1
|
Li Q, Wu H, Tian M, Li D, Zheng P, Zhang X, Qing Tang B. Delayed luminescence to monitor growth stages and assess the entropy of Saccharomyces cerevisiae. Heliyon 2024; 10:e27866. [PMID: 38623220 PMCID: PMC11016582 DOI: 10.1016/j.heliyon.2024.e27866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/17/2024] Open
Abstract
Delayed luminescence (DL) refers to the photon-induced ultra-weak luminescence emitted by samples after the light source is switched off. As a noninvasive method for health monitoring and disease diagnosis, DL has attracted increasing attention. The further development of this technology is valuable for the study of complex biological processes, such as different growth stages. If such studies were to be conducted in humans, large numbers of subjects of all ages would need to be recruited, and individual differences would be inevitable. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has a short population lifespan, and the growth phases can be monitored within dozens of hours. Therefore, S. cerevisiae is an ideal model organism for research. In this study, we investigated the physiological characteristics and DL emission of S. cerevisiae during growth in glucose-based media and entry into stationary phase, and the results showed that DL kinetic curves of yeast cells in the growing phase were obviously separated from those of stationary phase cells. Moreover, the metabolic and physiological characteristics of the yeast cell population were discussed using the DL emission parameters I0, τ and γ. We also discussed the possibility of assessing entropy using DL emission parameters. Our research demonstrates the potential of this technology to be used in wider applications.
Collapse
Affiliation(s)
- Qing Li
- ENNOVA Institute of Life Science & Technology, ENN Group, Langfang 065001, China
| | - Hong Wu
- ENNOVA Institute of Life Science & Technology, ENN Group, Langfang 065001, China
| | - Miao Tian
- ENNOVA Institute of Life Science & Technology, ENN Group, Langfang 065001, China
| | - Danyu Li
- ENNOVA Institute of Life Science & Technology, ENN Group, Langfang 065001, China
| | - Peng Zheng
- ENNOVA Institute of Life Science & Technology, ENN Group, Langfang 065001, China
| | - Xiaochun Zhang
- ENNOVA Institute of Life Science & Technology, ENN Group, Langfang 065001, China
| | - Bruce Qing Tang
- ENNOVA Institute of Life Science & Technology, ENN Group, Langfang 065001, China
| |
Collapse
|
2
|
Benfatto M, Pace E, Davoli I, Francini R, De Matteis F, Scordo A, Clozza A, De Paolis L, Curceanu C, Grigolini P. Biophotons: New Experimental Data and Analysis. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1431. [PMID: 37895552 PMCID: PMC10606557 DOI: 10.3390/e25101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Biophotons are an ultra-weak emission of photons in the visible energy range from living matter. In this work, we study the emission from germinating seeds using an experimental technique designed to detect light of extremely small intensity. The emission from lentil seeds and single bean was analyzed during the whole germination process in terms of the different spectral components through low pass filters and the different count distributions in the various stages of the germination process. Although the shape of the emission spectrum appears to be very similar in the two samples used in our experiment, our analysis can highlight the differences present in the two cases. In this way, it was possible to correlate the various types of emissions to the degree of development of the seed during germination.
Collapse
Affiliation(s)
- Maurizio Benfatto
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Elisabetta Pace
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Ivan Davoli
- Dipartimento di Fisica, Università di “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Roberto Francini
- Dipartimento di Ingegneria Industriale, Università di “Tor Vergata”, Via del Politecnico, 00133 Rome, Italy; (R.F.); (F.D.M.)
| | - Fabio De Matteis
- Dipartimento di Ingegneria Industriale, Università di “Tor Vergata”, Via del Politecnico, 00133 Rome, Italy; (R.F.); (F.D.M.)
| | - Alessandro Scordo
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Alberto Clozza
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Luca De Paolis
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Catalina Curceanu
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; (A.S.); (A.C.); (L.D.P.)
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203, USA;
| |
Collapse
|
3
|
Mothersill C, Cocchetto A, Seymour C. Low Dose and Non-Targeted Radiation Effects in Environmental Protection and Medicine-A New Model Focusing on Electromagnetic Signaling. Int J Mol Sci 2022; 23:11118. [PMID: 36232421 PMCID: PMC9570230 DOI: 10.3390/ijms231911118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The role of signalling in initiating and perpetuating effects triggered by deposition of ionising radiation energy in parts of a system is very clear. Less clear are the very early steps involved in converting energy to chemical and biological effects in non-targeted parts of the system. The paper aims to present a new model, which could aid our understanding of the role of low dose effects in determining ultimate disease outcomes. We propose a key role for electromagnetic signals resulting from physico-chemical processes such as excitation decay, and acoustic waves. These lead to the initiation of damage response pathways such as elevation of reactive oxygen species and membrane associated changes in key ion channels. Critically, these signalling pathways allow coordination of responses across system levels. For example, depending on how these perturbations are transduced, adverse or beneficial outcomes may predominate. We suggest that by appreciating the importance of signalling and communication between multiple levels of organisation, a unified theory could emerge. This would allow the development of models incorporating time, space and system level to position data in appropriate areas of a multidimensional domain. We propose the use of the term "infosome" to capture the nature of radiation-induced communication systems which include physical as well as chemical signals. We have named our model "the variable response model" or "VRM" which allows for multiple outcomes following exposure to low doses or to signals from low dose irradiated cells, tissues or organisms. We suggest that the use of both dose and infosome in radiation protection might open up new conceptual avenues that could allow intrinsic uncertainty to be embraced within a holistic protection framework.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alan Cocchetto
- National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
4
|
Piao D. On the stress-induced photon emission from organism: I, will the scattering-limited delay affect the temporal course? SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Piao D. On the stress-induced photon emission from organism: II, how will the stress-transfer kinetics affect the photo-genesis? SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03347-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Van Wijk R, Van Wijk EP, Pang J, Yang M, Yan Y, Han J. Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research. Front Physiol 2020; 11:717. [PMID: 32733265 PMCID: PMC7360823 DOI: 10.3389/fphys.2020.00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Once regarded solely as the energy source of the cell, nowadays mitochondria are recognized to perform multiple essential functions in addition to energy production. Since the discovery of pathogenic mitochondrial DNA defects in the 1980s, research advances have revealed an increasing number of common human diseases, which share an underlying pathogenesis involving mitochondrial dysfunction. A major factor in this dysfunction is reactive oxygen species (ROS), which influence the mitochondrial-nuclear crosstalk and the link with the epigenome, an influence that provides explanations for pathogenic mechanisms. Regarding these mechanisms, we should take into account that mitochondria produce the majority of ultra-weak photon emission (UPE), an aspect that is often ignored - this type of emission may serve as assay for ROS, thus providing new opportunities for a non-invasive diagnosis of mitochondrial dysfunction. In this article, we overviewed three relevant areas of mitochondria-related research over the period 1960-2020: (a) respiration and energy production, (b) respiration-related production of free radicals and other ROS species, and (c) ultra-weak photon emission in relation to ROS and stress. First, we have outlined how these research areas initially developed independently of each other - following that, our review aims to show their stepwise integration during later stages of development. It is suggested that a further stimulation of research on UPE may have the potential to enhance the progress of modern mitochondrial research and its integration in medicine.
Collapse
Affiliation(s)
- Roeland Van Wijk
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | | | - Jingxiang Pang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Yan
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Spectral Distribution of Ultra-Weak Photon Emission as a Response to Wounding in Plants: An In Vivo Study. BIOLOGY 2020; 9:biology9060139. [PMID: 32604795 PMCID: PMC7345010 DOI: 10.3390/biology9060139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
It is well established that every living organism spontaneously emits photons referred to as ultra-weak photon emission (synonym biophotons or low-level chemiluminescence) which inherently embodies information about the wellbeing of the source. In recent years, efforts have been made to use this feature as a non-invasive diagnostic tool related to the detection of food quality, agriculture and biomedicine. The current study deals with stress resulting from wounding (mechanical injury) on Arabidopsis thaliana and how it modifies the spontaneous ultra-weak photon emission. The ultra-weak photon emission from control (non-wounded) and stressed (wounded) plants was monitored using different modes of ultra-weak photon emission measurement sensors like charge-coupled device (CCD) cameras and photomultiplier tubes (PMT) and the collected data were analyzed to determine the level of stress generated, photon emission patterns, and underlying biochemical process. It is generally considered that electronically excited species formed during the oxidative metabolic processes are responsible for the ultra-weak photon emission. In the current study, a high-performance cryogenic full-frame CCD camera was employed for two-dimensional in-vivo imaging of ultra-weak photon emission (up to several counts/s) and the spectral analysis was done by using spectral system connected to a PMT. The results show that Arabidopsis subjected to mechanical injury enhances the photon emission and also leads to changes in the spectral pattern of ultra-weak photon emission. Thus, ultra-weak photon emission can be used as a tool for oxidative stress imaging and can pave its way into numerous plant application research.
Collapse
|
8
|
Le M, McNeill FE, Seymour CB, Rusin A, Diamond K, Rainbow AJ, Murphy J, Mothersill CE. Modulation of oxidative phosphorylation (OXPHOS) by radiation- induced biophotons. ENVIRONMENTAL RESEARCH 2018; 163:80-87. [PMID: 29427954 DOI: 10.1016/j.envres.2018.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Radiation-induced biophotons are an electromagnetic form of bystander signalling. In human cells, biophoton signalling is capable of eliciting effects in non-irradiated bystander cells. However, the mechanisms by which the biophotons interact and act upon the bystander cells are not clearly understood. Mitochondrial energy production and ROS are known to be involved but the precise interactions are not known. To address this question, we have investigated the effect of biophoton emission upon the function of the complexes of oxidative phosphorylation (OXPHOS). The exposure of bystander HCT116 p53 +/+ cells to biophoton signals emitted from β-irradiated HCT116 p53 +/+ cells induced significant modifications in the activity of Complex I (NADH dehydrogenase or NADH:ubiquinone oxidoreductase) such that the activity was severely diminished compared to non-irradiated controls. The enzymatic assay showed that the efficiency of NADH oxidation to NAD+ was severely compromised. It is suspected that this impairment may be linked to the photoabsorption of biophotons in the blue wavelength range (492-455 nm). The photobiomodulation to Complex I was suspected to contribute greatly to the inefficiency of ATP synthase function since it resulted in a lower quantity of H+ ions to be available for use in the process of chemiosmosis. Other reactions of the ETC were not significantly impacted. Overall, these results provide evidence for a link between biophoton emission and biomodulation of the mitochondrial ATP synthesis process. However, there are many aspects of biological modulation by radiation-induced biophotons which will require further elucidation.
Collapse
Affiliation(s)
- Michelle Le
- McMaster University, 1280, Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Fiona E McNeill
- McMaster University, 1280, Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Colin B Seymour
- McMaster University, 1280, Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Andrej Rusin
- McMaster University, 1280, Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Kevin Diamond
- McMaster University, 1280, Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Andrew J Rainbow
- McMaster University, 1280, Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - James Murphy
- Institute of Technology Sligo, F91 YW50, Ireland
| | - Carmel E Mothersill
- McMaster University, 1280, Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| |
Collapse
|
9
|
Le M, Mothersill CE, Seymour CB, Ahmad SB, Armstrong A, Rainbow AJ, McNeill FE. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells. Phys Med Biol 2015; 60:6371-89. [PMID: 26237407 DOI: 10.1088/0031-9155/60/16/6371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.
Collapse
Affiliation(s)
- M Le
- Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4L8, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
de Mello Gallep C. Ultraweak, spontaneous photon emission in seedlings: toxicological and chronobiological applications. LUMINESCENCE 2014; 29:963-8. [DOI: 10.1002/bio.2658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/09/2014] [Indexed: 11/09/2022]
|
11
|
Prasad A, Rossi C, Lamponi S, Pospíšil P, Foletti A. New perspective in cell communication: potential role of ultra-weak photon emission. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:47-53. [PMID: 24703082 DOI: 10.1016/j.jphotobiol.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 01/11/2023]
Abstract
Evolution has permitted a wide range of medium for communication between two living organism varying from information transfer via chemical, direct contact or through specialized receptors. Past decades have evidenced the existence of cell-to-cell communication in living system. Several studies have demonstrated the existence of one cell system influencing the other cells by means of electromagnetic radiations investigated by the stimulation of cell division, neutrophils activation, respiratory burst induction and alteration in the developmental stages, etc. The responses were evaluated by methods such as chemiluminescence, ultra-weak photon emission, generation of free oxygen radicals, and level of thiobarbituric acid-reactive substances (TBARS). The cellular communication is hypothesized to occur via several physical phenomenon's, however the current review attempts to provide thorough information and a detailed overview of experimental results on the cell-to-cell communication observed in different living system via ultra-weak photon emission to bring a better understanding and new perspective to the phenomenon.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della, Lastruccia 3, Sesto Fiorentino, FI, Italy.
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Alberto Foletti
- Laboratory of Applied Mathematics and Physics, Department of Innovative Technologies - DTI, University of Applied Sciences of Southern Switzerland-SUPSI, Manno, Switzerland
| |
Collapse
|
12
|
Pospíšil P, Prasad A, Rác M. Role of reactive oxygen species in ultra-weak photon emission in biological systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:11-23. [PMID: 24674863 DOI: 10.1016/j.jphotobiol.2014.02.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Ultra-weak photon emission originates from the relaxation of electronically excited species formed in the biological systems such as microorganisms, plants and animals including humans. Electronically excited species are formed during the oxidative metabolic processes and the oxidative stress reactions that are associated with the production of reactive oxygen species (ROS). The review attempts to overview experimental evidence on the involvement of superoxide anion radical, hydrogen peroxide, hydroxyl radical and singlet oxygen in both the spontaneous and the stress-induced ultra-weak photon emission. The oxidation of biomolecules comprising either the hydrogen abstraction by superoxide anion and hydroxyl radicals or the cycloaddition of singlet oxygen initiate a cascade of oxidative reactions that lead to the formation of electronically excited species such as triplet excited carbonyl, excited pigments and singlet oxygen. The photon emission of these electronically excited species is in the following regions of the spectrum (1) triplet excited carbonyl in the near UVA and blue-green areas (350-550nm), (2) singlet and triplet excited pigments in the green-red (550-750nm) and red-near IR (750-1000nm) areas, respectively and (3) singlet oxygen in the red (634 and 703nm) and near IR (1270nm) areas. The understanding of the role of ROS in photon emission allows us to use the spontaneous and stress-induced ultra-weak photon emission as a non-invasive tool for monitoring of the oxidative metabolic processes and the oxidative stress reactions in biological systems in vivo, respectively.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
13
|
Tang R, Dai J. Biophoton signal transmission and processing in the brain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:71-5. [PMID: 24461927 DOI: 10.1016/j.jphotobiol.2013.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
Abstract
The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system.
Collapse
Affiliation(s)
- Rendong Tang
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
14
|
Shahabi S, Kasariyans A, Noorbakhsh F. Like cures like: A neuroimmunological model based on electromagnetic resonance. Electromagn Biol Med 2013; 32:508-26. [DOI: 10.3109/15368378.2012.743911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Abstract
SynopsisGreen plants, within certain limitations, can adapt to a wide variety of unfavourable conditions such as drought, temperature changes, light variations, infectious attacks, air pollution and soil contamination. Depending on the strength of the individual impact(s), fluent or abrupt changes in visible or measurable stress symptoms indicate the deviation from normal metabolic conditions. Most of the visible or measurable symptoms are connected with altered oxygen metabolism principally concerning the transition from mostly heterolytic (two-electron transition) to increased homolytic (one-electron transition) processes. Homolytic reactions within metabolic sequences create, however, free radicals and have to be counteracted by the increase in radical-scavenging processes or compounds, thus warranting reaction sequences under metabolic control. At later states of stress episodes, the above control is gradually lost and more or less chaotic radical processes take over. Finally, cellular decompartmentalisations induce lytic and necrotic processes which are visible as the collapse of darkening cells or tissues. Every episode during this process is governed by a more or less denned balance between pro- and antioxidative capacities, including photosynthetic (strongly under metabolic and oxygen-detoxifying control) and photodynamic (only controlled by scavenger- and/or quencher-availability) reactions. This (theoretical) sequence of events in most cases can only be characterised punctually by strongly defined (analytical) indicator reactions (ESR) and is certainly species- and organ-specific.
Collapse
|
16
|
Rastogi A, Pospísil P. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:117-123. [PMID: 20106674 DOI: 10.1016/j.plaphy.2009.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 11/21/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
Biophotons spontaneously emitted from radish root cells were detected using highly sensitive photomultiplier tube. Freshly isolated radish root cells exhibited spontaneous photon emission of about 4 counts s(-1). Addition of hydrogen peroxide to the cells caused significant enhancement in biophoton emission to about 500 counts s(-1). Removal of molecular oxygen using glucose/glucose oxidase system and scavengering of reactive oxygen species by reducing agents such are sodium ascorbate and cysteine completely diminished biophoton emission. Spectral analysis of the hydrogen peroxide-induced biophoton emission indicates that biophotons are emitted mainly in green-red region of the spectra. The data provided by electron paramagnetic resonance spin-trapping technique showed that formation of singlet oxygen observed after addition of H2O2 correlates with enhancement in biophoton emission. These observations provide direct evidence that singlet oxygen is involved in biophoton emission from radish root cells.
Collapse
Affiliation(s)
- Anshu Rastogi
- Department of Experimental Physics, Laboratory of Biophysics, Faculty of Science, Palacký University, tr. 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | | |
Collapse
|
17
|
Sun Y, Wang C, Dai J. Biophotons as neural communication signals demonstrated by in situ biophoton autography. Photochem Photobiol Sci 2010; 9:315-22. [PMID: 20221457 DOI: 10.1039/b9pp00125e] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell to cell communication by biophotons has been demonstrated in plants, bacteria, animal neutrophil granulocytes and kidney cells. Whether such signal communication exists in neural cells is unclear. By developing a new biophoton detection method, called in situ biophoton autography (IBA), we have investigated biophotonic activities in rat spinal nerve roots in vitro. We found that different spectral light stimulation (infrared, red, yellow, blue, green and white) at one end of the spinal sensory or motor nerve roots resulted in a significant increase in the biophotonic activity at the other end. Such effects could be significantly inhibited by procaine (a regional anaesthetic for neural conduction block) or classic metabolic inhibitors, suggesting that light stimulation can generate biophotons that conduct along the neural fibers, probably as neural communication signals. The mechanism of biophotonic conduction along neural fibers may be mediated by protein-protein biophotonic interactions. This study may provide a better understanding of the fundamental mechanisms of neural communication, the functions of the nervous system, such as vision, learning and memory, as well as the mechanisms of human neurological diseases.
Collapse
Affiliation(s)
- Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Minyuan Road 708, Wuhan 430074, China
| | | | | |
Collapse
|
18
|
LAAGER FRÉDÉRICM, BECKER NICHOLASM, PARK SANGHYUN, SOH KWANGSUP. Effects ofLacOperon Activation, Deletion of theYhhaGene, and the Removal of Oxygen on the Ultra-Weak Photon Emission ofEscherichia coli. Electromagn Biol Med 2009; 28:240-9. [DOI: 10.3109/15368370903065820] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Winkler R, Guttenberger H, Klima H. Ultraweak and Induced Photon Emission After Wounding of Plants. Photochem Photobiol 2009; 85:962-5. [DOI: 10.1111/j.1751-1097.2009.00537.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Slawinski J. Photon Emission from Perturbed and Dying Organisms: Biomedical Perspectives. Complement Med Res 2005; 12:90-5. [PMID: 15947467 DOI: 10.1159/000083971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Living systems spontaneously emit ultraweak light (ultraweak photon emission, UPE) during the process of metabolic reactions associated with the normal physiological state. Stress factors and pathological states change parameters of that emission, such as intensity, yield, temporal, statistical and spectral characteristics. Thus, properties of UPE are inherently associated with and derived from biochemical and biophysical excitation processes. UPE can be considered as a holistic expression of the perturbation of the physiological state of the bio-system and may carry information on the bioenergetics, kinetics and character of biochemical and physiological processes, functioning of the regulatory feedback systems and the degree of perturbation by internal and external factors. This article presents an overview of the fundamentals of UPE and its relation to physiological processes.
Collapse
Affiliation(s)
- Janusz Slawinski
- Dept. of Physical Chemistry, Poznan University of Technology, Poland.
| |
Collapse
|
21
|
Rajfur Z. Photon emission from chemically perturbed yeast cells. JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE 1994; 9:59-63. [PMID: 8023704 DOI: 10.1002/bio.1170090204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photon emission (PE) from yeast cells Saccharomyces cerevisiae strain SP-4 in normal conditions and in conditions perturbed by the addition of formaldehyde was investigated using single-photon counting equipment. PE from yeast cells, growing in a standard nutrient medium (YPG) then centrifuged and resuspended in a phosphate buffer (pH = 6.5), was measured in the presence of oxygen or argon. The solution of formaldehyde (2%) was injected into the sample. The intensity of PE increased and reached a maximum, then slowly decreased to a level which was higher than the PE level without the perturbing factor. The kinetics of PE was found to be strongly dependent upon the presence of oxygen. The model of formation and recombination of free radicals was tested. The results indicate that PE can arise during the recombination reactions of free radicals like R. + R., RO. + RO., RO2. + RO2. which are formed in the enzymatic oxidative reactions.
Collapse
Affiliation(s)
- Z Rajfur
- Department of Biophysics, Pedagogical University, Krakow, Poland
| |
Collapse
|
22
|
Godlewski M, Rajfur Z, Sławiński J, Kobayashi M, Usa M, Inaba H. Spectra of the formaldehyde-induced ultraweak luminescence from yeast cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1993; 21:29-35. [PMID: 8289109 DOI: 10.1016/1011-1344(93)80160-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An increase in the intensity and distinct spectral changes of ultraweak luminescence from the yeast Saccharomyces cerevisiae were measured when the metabolism of cells was drastically altered. A small emission peak and a red emission band 680-850 nm appeared when air-dried cells were imbibed in water. Lethal concentrations of HCHO (0.01%-10%) elicited a 2500 fold increase of the emission intensity and distinct spectral alterations. A transient 500-580 nm emission appeared in the initial phase of interaction. Then a gradually increasing long-lasting red emission band centered around 620 nm predominated in the total spectral range covering 470-850 nm. These emissions were not correlated with minor changes in fluorescence emission and excitation spectra originating from tryptophan, flavins, and unidentified emitters.
Collapse
Affiliation(s)
- M Godlewski
- Institute of Physics and Informatics, Pedagogical University, Krakow, Poland
| | | | | | | | | | | |
Collapse
|