHO) cell clone, S1, stably expressing human insulin-like growth factor binding protein-1 (hIGFBP-1), was treated with polyethylene glycol (PEG), resulting in cell fusion, in order to further enhance the protein expression by increasing the gene copy number and/or the amount of organelles important to the protein expression/-secretion. Both the fused cell line, Peg1, and its mother cell line, S1, were adapted to serum-free growth in suspension and were characterised with respect to growth and productivity. Peg1 was easier to adapt to the serum-free suspension conditions and had a higher viability during the adaptation period than S1. Furthermore, Peg1 showed a stable productivity of hIGFBP-1 that was twice as high as that for S1 under both adherent and suspension conditions. A considerable difference in the specific productivity (up to 3-4 times) was noticed during the growth phase. PEG fusion experiments have earlier been studied in our laboratory with CHO cells producing recombinant factor VIII and our results correlates very well with the results obtained with the factor VIII producing cells. Surprisingly, it was possible to obtain high producing recombinant cell lines, which were stable for more than 4 months.
Collapse
|
13
|
Yang Q, Guo Y, Li L, Hui SW. Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion. Biophys J 1997; 73:277-82. [PMID: 9199792 PMCID: PMC1180929 DOI: 10.1016/s0006-3495(97)78068-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of lipid headgroup and curvature-related acyl packing stress on PEG-induced phospholipid vesicle aggregation and fusion were studied by measuring vesicle and aggregate sizes using the quasi-elastic light scattering and fluorescence energy transfer techniques. The effect of the lipid headgroup was monitored by varying the relative phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents in the vesicles, and the influence of hydrocarbon chain packing stress was controlled either by the relative amount of PE and PC content in the vesicles, or by the degree of unsaturation of the acyl chains of a series of PEs, e.g., dilinoleoylphosphatidylethanolamine (dilin-PE), lysophosphatidylethanolamine (lyso-PE), and transacylated egg phosphatidylethanolamine (TPE). The PEG threshold for aggregation depends only weakly on the headgroup composition of vesicles. However, in addition to the lipid headgroup, the curvature stress of the monolayer that forms the vesicle walls plays a very important role in fusion. Highly stressed vesicles, i.e., vesicles containing PE with highly unsaturated chains, need less PEG to induce fusion. This finding applies to the fusion of both small unilamellar vesicles and large unilamellar vesicles. The effect of electrostatic charge on vesicle aggregation and fusion were studied by changing the pH of the vesicle suspension media. At pH 9, when PE headgroups are weakly charged, increasing electrostatic repulsion between headgroups on the same bilayer surface reduces curvature stress, whereas increasing electrostatic repulsion between apposing bilayer headgroups hinders intervesicle approach, both of which inhibit aggregation and fusion, as expected.
Collapse
Affiliation(s)
- Q Yang
- Biophysics Department, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
14
|
Li LH, Hensen ML, Zhao YL, Hui SW. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation. Biophys J 1996; 71:479-86. [PMID: 8804630 PMCID: PMC1233498 DOI: 10.1016/s0006-3495(96)79249-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
High-efficiency electrofusion between cells of different sizes was achieved by application of fusing electric pulses to cells in centrifuged pellets. Larger target cells (Chinese hamster ovary or L1210 cells) were stacked among smaller human erythrocytes or erythrocyte ghosts by sequential centrifugation at 700 g to form five-tier pellets in a specially designed centrifugation-electrofusion chamber. The membranes of erythrocytes and ghost were labeled with fluorescent membrane dye (1,1' dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (Dil)), and the contents of ghosts were loaded with water-soluble fluorescent dye (42-kDa fluorescein isothiocyanate dextran (FITC-dextran)), to monitor heterogeneous cell fusion. Fusion efficiency was assayed by the extent of either membrane dye mixing or contents (FITC-dextran) mixing with target cells. Four rectangular electric pulses at 300 V and 80 microseconds each were found to give the optimal fusion results of approximately 80% heterogeneous fusion by the content-mixing assay and approximately 95% by the membrane-dye-mixing assay. Cell viability remained greater than 80% after electrofusion. Because of the electric breakdown of cell membranes at the beginning of the pulse, the pellet resistance and hence the partial voltage across the pellet reduced rapidly during the remaining pulse time. This voltage redistribution favored the survival of fused cells. The limited colloidal-osmotic swelling of cells in pellets enhanced cell-cell contact and increased the pellet resistance after each pulse. As a result, the partial voltage across the pellet was restored when the next pulse was applied. This redistribution of pulse voltage in the pellet system permitted the breakdown of cell membranes at a lower applied voltage threshold than that required for electrofusion of cells in suspension or in dielectrophoretic cell chains. The cell viability and soluble dye retention within cells (FITC-dextran) remained at the same high levels for 3 h when the cells were incubated in respective culture media with serum at 37 degrees C. Viability and dye retention decreased significantly within 30 min when cells were incubated in phosphate-buffered saline without serum. The pellet technique was applied to form hybridomas by fusion of larger SP2/0 murine myelomas with smaller naive mouse lymphocytes. An optimum of 173 +/- 70 hypoxanthine aminopterin thymidine (HAT)-selected clones of the hybridomas was obtained from 40,000 SP2/0 cells and 1.5 x 10(6) lymphocytes used in each trial. This high-efficiency fusion technique may be adapted to mediate drug and gene transfer to target cells ex vivo as well as to form hybrid cells with limited cell sources.
Collapse
Affiliation(s)
- L H Li
- Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | | | | | | |
Collapse
|
15
|
Lehtonen JY, Kinnunen PK. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys J 1995; 68:525-35. [PMID: 7696506 PMCID: PMC1281717 DOI: 10.1016/s0006-3495(95)80214-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the increase by 0.5 degrees C for DPPC observed in the presence of 20% (w/w) PEG. At a given PEG concentration maximal increase in IE/IM (correlating to the extent of segregation of PPDPC in the different lipid matrices) decreased in the sequence 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) > DPPC > DMPC > SOPC > POPC, whereas no evidence for phase separation in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) LUV was observed (Lehtonen and Kinnunen, 1994, Biophys. J. 66: 1981-1990). Our results indicate that PEG-induced dehydration of liposomal membranes provides the driving force for the segregation of the pyrene lipid. In brief, phase separation of PPDPC from the matrix lipid could be attributed to the diminishing effective size of the phosphatidylcholine polar headgroup resulting from its partial dehydration by PEG. This in turn would allow for enhanced van der Waals interactions between the acyl chains of the matrix lipid, which then caused the exclusion of PPDPC due to the perturbing bulky pyrene moiety. Phase separation in DMPC/PPDPC liposomes was abolished by the inclusion of 25 mol % cholesterol and to a lesser extent by epicholesterol.
Collapse
Affiliation(s)
- J Y Lehtonen
- Department of Medical Chemistry, University of Helsinki, Finland
| | | |
Collapse
|
16
|
Abstract
Polyethylene glycol (PEG) and electrofusion were applied together in a simple and highly efficient cell fusion method. PEG (8000 M(r)) was used to bring human erythrocytes into contact, and a single 4.4 kV/cm, 80 microseconds duration pulse was applied to cell suspensions. The fusion yield (FY) is PEG concentration-dependent. A maximum FY (50%) was found at about 10% PEG. Higher PEG concentrations (> 10%) suppressed FY caused by colloid osmotic shrinkage. Morphological changes, such as colloidal osmotic swelling and shrinking, and the expanding and contraction of fusion lumen, when suspension media were changed from PBS to isotonic 15% dextran solutions, was examined by microscopy. FY was found to depend on both simple osmotic and colloidal-osmotic swelling. From the swelling behavior, we propose two types of electropores: the pre-fusion sites between cell pairs, and electropores on each individual cell connecting intracellular and extracellular space. The latter type is responsible for the colloidal osmotic swelling and shrinking of cell which, together with simple osmotic swelling, is responsible for expanding the pre-fusion sites into fusion lumens. Resealing of electropores resulted in reducing FY, but the FY can be restored by simple osmotic shock. Apparently, PEG plays two opposite roles in this fusion method; one is to promote pre-pulse and post-pulse cell-cell contact, protecting pre-fusion sites, and the other suppresses FY by colloid osmotic shrinkage of cells after pulsing, especially when high PEG concentration is used. 10% PEG 8000 represents the optimal combination of these properties.
Collapse
Affiliation(s)
- L H Li
- Membrane Biophysics Laboratory, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
17
|
Abstract
Poly(ethylene glycol) (PEG) is used widely to mediate cell-cell fusion in the production of somatic cell hybrids and in the fusion injection of macromolecules into cultured cells from erythrocytes or liposomes. However, little is known about the mechanisms by which PEG induces fusion of cell membranes, making its use much more an art than a science. This article considers possible molecular events involved in biomembrane fusion and summarizes what we have learned about these in recent years from studies of fusion of well-defined model membranes. In addition, it recounts observations made over the past several years about the process of PEG-mediated fusion of model membranes. These observations have defined the process to an extent sufficient to allow us to propose a model for the molecular events involved in the process. It is suggested that dehydration leads to asymmetry in the lipid packing pressure in the two leaflets of the membrane bilayer leading to formation of a single bilayer septum at a point of close apposition of two membranes. The single bilayer septum then decays during formation of the initial fusion pore. Agents that enhance or alleviate the dehydration-induced asymmetric packing stress will favor or inhibit fusion. Although the proposed picture is consistent with much accumulated data, it is not yet proven; experiments must now be devised to test its details. Finally, the proposed model is discussed in terms of potential implications for the mechanisms available to a cell in controlling more complex in vivo cell fusion processes such as endocytosis, exocytosis, protein sorting/transport, and viral budding/infection.
Collapse
Affiliation(s)
- B R Lentz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599-7260
| |
Collapse
|
18
|
Hui SW, Stenger DA. Electrofusion of cells: hybridoma production by electrofusion and polyethylene glycol. Methods Enzymol 1993; 220:212-27. [PMID: 8350755 DOI: 10.1016/0076-6879(93)20084-g] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S W Hui
- Department of Biophysics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
19
|
Lelkes G, Fodor I. Formation of large, membrane skeleton-free erythrocyte vesicles as a function of the intracellular pH and temperature. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1065:135-44. [PMID: 2059648 DOI: 10.1016/0005-2736(91)90223-u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vesiculation of intact erythrocytes can be induced by decreasing their intracellular pH and then heating the red cell suspension to a critical temperature value. While at intracellular pH 6 vesiculation begins at 45 degrees C, further decrease in the intracellular pH lowers the critical temperature. In addition, the critical temperature value can be modified by varying the length of the interval between titration and heating as well as by changing the temperature during this interval. The vesicles are large (1-3.5 micron in diameter), haemoglobin-containing and completely free of skeletal proteins. Pretreatment of the cells with diamide and 2,4-dinitrophenol had no substantial effect on vesiculation, while N-ethylmaleimide, chlorpromazine and wheat germ agglutinin proved to be inhibitory. Increasing the osmolarity of the incubation medium markedly decreased the critical temperature: red cells suspended in a solution of 600 mosM NaCl vesiculated at 42 degrees C instead of 45 degrees C when the intracellular pH was decreased to 6. We propose that the vesiculation is due to a purely physicochemical molecular mechanism which affects the state and dimension of the membrane skeleton. We also discuss the possible role of an altered haemoglobin-membrane interaction in preventing low pH-induced intramembrane particle aggregation in the membrane skeleton-free vesicles.
Collapse
Affiliation(s)
- G Lelkes
- National Institute of Haematology and Blood Transfusion, Budapest, Hungary
| | | |
Collapse
|
20
|
Raudino A, Bianciardi P. Polymer-mediated electrostatic interactions between charged lipid assemblies and electrolyte solutions: a tentative model of the polyethylene glycol-induced cell fusion. J Theor Biol 1991; 149:1-20. [PMID: 1881141 DOI: 10.1016/s0022-5193(05)80068-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We developed a theoretical model to investigate the interaction between charged lipid aggregates and a water solution containing ions and uncharged polymers. The local concentration of ions and polymer chains around the lipid aggregate have been treated as variational parameters which can be found by minimizing the total energy of the system. We divided the energy into the following main contributions: (a) Solvation energy of the ions. This depends on the local polymer concentration through the variation of the solvent dielectric properties. (b) Ions-lipid aggregate interactions. These depend on the local concentrations both of the ion cloud and polymer chains. (c) Conformational energy of the polymer. This term is related to the inhomogeneous spatial density of the polymer segments. Any direct interaction between the charged lipid surface and the polymer coils has been intentionally neglected. The minimization procedure leads to a non-linear Poisson-Boltzmann equation coupled with a non-linear algebraic equation describing the polymer distribution. The solution of the above system allows one to calculate the ions and polymer spatial distribution around the lipid aggregate. The knowledge of such parameters is useful to predict the effect of non-ionic polymers on the structure and properties of lipid assemblies such as the mean area per lipid molecule, the aggregation number, the critical micellar concentration and the formation of immiscibility gaps in mixed lipid systems. A possible involvement of these parameters into the fusion process between lipid vesicles is discussed.
Collapse
Affiliation(s)
- A Raudino
- Dipartimento di Scienze Chimiche, Università di Catania, Italy
| | | |
Collapse
|
21
|
Kozlov MM, Chernomordik LV, Markin VS. A mechanism of formation of protein-free regions in the red cell membrane: the rupture of the membrane skeleton. J Theor Biol 1990; 144:347-65. [PMID: 2395376 DOI: 10.1016/s0022-5193(05)80080-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The process of rupture and redistribution of the red cell membrane skeleton is analyzed theoretically. Following the emergence of the rupture the spectrin-actin network is redistributed on the cytoplasmic surface of the membrane bilayer. Due to the interaction of the membrane skeleton and integral proteins the redistribution of the spectrin-actin network leads to the release of purely lipid regions of the membrane. The scale of the protein redistribution caused by the rupture of the membrane skeleton and the size of the lipid domains produced depend on the shape of the membrane and the value of the electrical interaction of the membrane proteins. The lipid domains occurring as a result of the rupture and relaxation of the spectrinactin network can spontaneously increase or decrease its area. The criteria determining the conditions which result in the system's evolutions leading to the domain growth have been obtained. The character of the evolution is determined by the shape of the membrane region in which the rupture occurs as well as the relation between the effective linear tension of the rupture boundary and the modulus of elasticity of the spectrin-actin network.
Collapse
Affiliation(s)
- M M Kozlov
- AN Frumkin Institute of Electrochemistry, U.S.S.R. Academy of Sciences, Moscow
| | | | | |
Collapse
|
22
|
Van Oss CJ, Arnold K, Good RJ, Gawrisch K, Ohki S. Interfacial Tension and the Osmotic Pressure of Solutions of Polar Polymers. ACTA ACUST UNITED AC 1990. [DOI: 10.1080/00222339009349643] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Plattner H. Regulation of membrane fusion during exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 1990; 119:197-286. [PMID: 2695484 DOI: 10.1016/s0074-7696(08)60652-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H Plattner
- Faculty of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
24
|
Prado A, Partearroyo MA, Mencía M, Goñi FM, Barberá-Guillem E. Surfactant enhancement of polyethyleneglycol-induced cell fusion. FEBS Lett 1989; 259:149-52. [PMID: 2599101 DOI: 10.1016/0014-5793(89)81515-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
B16 mouse melanoma cells in monolayers may be satisfactorily fused with 50% PEG 1500. However, pre-treatment with detergents in solution at low concentrations significantly increases PEG fusion, up to 8-fold in some instances, without impairing cell viability. The practical and mechanistical implications of this finding are discussed.
Collapse
Affiliation(s)
- A Prado
- Department of Cell Biology, University of Basque Country, Bilbao, Spain
| | | | | | | | | |
Collapse
|
25
|
Tullius EK, Williamson P, Schlegel RA. Effect of transbilayer phospholipid distribution on erythrocyte fusion. Biosci Rep 1989; 9:623-33. [PMID: 2804262 DOI: 10.1007/bf01119806] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phospholipid packing has been suggested as a relevant variable in the control of membrane fusion events. To test this possibility in a model system, a comparison was made of the fusability of erythrocytes with a normal asymmetric transbilayer distribution of plasma membrane phospholipids (tightly packed exterior lipids) and erythrocytes with a symmetric transbilayer distribution of phospholipids (more loosely packed exterior lipids), using polyethylene glycol as fusogen. Not only were lipid-symmetric cells more readily fused, but fusions of mixtures of lipid-symmetric and lipid-asymmetric cells indicated that both fusing partners must have a symmetric distribution for fusion to be enhanced. Lipid-symmetric cells may fuse more readily because loose packing of the exterior lipids enhances hydrophobic interactions between cells. Alternatively, enhanced membrane fluidity may facilitate intramembranous particle clustering, previously implicated as a potentiator of fusion. Finally, exposure of phosphatidylserine on the surface of lipid-symmetric erythrocytes may be responsible for their enhanced fusion.
Collapse
Affiliation(s)
- E K Tullius
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
26
|
Pratsch L, Herrmann A, Schwede I, Meyer HW. The influence of poly(ethylene glycol) on the molecular dynamics within the glycocalyx. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 980:146-54. [PMID: 2539192 DOI: 10.1016/0005-2736(89)90393-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interaction of polymers with cell surfaces is a question of general interest for cell aggregation and fusion. The molecular dynamics within the surface coat of human erythrocytes as well as alterations of membrane protein arrangement (IMPs) in the presence of poly(ethylene glycol) (PEG) were investigated by EPR spin labeling techniques and freeze-fracture electron microscopy, respectively. AT PEG concentrations which induce aggregation of erythrocytes the surface coat and the protein arrangement is not disturbed by the polymer. This implicate an exclusion of the polymer from the cell surface.
Collapse
Affiliation(s)
- L Pratsch
- Sektion Biologie, Humboldt-Universität, Berlin, G.D.R
| | | | | | | |
Collapse
|
27
|
GTP- and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)76504-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Intracellular calcium uptake activated by GTP. Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)76505-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Surface charges of the membrane and cell adhesion substances determine the structural integrity of hair bundles from the inner ear of fish. Cell Tissue Res 1987. [DOI: 10.1007/bf00215434] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Nea LJ, Bates GW, Gilmer PJ. Facilitation of electrofusion of plant protoplasts by membrane-active agents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1987. [DOI: 10.1016/0005-2736(87)90425-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Hui SW. Ultrastructural Studies of the Molecular Assembly in Biomembranes: Diversity and Similarity. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0070-2161(08)60042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
32
|
Huang SK, Hui SW. Chemical co-treatments and intramembrane particle patching in the poly(ethylene glycol)-induced fusion of turkey and human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 860:539-48. [PMID: 3741866 DOI: 10.1016/0005-2736(86)90551-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several chemical co-treatments were used to lower the threshold concentrations of poly(ethylene glycol) (PEG) required to induce fusion between turkey erythrocytes and between human erythrocytes. Concanavalin A was used in conjunction with 25% (w/w) PEG to induce turkey erythrocyte fusion. The fusion percentage increased with increasing concentrations of concanavalin A and the duration of concanavalin A treatment. In samples with high percentages of fusion, numerous hemispherical intramembrane particle-free zones (bubbles) in the plasma membrane were revealed by freeze-fracture electron microscopy. However, concanavalin A treatment did not facilitate fusion between human erythrocytes even at 35% PEG, although slight intramembrane particle patching was observed under this condition. Spermidine (0.05% w/v), trichloroacetic acid (100 mM) and ethanol (4% v/v) were found to promote fusion of human erythrocytes in 25% PEG. In all of these cases, intramembrane particle patching was observed by freeze-fracture electron microscopy in the presence of PEG. When applied alone, only ethanol caused a slight intramembrane particle patching. Neither dimethylsulfoxide (2% v/v), lysophosphatidylcholine (lysoPC, 0.15 mM), nor polylysine (mol. wt. 1000-4000, 0.05% w/v) promoted fusion of human erythrocyte in 25% PEG. None of these chemical treatments, alone, or in combination with PEG, caused intramembrane particle patching. We conclude that the positive effect of chemical treatments on PEG-induced cell fusion is closely related to the formation of intramembrane particle-free zones on the plasma membrane.
Collapse
|
33
|
Stenger DA, Hui SW. Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes. J Membr Biol 1986; 93:43-53. [PMID: 3795261 DOI: 10.1007/bf01871017] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sequence of events during the electrically induced fusion of human erythrocytes was studied by rapid quench freeze-fracture electron microscopy. A single electric field pulse was used to induce fusion of human erythrocytes treated with pronase and closely positioned by dielectrophoresis. The electronic circuit was coupled to a rapid freezing mechanism so that ultrastructural changes of the membrane could be preserved at given time points. Pronase treatment enabled adjacent cells to approach each other within 15 nm during dielectrophoresis. The pulse caused a brief disruption of the aqueous boundaries which separated the cells. Within 100 msec following pulse application, the fracture faces exhibited discontinuous areas which were predominantly free of intramembranous particles. At 2 sec after the pulse, transient point defects attributed to intercellular contact appeared in the same membrane areas and replaced the discontinuous areas as the predominant membrane perturbation. At 10 sec after the pulse, the majority of the discontinuous areas and point defects disappeared as the intercellular distance returned to approximately 15 to 25 nm, except at sites of cytoplasmic bridge formation. Intramembranous particle clearing was observed at 60 sec following pulse application in discrete zones of membrane fusion.
Collapse
|
34
|
Kanchanapoom K, Boss WF. Osmoregulation of fusogenic protoplast fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1986. [DOI: 10.1016/0005-2736(86)90451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Herrmann A, Arnold K, Pratsch L. The effect of osmotic pressure of aqueous PEG solutions on red blood cells. Biosci Rep 1985; 5:689-96. [PMID: 2998502 DOI: 10.1007/bf01117001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A drastic increase of the intracellular microviscosity of red blood cells in the presence of polyethylene glycol (PEG) was established by electron spin resonance using the small spin label molecule 2,2,6,6-tetramethyl-piperidine-N-oxyl-4-one (TEMPONE). The effective osmotic pressure of PEG solutions stressing the cells was estimated by comparison with those cytoplasmic rotational correlation times of TEMPONE measured in NaCl or sucrose containing media of known osmotic pressure.
Collapse
|