1
|
Hlavaty A, Roustit M, Montani D, Chaumais M, Guignabert C, Humbert M, Cracowski J, Khouri C. Identifying new drugs associated with pulmonary arterial hypertension: A WHO pharmacovigilance database disproportionality analysis. Br J Clin Pharmacol 2022; 88:5227-5237. [PMID: 35679331 PMCID: PMC9795981 DOI: 10.1111/bcp.15436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/11/2022] [Accepted: 05/29/2022] [Indexed: 12/30/2022] Open
Abstract
Since the 1960s, several drugs have been linked to the onset or aggravation of pulmonary arterial hypertension (PAH): dasatinib, some amphetamine-like appetite suppressants (aminorex, fenfluramine, dexfenfluramine, benfluorex) and recreational drugs (methamphetamine). Moreover, in numerous cases, the implication of other drugs with PAH have been suggested, but the precise identification of iatrogenic aetiologies of PAH is challenging given the scarcity of this disease and the potential long latency period between drug intake and PAH onset. In this context, we used the World Health Organization's pharmacovigilance database, VigiBase, to generate new hypotheses about drug associated PAH. METHODS We used VigiBase, the largest pharmacovigilance database worldwide to generate disproportionality signals through the Bayesian neural network method. All disproportionality signals were further independently reviewed by experts in pulmonary arterial hypertension, pharmacovigilance and vascular pharmacology and their plausibility ranked according to World Health Organization causality categories. RESULTS We included 2184 idiopathic PAH cases, yielding a total of 93 disproportionality signals. Among them, 25 signals were considered very likely, 15 probable, 28 possible and 25 unlikely. Notably, we identified 4 new protein kinases inhibitors (lapatinib, lorlatinib, ponatinib and ruxolitinib), 1 angiogenesis inhibitor (bevacizumab), and several chemotherapeutics (etoposide, trastuzumab), antimetabolites (cytarabine, fludarabine, fluorouracil, gemcitabine) and immunosuppressants (leflunomide, thalidomide, ciclosporin). CONCLUSION Such signals represent plausible adverse drug reactions considering the knowledge of iatrogenic PAH, the drugs' biological and pharmacological activity and the characteristics of the reported case. Although confirmatory studies need to be performed, the signals identified may help clinicians envisage an iatrogenic aetiology when faced with a patient who develops PAH.
Collapse
Affiliation(s)
- Alex Hlavaty
- Pharmacovigilance UnitGrenoble Alpes University HospitalGrenobleFrance
| | - Matthieu Roustit
- Clinical Pharmacology Department INSERM CIC1406Grenoble Alpes University HospitalGrenobleFrance,HP2 Laboratory, Inserm U1300Grenoble Alpes University ‐ GrenobleFrance
| | - David Montani
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance,Assistance Publique ‐ Hôpitaux de Paris (AP‐HP), Service de Pneumologie, Centre de référence Maladie Rares de l'Hypertension PulmonaireHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Marie‐Camille Chaumais
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de PharmacieUniversité Paris‐SaclayChâtenay MalabryFrance,Assistance Publique ‐ Hôpitaux de Paris (AP‐HP), Service de PharmacieHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Marc Humbert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie LannelongueLe Plessis‐RobinsonFrance,Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance,Assistance Publique ‐ Hôpitaux de Paris (AP‐HP), Service de Pneumologie, Centre de référence Maladie Rares de l'Hypertension PulmonaireHôpital BicêtreLe Kremlin‐BicêtreFrance
| | - Jean‐Luc Cracowski
- Pharmacovigilance UnitGrenoble Alpes University HospitalGrenobleFrance,HP2 Laboratory, Inserm U1300Grenoble Alpes University ‐ GrenobleFrance
| | - Charles Khouri
- Pharmacovigilance UnitGrenoble Alpes University HospitalGrenobleFrance,Clinical Pharmacology Department INSERM CIC1406Grenoble Alpes University HospitalGrenobleFrance,HP2 Laboratory, Inserm U1300Grenoble Alpes University ‐ GrenobleFrance
| |
Collapse
|
2
|
Abstract
Aminorex (5-phenyl-4,5-dihydro-1,3-oxazol-2-amine) and 4-methylaminorex (4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine) are psychostimulants that have long been listed in Schedules IV and I of the UN Convention on Psychotropic Substances of 1971. However, a range of psychoactive analogues exist that are not internationally controlled and therefore often classified as new psychoactive substances (NPS). Aminorex analogues encompass failed pharmaceuticals that reemerged as drugs of abuse, and newly synthesized substances that were solely designed for recreational use by clandestine chemists. NPS, sometimes also referred to as "designer drugs" in alignment with a phenomenon arising in the early 1980s, serve as alternatives to controlled drugs. Aminorex and its derivatives interact with monoaminergic neurotransmission by interfering with the function of monoamine transporters. Hence, these compounds share pharmacological and neurochemical similarities with amphetamines and cocaine. The consumption of aminorex, 4-methylaminorex and 4,4'-dimethylaminorex (4-methyl-5-(4-methylphenyl)-4,5-dihydro-1,3-oxazol-2-amine) has been associated with adverse events including death, bestowing an inglorious fame on aminorex-derived drugs. In this Review, a historical background is presented, as well as an account of the pharmacodynamic and pharmacokinetic properties of aminorex and various analogues. Light is shed on their misuse as drug adulterants of well-established drugs on the market. This Review not only provides a detailed overview of an abused substance-class, but also emphasizes the darkest aspect of the NPS market, i.e., deleterious side effects that arise from the ingestion of certain NPS, as knowledge of the pharmacology, the potency, or the identity of the active ingredients remains obscure to NPS users.
Collapse
Affiliation(s)
- Julian Maier
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Felix P. Mayer
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Simon D. Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Harald H. Sitte
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| |
Collapse
|
3
|
Orcholski ME, Yuan K, Rajasingh C, Tsai H, Shamskhou EA, Dhillon NK, Voelkel NF, Zamanian RT, de Jesus Perez VA. Drug-induced pulmonary arterial hypertension: a primer for clinicians and scientists. Am J Physiol Lung Cell Mol Physiol 2018; 314:L967-L983. [PMID: 29417823 DOI: 10.1152/ajplung.00553.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.
Collapse
Affiliation(s)
- Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Halley Tsai
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California
| | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Norbert F Voelkel
- School of Pharmacy, Virginia Commonwealth University , Richmond, Virginia
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| |
Collapse
|
4
|
Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D, Conrad DH, Nicolls MR, Voelkel NF. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 2012; 302:L977-91. [PMID: 22307907 DOI: 10.1152/ajplung.00362.2011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many chronic pulmonary diseases are associated with pulmonary hypertension (PH) and pulmonary vascular remodeling, which is a term that continues to be used to describe a wide spectrum of vascular abnormalities. Pulmonary vascular structural changes frequently increase pulmonary vascular resistance, causing PH and right heart failure. Although rat models had been standard models of PH research, in more recent years the availability of genetically engineered mice has made this species attractive for many investigators. Here we review a large amount of data derived from experimental PH reports published since 1996. These studies using wild-type and genetically designed mice illustrate the challenges and opportunities provided by these models. Hemodynamic measurements are difficult to obtain in mice, and right heart failure has not been investigated in mice. Anatomical, cellular, and genetic differences distinguish mice and rats, and pharmacogenomics may explain the degree of PH and the particular mode of pulmonary vascular adaptation and also the response of the right ventricle.
Collapse
Affiliation(s)
- Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Disease Research, Virginia Commonwealth University, 1220 E. Broad St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Soma LR, Rudy JA, Uboh CE, Xu F, Snapp HM. Pharmacokinetics and effects of aminorex in horses. Am J Vet Res 2008; 69:675-81. [PMID: 18447801 DOI: 10.2460/ajvr.69.5.675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the pharmacokinetics and behavioral effects of aminorex administered IV and PO in horses. ANIMALS 7 Thoroughbreds. PROCEDURES In a cross-over design, aminorex (0.03 mg/kg) was administered IV or PO. Plasma and urinary aminorex concentrations were determined via liquid chromatography- mass spectrometry. RESULTS Decrease of aminorex from plasma following IV administration was described by a 3-compartment pharmacokinetic model. Median (range) values of alpha, beta, and gamma half-lives were 0.04 (0.01 to 0.28), 2.30 (1.23 to 3.09), and 18.82 (8.13 to 46.64) hours, respectively. Total body and renal clearance, the area under the plasma time curve, and initial volume of distribution were 37.26 (28.61 to 56.24) mL x min/kg, 1.25 (0.85 to 2.05) mL x min/kg, 13.39 (8.82 to 17.37) ng x h/mL, and 1.44 (0.10 to 3.64) L/kg, respectively. Oral administration was described by a 2-compartment model with first-order absorption, elimination from the central compartment, and distribution into peripheral compartments. The absorption half-life was 0.29 (0.12 to 1.07) hours, whereas the beta and gamma elimination phases were 1.93 (1.01 to 3.17) and 23.57 (15.16 to 47.45) hours, respectively. The area under the curve for PO administration was 10.38 (4.85 to 13.40) ng.h/mL and the fractional absorption was 81.8% (33.8% to 86.9%). CONCLUSIONS AND CLINICAL RELEVANCE Aminorex administered IV had a large volume of distribution, initial rapid decrease, and an extended terminal elimination. Following PO administration, there was rapid absorption, rapid initial decrease, and an extended terminal elimination. At a dose of 0.03 mg/kg, the only effects detected were transient and central in origin and were observed only following IV administration.
Collapse
Affiliation(s)
- Lawrence R Soma
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | | | | | | | | |
Collapse
|
6
|
Archer SL, Djaballah K, Humbert M, Weir KE, Fartoukh M, Dall'ava-Santucci J, Mercier JC, Simonneau G, Dinh-Xuan AT. Nitric oxide deficiency in fenfluramine- and dexfenfluramine-induced pulmonary hypertension. Am J Respir Crit Care Med 1998; 158:1061-7. [PMID: 9769261 DOI: 10.1164/ajrccm.158.4.9802113] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dexfenfluramine and fenfluramine greatly increase the risk of developing pulmonary hypertension (PHT). The mechanism of anorexigen-associated PHT (AA-PHT) and the reason PHT occurs in a minority of people exposed are unknown. Anorexigens are weak pulmonary vasoconstrictors, but they become potent when synthesis of the endogenous vasodilator nitric oxide (NO) is suppressed. We hypothesized NO deficiency predisposes affected individuals to develop AA-PHT. A prospective, case-control, study was performed on consecutive patients with AA-PHT (n = 9). Two sex-matched control groups were selected: patients with primary PHT (P-PHT, n = 8) and normal volunteers (n = 12). Lung NO production (VNO) and systemic plasma oxidation products of NO (NOx) were measured at rest and during exercise. AA-PHT developed 17 +/- 6 mo after a short course of anorexigen (6 +/- 2 mo) and was irreversible. VNO was lower in AA-PHT than in P-PHT and correlated inversely with PVR (p < 0.05). The apparent VNO deficiency may have resulted from increased oxidative inactivation of NO in patients with AA-PHT, as their NOx levels were elevated (p < 0.05) in inverse proportion to VNO (r2 = 0. 55; p < 0.02). In susceptible persons, anorexigens can cause an irreversible syndrome of PHT, hypoxemia, and systemic vascular complications after brief exposures. These patients have a relative NO deficiency years after discontinuing the anorexigen, perhaps explaining their original susceptibility.
Collapse
Affiliation(s)
- S L Archer
- Cardiology Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Weir EK, Reeve HL, Huang JM, Michelakis E, Nelson DP, Hampl V, Archer SL. Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction. Circulation 1996; 94:2216-20. [PMID: 8901674 DOI: 10.1161/01.cir.94.9.2216] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The appetite suppressant aminorex fumarate is thought to have caused an epidemic of pulmonary hypertension in Europe in the 1960s. More recently, pulmonary hypertension has been described in some patients taking other amphetamine-like, anorexic agents: fenfluramine and its d-isomer, dexfenfluramine. No mechanism has been demonstrated that might account for the association between anorexic drugs and pulmonary hypertension. METHODS AND RESULTS Using the whole-cell, patch-clamp technique, we found that aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in smooth muscle cells taken from the small resistance pulmonary arteries of the rat lung. Dexfenfluramine causes reversible membrane depolarization in these cells. These actions are similar to those of hypoxia, which initiates pulmonary vasoconstriction by inhibiting a potassium current in pulmonary vascular smooth muscle. In the isolated, perfused rat lung, aminorex, fenfluramine, and dexfenfluramine induce a dose-related increase in perfusion pressure. When the production of endogenous NO is inhibited by N-nitro-L-arginine methyl ester, the pressor response to dexfenfluramine is greatly enhanced. CONCLUSIONS These observations indicate that anorexic agents, like hypoxia, can inhibit potassium current, cause membrane depolarization, and stimulate pulmonary vasoconstriction. They suggest one mechanism that could be responsible for initiating pulmonary hypertension in susceptible individuals. It is possible that susceptibility is the result of the reduced production of an endogenous vasodilator, such as NO, but this remains speculative.
Collapse
Affiliation(s)
- E K Weir
- Department of Medicine, Veterans Affairs Medical Center, Minneapolis, Minn. 55417, USA
| | | | | | | | | | | | | |
Collapse
|