1
|
Sivaramakrishnan T, Ambasankar K, Felix N, Bera A, Kamalam BS, Vasagam KPK, Kailasam M. Changes in digestive enzyme activities during the early ontogeny of milkfish, Chanos chanos larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:867-882. [PMID: 37530924 DOI: 10.1007/s10695-023-01225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Knowledge of the developmental ontogeny of the digestive system and nutritional requirements of marine fish larvae is a primary requisite for their successful rearing under an optimal feeding regime. In this context, we assessed the activity profile of key digestive enzymes viz., trypsin, chymotrypsin, leucine aminopeptidase, lipase, amylase, and alkaline phosphatase during the early ontogeny of milkfish, Chanos chanos (0 day, 3 days, 6 days, 9 days, 12 days, 15 days, 18 days, 21 days, 25 days, and 30 days post-hatch). Larvae for this study were obtained from the successful breeding of milkfish at ICAR-Central Institute of Brackishwater Aquaculture, India. Growth curves (length and weight) of the larvae indicated a positive morphological development under a standardized feeding regime that comprised Chlorella salina, Brachionus plicatilis, Artemia salina nauplii, and commercial weaning feed for different larval stages. With respect to protein digestion, the specific activity of pancreatic enzymes trypsin and chymotrypsin and intestinal brush border leucine aminopeptidase showed two peaks at 3 dph and 15 dph, following the introduction of rotifer and Artemia nauplii. Similar bimodal peaks were observed for alkaline phosphatase and amylase activities, with the first peak at 3 dph and the second peak at 18 dph and 21 dph, respectively. Whereas in the case of lipase, high activity levels were observed at 0 dph, 3 dph, and 18 dph, with subsequent decreases and fluctuations. Overall, as most of the enzymes were found to have peak activities at 15 to 21 dph, this period can be potentially considered as the developmental window for weaning larvae from live to formulated feeds in milkfish hatcheries.
Collapse
Affiliation(s)
- Thirugnanamurthy Sivaramakrishnan
- TNJFU-Institute of Fisheries Post Graduate Studies (IFPGS), OMR Campus, Vaniyanchavadi, Chennai, 603103, India.
- ICAR-Central Institute of Brackishwater Aquaculture, 75-Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India.
| | - Kondusamy Ambasankar
- ICAR-Central Institute of Brackishwater Aquaculture, 75-Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Nathan Felix
- Tamil Nadu Dr. J. Jayalalitha Fisheries University (TNJFU), Vettar River View Campus, Nagapattinam, Tamil Nadu, 611002, India
| | - Aritra Bera
- ICAR-Central Institute of Brackishwater Aquaculture, 75-Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Biju Sam Kamalam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - K P Kumaraguru Vasagam
- ICAR-Central Institute of Brackishwater Aquaculture, 75-Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| | - Muniyandi Kailasam
- ICAR-Central Institute of Brackishwater Aquaculture, 75-Santhome High Road, MRC Nagar, RA Puram, Chennai, Tamil Nadu, 600028, India
| |
Collapse
|
2
|
Rasal KD, Iquebal MA, Dixit S, Vasam M, Raza M, Sahoo L, Jaiswal S, Nandi S, Mahapatra KD, Rasal A, Udit UK, Meher PK, Murmu K, Angadi UB, Rai A, Kumar D, Sundaray JK. Revealing Alteration in the Hepatic Glucose Metabolism of Genetically Improved Carp, Jayanti Rohu Labeo rohita Fed a High Carbohydrate Diet Using Transcriptome Sequencing. Int J Mol Sci 2020; 21:E8180. [PMID: 33142948 PMCID: PMC7662834 DOI: 10.3390/ijms21218180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
Although feed cost is the greatest concern in aquaculture, the inclusion of carbohydrates in the fish diet, and their assimilation, are still not well understood in aquaculture species. We identified molecular events that occur due to the inclusion of high carbohydrate levels in the diets of genetically improved 'Jayanti rohu' Labeo rohita. To reveal transcriptional changes in the liver of rohu, a feeding experiment was conducted with three doses of gelatinized starch (20% (control), 40%, and 60%). Transcriptome sequencing revealed totals of 15,232 (4464 up- and 4343 down-regulated) and 15,360 (4478 up- and 4171 down-regulated) differentially expressed genes. Up-regulated transcripts associated with glucose metabolisms, such as hexokinase, PHK, glycogen synthase and PGK, were found in fish fed diets with high starch levels. Interestingly, a de novo lipogenesis mechanism was found to be enriched in the livers of treated fish due to up-regulated transcripts such as FAS, ACCα, and PPARγ. The insulin signaling pathways with enriched PPAR and mTOR were identified by Kyoto Encyclopedia of Genes and Genome (KEGG) as a result of high carbohydrates. This work revealed for the first time the atypical regulation transcripts associated with glucose metabolism and lipogenesis in the livers of Jayanti rohu due to the inclusion of high carbohydrate levels in the diet. This study also encourages the exploration of early nutritional programming for enhancing glucose efficiency in carp species, for sustainable and cost-effective aquaculture production.
Collapse
Affiliation(s)
- Kiran D. Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Sangita Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Manohar Vasam
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Samiran Nandi
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Kanta Das Mahapatra
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Avinash Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Uday Kumar Udit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Prem Kumar Meher
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - Khuntia Murmu
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| | - UB Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India; (M.A.I.); (M.R.); (S.J.); (U.A.); (A.R.); (D.K.)
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, India; (K.D.R.); (S.D.); (M.V.); (L.S.); (S.N.); (K.D.M.); (A.R.); (U.K.U.); (P.K.M.); (K.M.)
| |
Collapse
|
3
|
Ontogeny of Expression and Activity of Digestive Enzymes and Establishment of gh/ igf1 Axis in the Omnivorous Fish Chelon labrosus. Animals (Basel) 2020; 10:ani10050874. [PMID: 32443440 PMCID: PMC7278486 DOI: 10.3390/ani10050874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Thick-lipped grey mullet (Chelon labrosus) feeds on the lowest trophic levels during adult stages, for which it is considered a viable candidate for an economically and environmentally sustainable aquaculture. Similar to most of marine fish species, C. labrosus produce a large number of eggs, leading to morphologically and anatomically larvae that are not completely mature and have to pass through substantial differentiation and development in their functional systems to acquire adult features. Therefore, the study of the development of digestive tract and of the growth regulation can provide useful information to adapt the feeding protocols and rearing conditions to the physiological requirements at each stage. This work aimed to evaluate the early ontogeny of key digestive enzymes and somatotropic factors at biochemical and/or transcriptional levels. Our results evidenced that maturation of the digestive system and acquisition of the adult mode of digestion occurs around 60 to 70 days post hatch (dph), when starch or other low-cost carbohydrate-based compounds could be used in formulated diets at increasing levels. Furthermore, our results implied an independent expression of the studied somatotropic genes during the first 40 dph and establishment of a functional growth hormone/insulin-like growth factor 1 axis from 50 dph onward. Abstract Thick-lipped grey mullet (Chelon labrosus) is a candidate for sustainable aquaculture due to its omnivorous/detritivorous feeding habit. This work aimed to evaluate its digestive and growth potentials from larval to early juvenile stages. To attain these objectives the activity of key digestive enzymes was measured from three until 90 days post hatch (dph). Expression of genes involved in digestion of proteins (try2, ctr, pga2, and atp4a), carbohydrates (amy2a), and lipids (cel and pla2g1b), together with two somatotropic factors (gh and igf1) were also quantified. No chymotrypsin or pepsin activities were detected. While specific activity of trypsin and lipase were high during the first 30 dph and declined afterward, amylase activity was low until 57 dph and increased significantly beyond that point. Expression of try2, ctr, amy2a, and cel increased continuously along development, and showed a peak at the end of metamorphosis. Expression of pla2g1b, pga2 and atp4a increased until the middle of metamorphosis and decreased afterwars. Most of these trends contrast the usual patterns in carnivorous species and highlight the transition from larvae, with high protein requirements, to post-larvae/juvenile stages, with omnivorous/detritivorous feeding preferences. Somatotropic genes, gh and igf1, showed approximately inverse expression patterns, suggesting the establishment of the Gh/Igf1 axis from 50 dph.
Collapse
|
4
|
Gao XQ, Liu ZF, Guan CT, Huang B, Lei JL, Li J, Guo ZL, Wang YH, Hong L. Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:397-409. [PMID: 27942900 DOI: 10.1007/s10695-016-0295-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
In order to assess the digestive physiological capacity of the American shad Alosa sapidissima and to establish feeding protocols that match larval nutritional requirements, we investigated the ontogenesis of digestive enzymes (trypsin, amylase, lipase, pepsin, alkaline phosphatase, and leucine aminopeptidase) in larvae, from hatching to 45 days after hatching (DAH). We found that all of the target enzymes were present at hatching, except pepsin, which indicated an initial ability to digest nutrients and precocious digestive system development. Trypsin rapidly increased to a maximum at 14 DAH. Amylase sharply increased until 10 DAH and exhibited a second increase at 33 DAH, which coincided with the introduction of microdiet at 30 DAH, thereby suggesting that the increase was associated with the microdiet carbohydrate content. Lipase increased until 14 DAH, decreased until 27 DAH, and then increased until 45 DAH. Pepsin was first detected at 27 DAH and then sharply increased until 45 DAH, which suggested the formation of a functional stomach. Both alkaline phosphatase and leucine aminopeptidase markedly increased until 18 DAH, which indicated intestinal maturation. According to our results, we conclude that American shad larvae possess the functional digestive system before mouth opening, and the significant increases in lipase, amylase, pepsin, and intestinal enzyme activities between 27 and 33 DAH suggest that larvae can be successfully weaned onto microdiets around this age.
Collapse
Affiliation(s)
- Xiao-Qiang Gao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Zhi-Feng Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Chang-Tao Guan
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Ji-Lin Lei
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Juan Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Zheng-Long Guo
- Jiangsu Zhongyang Group, Nantong, 226600, People's Republic of China
| | - Yao-Hui Wang
- Jiangsu Zhongyang Group, Nantong, 226600, People's Republic of China
| | - Lei Hong
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
5
|
Chi L, Liu Q, Xu S, Xiao Z, Ma D, Li J. Maternally derived trypsin may have multiple functions in the early development of turbot (Scopthalmus maximus). Comp Biochem Physiol A Mol Integr Physiol 2015; 188:148-55. [PMID: 26159647 DOI: 10.1016/j.cbpa.2015.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022]
Abstract
Trypsin is an important serine protease that is considered to be involved in digestion of protein in teleost fish. Nevertheless, studies on trypsin/trypsinogen in fish embryos are very limited. In this study, the trypsinogen of turbot (Scophthalmus maximus) (tTG) was identified and the expression patterns and activity of trypsinogen/trypsin were investigated. The results showed that the tTG mRNA was evenly distributed in the oocytes and was also expressed along the yolk periphery in early embryos. At later embryo stages and 1 days after hatching (dph), the tTG mRNA concentrated at the alimentary tract and head. Quantitative expression analysis showed that the tTG transcripts decreased after fertilization until the gastrula stage, then increased with the embryo and larvae development. This result was also confirmed by the specific activity analysis of trypsin and in-situ-hybridization (ISH). All of the results indicated that tTG in early embryo stages was maternally derived and expressed by itself after gastrula stages. Additionally, location of tTG mRNA in embryos and larvae was investigated; we considered that trypsin may have multiple functions during the embryo development process. Based on our results regarding trypsinogen in embryos and early development, we concluded that the trypsin/trypsinogen in turbot embryos was inherited from a maternal source and we suggested that trypsin in early development has multiple functions in the process of development.
Collapse
Affiliation(s)
- Liang Chi
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Qinghua Liu
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Shihong Xu
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Zhizhong Xiao
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Daoyuan Ma
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jun Li
- Center of Biotechnology R&D, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
6
|
Vanderplancke G, Claireaux G, Quazuguel P, Huelvan C, Corporeau C, Mazurais D, Zambonino-Infante JL. Exposure to chronic moderate hypoxia impacts physiological and developmental traits of European sea bass (Dicentrarchus labrax) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:233-42. [PMID: 25487612 DOI: 10.1007/s10695-014-0019-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/01/2014] [Indexed: 05/26/2023]
Abstract
Since European sea bass (Dicentrarchus labrax) larvae occurred in coastal and estuarine waters at early life stages, they are likely to be exposed to reduced dissolved oxygen waters at a sensitive developmental stage. However, the effects of hypoxia at larval stage, which depend in part on fish species, remain very poorly documented in European sea bass. In the present study, the impacts of an experimental exposure to a chronic moderate hypoxia (40 % air saturation) between 30 and 38 days post-hatching on the physiological and developmental traits of European sea bass larvae were assessed. This study was based on the investigation of survival and growth rates, parameters related to energy metabolism [Citrate Synthase (CS) and Cytochrome-c Oxidase (COX) activities], and biological indicators of the maturation of digestive function [pancreatic (trypsin, amylase) and intestinal (Alkaline Phosphatase "AP" and Aminopeptidase-N "N-LAP") enzymes activities]. While condition of hypoxia exposure did not induce any significant mortality event, lower growth rate as well as CS/COX activity ratio was observed in the Hypoxia Treatment group. In parallel, intestinal enzyme activities were also lower under hypoxia. Altogether, the present data suggest that sea bass larvae cope with moderate hypoxia by (1) reducing processes that are costly in energy and (2) regulating mitochondria functions in order to respond to energy-demand conditions. Both these effects are associated with a delay in the maturation of the digestive function.
Collapse
Affiliation(s)
- Gwenaëlle Vanderplancke
- Ifremer, LEMAR UMR 6539 CNRS-UBO-IRD-Ifremer, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Gu J, Bakke AM, Valen EC, Lein I, Krogdahl Å. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses. PLoS One 2014; 9:e99932. [PMID: 24923786 PMCID: PMC4055707 DOI: 10.1371/journal.pone.0099932] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health.
Collapse
Affiliation(s)
- Jinni Gu
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Anne Marie Bakke
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Elin C. Valen
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
8
|
Moguel-Hernández I, Peña R, Nolasco-Soria H, Dumas S, Zavala-Leal I. Development of digestive enzyme activity in spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:839-48. [PMID: 24282084 DOI: 10.1007/s10695-013-9890-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 11/13/2013] [Indexed: 05/15/2023]
Abstract
We describe digestive enzyme activity during the larval development of spotted rose snapper, Lutjanus guttatus. Trypsin, chymotrypsin, leucine aminopeptidase, pepsin, amylase, lipase, and acid and alkaline phosphatase activities were evaluated using spectrophotometric techniques from hatching through 30 days. The spotted rose snapper larvae present the same pattern of digestive enzyme activity previously reported for other species in which pancreatic (i.e., trypsin, chymotrypsin, amylase, and lipase) and intestinal (i.e., acid and alkaline phosphatases and leucine aminopeptidase) enzymatic activities are present from hatching allowing the larvae to digest and absorb nutrients in the yolk-sac and live prey by the time of first feeding. The digestive and absorption capacity of the spotted rose snapper increases during the larval development. A significant increase in individual activity of all enzymes occurs at 20 DAH, and around 25 DAH, the juvenile-type of digestion is observed with the appearance of pepsin secreted by the stomach, suggesting that maturation of the digestive function occurs around 20-25 DAH. Our results are in agreement with a previous suggestion that early weaning may be possible from 20 DAH. However, the patterns of enzymatic activities reported in our study should be considered during the formulation of an artificial diet for early weaning of the spotted rose snapper.
Collapse
Affiliation(s)
- I Moguel-Hernández
- Unidad Piloto de Maricultivos, Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional, 23096, La Paz, BCS, Mexico
| | | | | | | | | |
Collapse
|
9
|
Sequence and expression of an α-amylase gene in four related species of prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and species-level effects. J Comp Physiol B 2013; 184:221-34. [DOI: 10.1007/s00360-013-0780-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 08/19/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
|
10
|
Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br J Nutr 2013; 111:808-18. [PMID: 24112146 DOI: 10.1017/s0007114513003243] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to determine the potential long-term metabolic effects of early nutritional programming on carbohydrate utilisation in adult zebrafish (Danio rerio). High-carbohydrate diets were fed to fish during four ontogenetic stages: from the first-feeding stage to the end of the yolk-sac larval stage; from the first-feeding stage to 2 d after yolk-sac exhaustion; after yolk-sac exhaustion for 3 or 5 d. The carbohydrate stimuli significantly increased the body weight of the first-feeding groups in the short term. The expression of genes was differentially regulated by the early dietary intervention. The high-carbohydrate diets resulted in decreased plasma glucose levels in the adult fish. The mRNA levels and enzyme activities of glucokinase, pyruvate kinase, α-amylase and sodium-dependent glucose co-transporter 1 were up-regulated in the first-feeding groups. There was no significant change in the mRNA levels of glucose-6-phosphatase (G6Pase) in any experimental group, and the activity of G6Pase enzyme in the FF-5 (first feeding to 2 d after yolk-sac exhaustion) group was significantly different from that of the other groups. The expression of phosphoenolpyruvate carboxykinase gene in all the groups was significantly decreased. In the examined early programming range, growth performance was not affected. Taken together, data reported herein indicate that the period ranging from the polyculture to the external feeding stage is an important window for potential modification of the long-term physiological functions. In conclusion, the present study demonstrates that it is possible to permanently modify carbohydrate digestion, transport and metabolism of adult zebrafish through early nutritional programming.
Collapse
|
11
|
Jimenez-Martinez LD, Alvarez-González CA, Tovar-Ramírez D, Gaxiola G, Sanchez-Zamora A, Moyano FJ, Alarcón FJ, Márquez-Couturier G, Gisbert E, Contreras-Sánchez WM, Perales-García N, Arias-Rodríguez L, Indy JR, Páramo-Delgadillo S, Palomino-Albarrán IG. Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:441-454. [PMID: 21671023 DOI: 10.1007/s10695-011-9525-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 06/03/2011] [Indexed: 05/30/2023]
Abstract
Common snook (Centropomus undecimalis) is one of the most important marine species under commercial exploitation in the Gulf of Mexico; for this reason, interest in developing its culture is a priority. However, larviculture remains as the main bottleneck for massive production. In this sense, our objective was to determine the changes of digestive enzymes activities using biochemical and electrophoretic techniques during 36 days of Common snook larviculture fed with live preys (microalgae, rotifers, and Artemia). During larviculture, all digestive enzymatic activities were detected with low values since yolk absorption, 2 days after hatching (dah) onwards. However, the maximum values for alkaline protease (6,500 U mg protein(-1)), trypsin (0.053 mU × 10(-3) mg protein(-1)), and Leucine aminopeptidase (1.4 × 10(-3) mU mg protein(-1)) were detected at 12 dah; for chymotrypsin at 25 dah (3.8 × 10(-3) mU mg protein(-1)), for carboxypeptidase A (280 mU mg protein(-1)) and lipase at 36 dah (480 U mg protein(-1)), for α-amylase at 7 dah (1.5 U mg protein(-1)), for acid phosphatases at 34 dah (5.5 U mg protein(-1)), and finally for alkaline phosphatase at 25 dah (70 U mg protein(-1)). The alkaline protease zymogram showed two active bands, the first (26.3 kDa) at 25 dah onwards, and the second (51.6 kDa) at 36 dah. The acid protease zymogram showed two bands (RF = 0.32 and 0.51, respectively) at 34 dah. The digestive enzymatic ontogeny of C. undecimalis is very similar to other strictly marine carnivorous fish, and we suggest that weaning process should be started at 34 dah.
Collapse
Affiliation(s)
- L D Jimenez-Martinez
- DACBIOL Laboratorio de Acuacultura, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bakke AM, Glover C, Krogdahl Å. Feeding, digestion and absorption of nutrients. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03002-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Alvarez-González CA, Moyano-López FJ, Civera-Cerecedo R, Carrasco-Chávez V, Ortiz-Galindo JL, Dumas S. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus. 1. Biochemical analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2008; 34:373-384. [PMID: 18958595 DOI: 10.1007/s10695-007-9197-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 12/16/2007] [Indexed: 05/27/2023]
Abstract
Spotted sand bass Paralabrax maculatofasciatus is a potential aquaculture species in Northwest Mexico. In the last few years it has been possible to close its life cycle and to develop larviculture technology at on pilot scale using live food, however survival values are low (11%) and improvements in growth and survival requires the study of the morpho-physiological development during the initial ontogeny. In this research digestive activity of several enzymes were evaluated in larvae, from hatching to 30 days after hatching (dah), and in live prey (rotifers and Artemia), by use of biochemical and electrophoretic techniques. This paper, is the first of two parts, and covers only the biochemical analysis. All digestive enzyme activities were detected from mouth opening; however the, maximum activities varied among different digestive enzymes. For alkaline protease and trypsin the maximum activities were detected from 12 to 18 dah. Acid protease activity was observed from day 12 onwards. The other digestive enzymes appear between days 4 and 18 after hatching, with marked fluctuations. These activities indicate the beginning of the juvenile stage and the maturation of the digestive system, in agreement with changes that occur during morpho-physiological development and food changes from rotifers to Artemia. All enzymatic activities were detected in rotifers and Artemia, and their contribution to enhancement the digestion capacity of the larvae appears to be low, but cannot be minimised. We concluded that the enzymatic equipment of P. maculatofasciatus larvae is similar to that of other marine fish species, that it becomes complete between days 12 and 18 after hatching, and that it is totally efficient up to 25 dah.
Collapse
Affiliation(s)
- C A Alvarez-González
- DACBIOL Laboratorio de Acuacultura, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| | | | | | | | | | | |
Collapse
|
14
|
Rungruangsak-Torrissen K, Moss R, Andresen LH, Berg A, Waagbø R. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2006; 32:7-23. [PMID: 20035474 PMCID: PMC3233903 DOI: 10.1007/s10695-005-0630-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2005] [Indexed: 05/24/2023]
Abstract
The expressions of trypsin and chymotrypsin in the pyloric caeca of Atlantic salmon (Salmo salar L.) were studied in three experiments. Two internal (trypsin phenotypes, life stages) and three common external factors (starvation, feeding, temperatures) influencing growth rates were varied. Growth was stimulated by increased temperature and higher feeding rate, and it was depressed during starvation. The interaction between trypsin phenotype and start-feeding temperature affected specific activity of trypsin, but not of chymotrypsin. Trypsin specific activity and the activity ratio of trypsin to chymotrypsin (T/C ratio) increased when growth was promoted. Chymotrypsin specific activity, on the other hand, increased when there was a reduction in growth rate whereas fish with higher growth had higher chymotrypsin specific activity resulting in lower T/C ratio value. During a rapid growth phase, trypsin specific activity did not correlate with chymotrypsin specific activity. On the other hand, a relationship between specific activities of trypsin and chymotrypsin could be observed when growth declined, such as during food deprivation. Trypsin is the sensitive key protease under conditions favouring growth and genetically and environmentally affected, while chymotrypsin plays a major role when growth is limited or depressed. Trypsin specific activity and the T/C ratio value are shown to be important factors in the digestion process affecting growth rate, and could be applicable as indicators for growth studies of fish in captive cultures and in the wild, especially when food consumption rate cannot be measured.
Collapse
|
15
|
Darias MJ, Murray HM, Gallant JW, Astola A, Douglas SE, Yúfera M, Martínez-Rodríguez G. Characterization of a partial α-amylase clone from red porgy (Pagrus pagrus): Expression during larval development. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:209-18. [PMID: 16413218 DOI: 10.1016/j.cbpb.2005.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 11/11/2005] [Accepted: 11/13/2005] [Indexed: 10/25/2022]
Abstract
A partial alpha-amylase cDNA was isolated from red porgy (Pagrus pagrus, Teleostei: Sparidae) and its tissue specific expression during larval development was examined. The cDNA was 949 bp long and showed 90% identity with other fish amylases. A 545 bp fragment was used to study amylase expression using in situ hybridization and RT-PCR techniques. Both methods showed a similar pattern: high and relatively constant expression for the first 30 days after hatching (dah), subsequently decreasing until the end of the experiment at 60 dah. The goal of this work was to extend the existing knowledge of the functionality of larval fish digestive systems and to provide new information about alpha-amylase gene expression.
Collapse
Affiliation(s)
- M J Darias
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, 11510 Puerto Real, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Cahu CL, Zambonino Infante JL, Barbosa V. Effect of dietary phospholipid level and phospholipid:neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet. Br J Nutr 2003; 90:21-8. [PMID: 12844371 DOI: 10.1079/bjn2003880] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the study was to determine the influence of dietary phospholipid concentration on survival and development in sea bass (Dicentrarchus labrax) larvae. Larvae were fed from day 9 to day 40 post-hatch with an isoproteic and isolipidic formulated diet with graded phospholipid levels from 27 to 116 g/kg DM and different phospholipid:neutral lipid values. The best growth (32 mg at the end of the experiment) survival (73 %) and larval quality (only 2 % of malformed larvae) were obtained in the larvae fed the diet containing 116 g phospholipid/kg DM (P<0.05). These results were related to the amount of phosphatidylcholine and phosphatidylinositol included in this diet (35 and 16 g/kg respectively). Amylase, alkaline phosphatase and aminopeptidase N activities revealed a proper maturation of the digestive tract in the two groups fed the highest phospholipid levels. Regulation of lipase and phospholipase A2 by the relative amount of their substrate in the diet occurred mainly at the transcriptional level. The response of pancreatic lipase to dietary neutral lipid was not linear. As in mammals 200 g triacylglycerol/kg diet seems to represent a threshold level above which the response of pancreatic lipase is maximal. The response of phospholipase A2 to dietary phospholipid content was gradual and showed a great modulation range in expression. Sea bass larvae have more efficient capacity to utilize dietary phospholipid than neutral lipids. For the first time a compound diet sustaining good growth, survival and skeletal development has been formulated and can be used in total replacement of live prey in the feeding sequence of marine fish larvae.
Collapse
Affiliation(s)
- Chantal L Cahu
- Unité Mixte de Nutrition des poissons IFREMER-INRA, B.P. 70, 29280 Plouzané, France.
| | | | | |
Collapse
|
17
|
Zambonino Infante JL, Cahu CL. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2001; 130:477-87. [PMID: 11738635 DOI: 10.1016/s1532-0456(01)00274-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Marine fish larvae undergo major morphological and cellular changes during the first month of life. The ontogeny of the gastrointestinal tract combines these two aspects of the larval development and is very interesting in that the timing of functional changes appears genetically hard-wired. The goal of this paper is to give an overview of the gastrointestinal development process in marine fish larvae, with particular attention to three species: sea bass; red drum; and sole, since the description of gut maturation in fish larvae was initiated during the last decade with these species. During the early stages, marine fish larvae exhibit particular digestive features. Concerning the exocrine pancreas, amylase expression decreases with age from the third week post-hatching in sea bass and red drum (approximately 400 degree days), whereas expression of other enzymes (trypsin, lipase, phospholipase A2...) increases until the end of the larva period. Moreover, secretory function of the exocrine pancreas progressively develops and becomes efficient after the third week of life. Concerning the intestine, enzymes of the enterocyte cytosol (in particular peptidase) have higher activity in young larvae than in older. Approximately in the fourth week of post-hatching development in sea bass, red drum and sole larvae, the cytosolic activities dramatically decline concurrently with a sharp increase in membranous enzyme activities of the brush border, such as alkaline phosphatase, aminopeptidase N, maltase. This process characterises the normal maturation of enterocytes in developing fish larvae and also in other vertebrates' species. The establishment of an efficient brush border membrane digestion represents the adult mode of digestion of enterocytes. This paper also describes the role of diet on the development of the gastrointestinal tract. Indeed, the maturational process of digestive enzyme can be enhanced, stopped, or delayed depending on the composition of the diet.
Collapse
Affiliation(s)
- J L Zambonino Infante
- Unité Mixte INRA-IFREMER de Nutrition des Poissons, IFREMER, BP 70, 29280 Plouzane, France.
| | | |
Collapse
|
18
|
Zambonino Infante JL, Cahu CL. High dietary lipid levels enhance digestive tract maturation and improve dicentrarchus labrax larval development. J Nutr 1999; 129:1195-200. [PMID: 10356086 DOI: 10.1093/jn/129.6.1195] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study was designed to determine the nutritional lipid requirement of seabass larvae and to understand the effects of dietary fat concentration on their digestive tract maturation. Seabass (Dicentrarchus labrax) larvae were fed, from d 15 to 38 of life, one of five isonitrogenous compound diets with different lipid levels, ranging from 10 to 30 g/100 g. The higher the lipid level, the greater the growth and survival of the larvae (P < 0.05). The lipolytic enzymes assayed, lipase and phospholipase A2, were stimulated by the increase in their respective dietary substrates, triglycerides and phospholipids, in 38-d-old larvae (P < 0.05). Nevertheless, a plateau in the activity of these two lipolytic enzymes was observed from 20% dietary lipids onwards. The similar mRNA levels of phospholipase A2 in the three groups fed the highest lipid levels suggested that the maximal synthesis level of lipolytic enzyme was reached at 20% dietary fat. Pancreatic secretion of trypsin and amylase were positively affected by the dietary lipid level; a possible involvement of a cholecystokinin-releasing factor is discussed. Diets containing >20% lipids led to the increase in activities of brush border membrane enzymes to the detriment of a cytosolic enzyme in enterocytes, leucine-alanine (Leu-Ala) peptidase. This enzymatic change reveals the earlier maturation of enterocytes in larva groups fed high lipid levels.
Collapse
|