1
|
Roussa E. Channels and transporters in salivary glands. Cell Tissue Res 2010; 343:263-87. [PMID: 21120532 DOI: 10.1007/s00441-010-1089-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/03/2010] [Indexed: 01/04/2023]
Abstract
According to the two-stage hypothesis, primary saliva, a NaCl-rich plasma-like isotonic fluid is secreted by salivary acinar cells and its ionic composition becomes modified in the duct system. The ducts secrete K(+) and HCO (3) (-) and reabsorb Na(+) and Cl(-) without any water movement, thus establishing a hypotonic final saliva. Salivary secretion depends on the coordinated action of several channels and transporters localized in the apical and basolateral membrane of acinar and duct cells. Early functional studies in perfused glands, followed by the molecular cloning of several transport proteins and the subsequent analysis of mutant mice, have greatly contributed to our understanding of salivary fluid and the electrolyte secretion process. With a few exceptions, most of the key channels and transporters involved in salivary secretion have now been identified and characterized. However, the picture that has emerged from all these studies is one of a complex molecular network characterized by redundancy for several transport proteins, compensatory mechanisms, and adaptive changes in health and disease. Current research is directed to the molecular interactions between the determinants and the ways in which they are regulated by extracellular signals and intracellular mediators. This review focuses on the functionally and molecularly best-characterized channels and transporters that are considered to be involved in transepithelial fluid and electrolyte transport in salivary glands.
Collapse
Affiliation(s)
- Eleni Roussa
- Anatomy and Cell Biology II, Department of Molecular Embryology, Albert Ludwigs University Freiburg, 79104, Freiburg i. Br., Germany.
| |
Collapse
|
2
|
Kurihara K, Nakanishi N, Amano O, Yamamoto M, Iseki S. Specific expression of an A-kinase anchoring protein subtype, AKAP-150, and specific regulatory mechanism for Na(+),K(+)-ATPase via protein kinase A in the parotid gland among the three major salivary glands of the rat. Biochem Pharmacol 2003; 66:239-50. [PMID: 12826266 DOI: 10.1016/s0006-2952(03)00259-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have examined the expression of A-kinase anchoring protein (AKAP) in the three major salivary glands, i.e. the parotid gland (PG), submandibular gland (SMG), and sublingual gland (SLG), of the rat to elucidate the functional relevance between saliva secretion and Na(+),K(+)-ATPase regulation by protein kinase A (PKA)-dependent phosphorylation, since an AKAP subtype, AKAP-150, is known to be involved in the regulation of the ATPase in PG. Although AKAP-150 and its mRNA were clearly detected in the PG, they were hardly detectable in either the SMG or SLG. The membrane-bound form of the RII regulatory subunit of PKA, an index for the total amount of AKAP subtypes and therefore of the anchored PKA holoenzyme, was also undetectable in membranes from the SMG and SLG but was found in the PG; though a substantial and comparable amount of Na(+),K(+)-ATPase was present in all of these membrane preparations. Incubation with [gamma-32P]ATP revealed that Na(+),K(+)-ATPase in the PG membranes was quickly phosphorylated upon the addition of cAMP, whereas the ATPases in the membranes from SMG and SLG were not; though they were readily and equally phosphorylated by the exogenously added PKA catalytic subunit. AKAP-150 in the basolateral membranes of PG acinar cells was co-immunoprecipitated with RII by an anti-RII antiserum; and AKAP-150 and Na(+),K(+)-ATPase were immunohistochemically co-localized predominantly on the basolateral membranes, suggesting a possibility that the ATPase might directly interact with the AKAP to form an ATPase/AKAP/PKA complex or associate with the AKAP, such association being mediated via some scaffolding molecule. Expression of AKAP-150 and quick down-regulation of Na(+),K(+)-ATPase by AKAP-anchored PKA in response to cAMP elevation are characteristics specific to PG among the three major salivary glands, suggesting the presence of PG-specific regulatory mechanisms for saliva production/secretion.
Collapse
Affiliation(s)
- Kinji Kurihara
- Department of Oral Physiology, Meikai University School of Dentistry, 1-1 Keyaki-Dai, Sakado-Shi, Saitama 350-0283, Japan.
| | | | | | | | | |
Collapse
|
3
|
Kurihara K, Nakanishi N, Moore-Hoon ML, Turner RJ. Phosphorylation of the salivary Na(+)-K(+)-2Cl(-) cotransporter. Am J Physiol Cell Physiol 2002; 282:C817-23. [PMID: 11880270 DOI: 10.1152/ajpcell.00352.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the phosphorylation of the secretory Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) in rat parotid acinar cells. We have previously shown that NKCC1 activity in these cells is dramatically upregulated in response to beta-adrenergic stimulation and that this upregulation correlates with NKCC1 phosphorylation, possibly due to protein kinase A (PKA). We show here that when ATP is added to purified acinar basolateral membranes (BLM), NKCC1 is phosphorylated as a result of membrane-associated protein kinase activity. Additional NKCC1 phosphorylation is seen when PKA is added to BLMs, but our data indicate that this is due to an effect of PKA on endogenous membrane kinase or phosphatase activities, rather than its direct phosphorylation of NKCC1. Also, phosphopeptide mapping demonstrates that these phosphorylations do not take place at the site associated with the upregulation of NKCC1 by beta-adrenergic stimulation. However, this upregulatory phosphorylation can be mimicked by the addition of cAMP to permeabilized acini, and this effect can be blocked by a specific PKA inhibitor. These latter results provide good evidence that PKA is indeed involved in the upregulatory phosphorylation of NKCC1 and suggest that an additional factor present in the acinar cell but absent from isolated membranes is required to bring about the phosphorylation.
Collapse
Affiliation(s)
- Kinji Kurihara
- Department of Oral Physiology, School of Dentistry, Meikai University, Sakada-shi, Saitama 350-0283, Japan
| | | | | | | |
Collapse
|
4
|
Kurihara K, Nakanishi N, Ueha T. Regulation of Na(+)-K(+)-ATPase by cAMP-dependent protein kinase anchored on membrane via its anchoring protein. Am J Physiol Cell Physiol 2000; 279:C1516-27. [PMID: 11029299 DOI: 10.1152/ajpcell.2000.279.5.c1516] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+)-K(+)- ATPase alpha-subunits in basolateral membrane vesicles (BLMVs) purified from rat parotid glands were (32)P-labeled within 5 s by incubation with [gamma-(32)P]ATP at 37 degrees C in the presence of cAMP, but no labeling occurred without cAMP. Phosphorylation of Na(+)-K(+)-ATPase was associated with a decrease in its activity. This alpha-subunit phosphorylation disappeared when BLMVs were briefly incubated with cAMP and subsequent washing before the incubation with [gamma-(32)P]ATP, indicating that catalytic subunit of protein kinase A (PKA) associated to BLMVs via binding with its RII regulatory subunit anchored on the membrane. In the absence of cAMP, a PKA catalytic subunit readily reassociated with the membrane-bound RII subunit. HT-31 peptide inhibited the Na(+)-K(+)-ATPase phosphorylation by membrane-bound endogenous PKA, indicating an involvement of A-kinase anchoring protein (AKAP). AKAP-150 protein in BLMVs was shown by immunoblotting and an RII overlay assay and was coimmunoprecipitated by anti-RII antibody. These results show that Na(+)-K(+)-ATPase of rat parotid gland acinar cells is regulated in vivo by membrane-anchored PKA via AKAP rather than by free cytosolic PKA.
Collapse
Affiliation(s)
- K Kurihara
- Department of Oral Physiology, School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan.
| | | | | |
Collapse
|
5
|
Park K, Olschowka JA, Richardson LA, Bookstein C, Chang EB, Melvin JE. Expression of multiple Na+/H+ exchanger isoforms in rat parotid acinar and ductal cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G470-8. [PMID: 9950821 DOI: 10.1152/ajpgi.1999.276.2.g470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Several members of the Na+/H+ exchanger gene family (NHE1, NHE2, NHE3, and NHE4) with unique functional properties have been cloned from rat epithelial tissues. The present study examined the molecular and pharmacological properties of Na+/H+ exchange in rat parotid salivary gland cells. In acinar cells superfused with a physiological salt solution (145 mM Na+), Na+/H+ exchanger activity was inhibited by low concentrations of the amiloride derivative ethylisopropyl amiloride (EIPA; IC50 = 0.014 +/- 0.005 microM), suggesting the expression of amiloride-sensitive isoforms NHE1 and/or NHE2. Semiquantitative RT-PCR confirmed that NHE1 transcripts are most abundant in this cell type. In contrast, the intermediate sensitivity of ductal cells to EIPA indicated that inhibitor-sensitive and -resistant Na+/H+ exchanger isoforms are coexpressed. Ductal cells were about one order of magnitude more resistant to EIPA (IC50 = 0.754 +/- 0.104 microM) than cell lines expressing NHE1 or NHE2 (IC50 = 0.076 +/- 0.013 or 0.055 +/- 0.015 microM, respectively). Conversely, ductal cells were nearly one order of magnitude more sensitive to EIPA than a cell line expressing the NHE3 isoform (IC50 = 6.25 +/- 1.89 microM). Semiquantitative RT-PCR demonstrated that both NHE1 and NHE3 transcripts are expressed in ducts. NHE1 was immunolocalized to the basolateral membranes of acinar and ductal cells, whereas NHE3 was exclusively seen in the apical membrane of ductal cells. Immunoblotting, immunolocalization, and semiquantitative RT-PCR experiments failed to detect NHE2 expression in either cell type. Taken together, our results demonstrate that NHE1 is the dominant functional Na+/H+ exchanger in the plasma membrane of rat parotid acinar cells, whereas NHE1 and NHE3 act in concert to regulate the intracellular pH of ductal cells.
Collapse
Affiliation(s)
- K Park
- Center for Oral Biology, Rochester Institute for Biomedical Sciences, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
6
|
Hurley TW, Ryan MP, Moore WC. Regulation of changes in cytosolic Ca2+ and Na+ concentrations in rat submandibular gland acini exposed to carbachol and ATP. J Cell Physiol 1996; 168:229-38. [PMID: 8707858 DOI: 10.1002/(sici)1097-4652(199608)168:2<229::aid-jcp1>3.0.co;2-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relationship between cytosolic concentrations of Ca2+ (Ca2i) and Na+ (Na+i) were studied in preparations of rat submandibular and pancreatic acini loaded with the Ca(2+)-sensitive dye Fura-2 or the Na(+)-sensitive dye SBFI. Pancreatic acini showed no changes in Na+i during either transient or persistent changes in Ca2+i. Increases in Ca2+i produced by exposure of submandibular gland acini to carbachol, a muscarinic cholinergic agonist, were followed by an increase in Na+i after a delay of 5-10 s. When Ca2+ stores were mobilized without Ca2+ influx Na+i also increased, but in acini loaded with BAPTA, a nonfluorescent Ca2+ chelator, the transient increase in Ca2+ caused by mobilization of stored Ca2+ was virtually abolished, as was the increase in Na+i. In the presence of inomycin, increases in Ca2+i were followed by increases in Na+i. Ca(2+)-dependent increases in Na+i were abolished in Na(+)-free buffer and by the presence of furosemide, a blocker of Na(+)-K(+)-2Cl- cotransport. In other studies, extracellular ATP (ATPo) produced an increase in Ca2+i and Na+i. The steady-state increase in Ca(i)2+ was reduced by increasing extracellular Na+ concentrations (Na+o in dose-dependent fashion (IC50 = 16.4 +/- 4.7 mM Na+). Likewise, increasing Na+o reduced ATPo-stimulated 45Ca2+ uptake at steady state (IC50 = 15.8 +/- 9.2 mM Na+). Changing Na+o had no effect on carbachol-stimulated increases in Ca2+i. We conclude that, in rat submandibular gland acini, ATPo promotes an increase in Ca2+i and Na+i via a common influx pathway and that, under physiologic conditions, Na+ significantly limits the ATPo-stimulated increase in Ca2+i. In the presence of carbachol, however, Na+i rises in Ca2+i-dependent fashion in submandibular gland acini via stimulation of Na(+)-K(+)-2Cl- cotransport.
Collapse
Affiliation(s)
- T W Hurley
- Department of Child Health, University of Missouri-Columbia, School of Medicine 65212, USA
| | | | | |
Collapse
|
7
|
Dehaye JP, Verhasselt V. Interaction of amiloride with rat parotid muscarinic and alpha-adrenergic receptors. GENERAL PHARMACOLOGY 1995; 26:155-9. [PMID: 7536173 DOI: 10.1016/0306-3623(94)00153-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. In rat parotid acini, amiloride inhibited the secretion of amylase and the efflux of calcium and rubidium in response to carbamylcholine and to norepinephrine. 2. Amiloride competitively inhibited the binding of [3H]N-methylscopolamine and [3H] is thus a competitive antagonist of muscarinic and norepinephrine alpha-adrenergic receptors. 3. Amiloride did not affect the response to substance P with respect to secretion or ion movements. 4. Thus the Na+/H+ antiporter is not involved in the short-term regulation of amylase secretion and calcium and potassium movements in rat parotid gland function.
Collapse
Affiliation(s)
- J P Dehaye
- Department of Biochemistry, Université libre de Bruxelles, Belgium
| | | |
Collapse
|
8
|
Affiliation(s)
- R J Turner
- Clinical Investigations and Patient Care Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Zhang GH, Cragoe EJ, Melvin JE. Na+ influx is mediated by Na(+)-K(+)-2Cl- cotransport and Na(+)-H+ exchange in sublingual mucous acini. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C54-62. [PMID: 8381591 DOI: 10.1152/ajpcell.1993.264.1.c54] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The intracellular free Na+ concentration ([Na+]i) was studied using dual-wavelength microfluorometry of the fluorescent Na+ indicator sodium-binding benzofuran isophthalate (SBFI) to determine the mechanism(s) by which muscarinic stimulation increases the Na+ content in rat sublingual mucous acini. [Na+]i was 15.5 +/- 0.7 mM in acini superfused with a Na(+)-containing medium (135 mM Na+). Application of ouabain, a Na(+)-K(+)-adenosinetriphosphatase inhibitor, resulted in an increase in [Na+]i (approximately 75% in 10 min), whereas replacement of extracellular Na+ with N-methyl-D-glucamine induced a gradual decrease in [Na+]i (approximately 55% decrease in 5 min). The recovery of [Na+]i in Na(+)-depleted acini was K+ and Cl- dependent and was inhibited by bumetanide (Bum), a specific Na(+)-K(+)-2Cl- cotransport inhibitor, and by 5-(N-methyl-N-isobutyl)amiloride (MIBA), an amiloride derivative that specifically blocks Na(+)-H+ exchange. Stimulation with a muscarinic agonist (10 microM carbachol) resulted in a dramatic increase in the [Na+]i [approximately 180%, half time (t1/2) approximately 1 min] and a net increase in Na+ content, as measured with 22Na+ (approximately 110%, t1/2 approximately 1 min). Both the initial rate of the increase in [Na+]i and the magnitude of the net increase in Na+ content were dramatically blunted by Bum and MIBA. Increasing the intracellular free Ca2+ concentration ([Ca2+]i) with ionomycin, a Ca2+ ionophore, resulted in an increase in [Na+]i. Preventing the [Ca2+]i increase by chelating cytosolic Ca2+ with bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid completely abolished the agonist-induced evaluation in [Na+]i.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G H Zhang
- Department of Dental Research, University of Rochester, New York 14642
| | | | | |
Collapse
|
10
|
Elliott AC, Lau KR, Brown PD. The effects of Na+ replacement on intracellular pH and [Ca2+] in rabbit salivary gland acinar cells. J Physiol 1991; 444:419-39. [PMID: 1822557 PMCID: PMC1179941 DOI: 10.1113/jphysiol.1991.sp018886] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The role of Na(+)-dependent mechanisms in regulating the intracellular pH (pHi) and free calcium concentration ([Ca2+]i) in acinar cells of the rabbit mandibular salivary gland was examined. The fluorescent dyes BCECF and Fura-2 were used to measure pHi and [Ca2+]i respectively in suspensions of isolated acini. 2. Replacement of all the extracellular Na+ with N-methyl-D-glucamine (NMDG) decreased resting pHi from a control value of 7.1-7.2 to 6.8-6.9. Re-addition of Na+ or Li+ caused a recovery of pHi towards control values. This recovery was blocked by 10-50 microM-ethylisopropylamiloride (EIPA), suggesting that it was mediated by Na(+)-H+ exchange. The rate of recovery of pHi when Na+ was re-introduced increased with Na+ concentration with an apparent Km for Na+ of around 30 mM. 3. Replacement of all of the extracellular Na+ with Li+ caused only a small decrease in resting pHi. 4. Stimulation of acini with 1 microM-acetylcholine (ACh) evoked an intracellular acidosis both under control conditions and when acini were bathed in Na(+)-free media. Following the acidosis pHi recovered in acini bathed in either control medium or Na(+)-free (Li+) medium, but not in acini bathed in Na(+)-free (NMDG) medium or in control medium containing EIPA. 5. Stimulation of acini bathed in Na(+)-free, HCO(3-)-free medium with ACh did not cause any change in pHi. 6. Re-addition of Na+ to acini bathed in Na(+)-free, HCO(3-)-free medium evoked the same rate of alkalinization whether or not the acini had been stimulated with ACh, suggesting that receptor stimulation per se did not lead to an activation of acid extrusion. 7. Resting [Ca2+]i was elevated in acini bathed in Na(+)-free (NMDG) medium, but not in acini bathed in Na(+)-free (Li+) medium. 8. ACh evoked a maintained rise in [Ca2+]i in acini bathed in control medium and in Na(+)-free media with either NMDG or Li+ as the Na+ substitute. 9. Experiments in which external Ca2+ was reduced to low levels (by the addition of EGTA) just prior to addition of ACh showed that ACh released intracellular Ca2+ stores under both control and Na(+)-free conditions. 10. In acini bathed in Na(+)-free (NMDG) solution and stimulated with ACh, re-addition of either Na+ or Li+ reduced [Ca2+]i. The reduction of [Ca2+]i on Na+ re-addition was blocked by EIPA. [Ca2+]i could also be reduced under these conditions by alkalinizing the cytosol using the weak base trimethylamine.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A C Elliott
- Department of Physiological Sciences, University of Manchester
| | | | | |
Collapse
|
11
|
Clark JD, Limbird LE. Na(+)-H+ exchanger subtypes: a predictive review. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 261:C945-53. [PMID: 1662907 DOI: 10.1152/ajpcell.1991.261.6.c945] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, many reports have appeared describing distinct heterogeneity of proteins that heretofore were considered to be a single species or type. The division of proteins into different classes or subtypes is aided by pharmacological tools such as selective ligands, functional measurements such as those examining kinetic or regulatory differences, and molecular biological approaches that have identified distinct genes coding for similar yet distinguishable gene products. Currently, much effort is directed toward understanding the significance of these sometimes subtle differences in terms of functional consequences for the cells in which they exist. Although most reports to date involve hormone and neurotransmitter receptor subtypes, it is also possible that other cell surface molecules such as ion transporters exist as multiple subtypes. In this paper we review the current evidence that Na(+)-H+ exchange activity is mediated by different Na(+)-H+ exchanger subtypes. Although subtypes have not been identified with certainty, we can predict certain distinguishing characteristics that these putative subtypes may have that may be of value in correlating predicted gene products obtained from cDNA cloning with previously characterized Na(+)-H+ exchangers.
Collapse
Affiliation(s)
- J D Clark
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | | |
Collapse
|
12
|
Orsenigo MN, Tosco M, Zoppi S, Faelli A. Characterization of basolateral membrane Na/H antiport in rat jejunum. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1026:64-8. [PMID: 2165809 DOI: 10.1016/0005-2736(90)90333-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Na uptake studies were performed in order to examine the activity of a Na/H exchanger in basolateral membrane vesicles isolated from rat jejunum. Experiments were carried out under voltage-clamped conditions in order to avoid electrodiffusional ionic movements. 1 mM Na uptake was found to be enhanced by an outward proton gradient and its initial rate was further increased by the presence of monensin or nigericin. The pH gradient-driven Na uptake was inhibited by 2 mM amiloride and unaffected by 0.1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. The initial rate of the proton gradient-induced Na uptake was saturable with respect to external Na, with a Km of 13.6 +/- 1.4 mM and a Vmax of 35.4 +/- 2.2 nmol/mg protein per min. Li competed with Na for the exchange process, whereas K, Rb, Cs, tetramethylammonium had no effect. We conclude that rat jejunal basolateral membrane contains a Na/H exchanger whose properties are similar to those of the antiporter identified in the brush-border membrane.
Collapse
Affiliation(s)
- M N Orsenigo
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Italy
| | | | | | | |
Collapse
|
13
|
Lau KR, Howorth AJ, Case RM. The effects of bumetanide, amiloride and Ba2+ on fluid and electrolyte secretion in rabbit salivary gland. J Physiol 1990; 425:407-27. [PMID: 2213584 PMCID: PMC1189856 DOI: 10.1113/jphysiol.1990.sp018111] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. In order to distinguish between models of anion secretion, the effects of transport inhibitors on saliva flow rate and electrolyte composition were studied during the plateau phase of secretion in rabbit mandibular salivary glands. 2. Bumetanide, an inhibitor of Na+,K+,2Cl- co-transport, inhibited flow rate (by 60%) and reduced Cl- concentration. K+ and HCO3- concentrations were increased. Forskolin, an adenylate cyclase activator which inhibits ductal transport, did not significantly affect this pattern of changes. 3. Amiloride, used at concentrations that would inhibit Na(+)-H+ exchange, inhibited flow rate (by 30%). Cl- concentration was initially increased before subsequently decreasing at the same time as HCO3- concentration increased. These concentration changes can probably be attributed to ductal transport. When amiloride was applied to glands perfused with nominally HCO3- -free solutions, inhibition of flow rate was rapid and almost complete. 4. When amiloride and bumetanide were both present in the perfusate, flow rate was inhibited by 92%. The pattern of electrolyte changes was not significantly different from that observed in the presence of bumetanide alone. 5. Inhibition of K+ channel activity using Ba2+ also inhibited flow rate. Cl- concentration was increased as was K+ concentration. HCO3- concentration was not increased. 6. The anion exchange inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) had no effect on either flow rate or electrolyte concentration. It did, however, elicit secretion in the absence of acetylcholine. 7. The data suggest that Na(+)-H+ and Cl- -HCO3- exchangers are unlikely to be involved in fluid and electrolyte secretion in these glands as suggested by some authors. Most of the data can be explained by postulating the existence of non-specific anion channels in the apical membranes of the acinar cells.
Collapse
Affiliation(s)
- K R Lau
- Department of Physiological Sciences, University of Manchester
| | | | | |
Collapse
|
14
|
Agonist-induced activation of Na+/H+ exchange in rat parotid acinar cells is dependent on calcium but not on protein kinase C. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39560-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Manganel M, Turner RJ. Agonist-induced activation of Na+/H+ exchange in rat parotid acinar cells. J Membr Biol 1989; 111:191-8. [PMID: 2559203 DOI: 10.1007/bf01871782] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO3- -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive 22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated two-fold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring approximately 15 min of acinar incubation with carbachol to reach completion, and was blocked by the presence of the muscarinic antagonist atropine (2 x 10(-5) M) in the pretreatment medium. The effect of carbachol was dose dependent with K0.5 approximately 3 x 10(-6) M. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the alpha-adrenergic agonist epinephrine, but not with the beta-adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increased apparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluid-secretory response of the rat parotid.
Collapse
Affiliation(s)
- M Manganel
- Clinical Investigations Branch, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
16
|
Foskett JK, Melvin JE. Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science 1989; 244:1582-5. [PMID: 2500708 DOI: 10.1126/science.2500708] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-resolution differential interference contrast microscopy and digital imaging of the fluorescent calcium indicator dye fura-2 were performed simultaneously in single rat salivary gland acinar cells to examine the effects of muscarinic stimulation on cell volume and cytoplasmic calcium concentration ([Ca2+]i). Agonist stimulation of fluid secretion is initially associated with a rapid tenfold increase in [Ca2+]i as well as a substantial cell shrinkage. Subsequent changes of cell volume in the continued presence of agonist are tightly coupled to dynamic levels of [Ca2+]i, even during [Ca2+]i oscillations. Experiments with Ca2+ chelators and ionophores showed that physiological elevations of [Ca2+]i are necessary and sufficient to cause changes in cell volume. The relation between [Ca2+]i and cell volume suggests that the latter reflects the secretory state of the acinar cell. Agonist-induced changes in [Ca2+]i, by modulating specific ion permeabilities, result in solute movement into or out of the cell. The resultant cell volume changes may be important in modulating salivary secretion.
Collapse
Affiliation(s)
- J K Foskett
- Physiology Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814
| | | |
Collapse
|
17
|
Soltoff SP, McMillian MK, Cantley LC, Cragoe EJ, Talamo BR. Effects of muscarinic, alpha-adrenergic, and substance P agonists and ionomycin on ion transport mechanisms in the rat parotid acinar cell. The dependence of ion transport on intracellular calcium. J Gen Physiol 1989; 93:285-319. [PMID: 2467962 PMCID: PMC2216206 DOI: 10.1085/jgp.93.2.285] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between receptor-mediated increases in the intracellular free calcium concentration [( Ca]i) and the stimulation of ion fluxes involved in fluid secretion was examined in the rat parotid acinar cell. Agonist-induced increases in [Ca]i caused the rapid net loss of up to 50-60% of the total content of intracellular chloride (Cli) and potassium (Ki), which is consistent with the activation of calcium-sensitive chloride and potassium channels. These ion movements were accompanied by a 25% reduction in the intracellular volume. The relative magnitudes of the losses of Ki and the net potassium fluxes promoted by carbachol (a muscarinic agonist), phenylephrine (an alpha-adrenergic agonist), and substance P were very similar to their characteristic effects on elevating [Ca]i. Carbachol stimulated the loss of Ki through multiple efflux pathways, including the large-conductance Ca-activated K channel. Carbachol and substance P increased the levels of intracellular sodium (Nai) to more than 2.5 times the normal level by stimulating the net uptake of sodium through multiple pathways; Na-K-2Cl cotransport accounted for greater than 50% of the influx, and approximately 20% was via Na-H exchange, which led to a net alkalinization of the cells. Ionomycin stimulated similar fluxes through these two pathways, but also promoted sodium influx through an additional pathway which was nearly equivalent in magnitude to the combined uptake through the other two pathways. The carbachol-induced increase in Nai and decrease in Ki stimulated the activity of the sodium pump, measured by the ouabain-sensitive rate of oxygen consumption, to nearly maximal levels. In the absence of extracellular calcium or in cells loaded with the calcium chelator BAPTA (bis[o-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid) the magnitudes of agonist- or ionomycin-stimulated ion fluxes were greatly reduced. The parotid cells displayed a marked desensitization to substance P; within 10 min the elevation of [Ca]i and alterations in Ki, Nai, and cell volume spontaneously returned to near baseline levels. In addition to quantitating the activation of various ion flux pathways in the rat parotid acinar cell, these results demonstrate that the activation of ion transport systems responsible for fluid secretion in this tissue is closely linked to the elevation of [Ca]i.
Collapse
Affiliation(s)
- S P Soltoff
- Department of Physiology, Tufts University, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
18
|
Melvin JE, Moran A, Turner RJ. The role of HCO3- and Na+/H+ exchange in the response of rat parotid acinar cells to muscarinic stimulation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77673-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|