1
|
Davies KL, Smith DJ, El-Bacha T, Stewart ME, Easwaran A, Wooding PFP, Forhead AJ, Murray AJ, Fowden AL, Camm EJ. Development of cerebral mitochondrial respiratory function is impaired by thyroid hormone deficiency before birth in a region-specific manner. FASEB J 2021; 35:e21591. [PMID: 33891344 DOI: 10.1096/fj.202100075r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Thyroid hormones regulate adult metabolism partly through actions on mitochondrial oxidative phosphorylation (OXPHOS). They also affect neurological development of the brain, but their role in cerebral OXPHOS before birth remains largely unknown, despite the increase in cerebral energy demand during the neonatal period. Thus, this study examined prepartum development of cerebral OXPHOS in hypothyroid fetal sheep. Using respirometry, Complex I (CI), Complex II (CII), and combined CI&CII OXPHOS capacity were measured in the fetal cerebellum and cortex at 128 and 142 days of gestational age (dGA) after surgical thyroidectomy or sham operation at 105 dGA (term ~145 dGA). Mitochondrial electron transfer system (ETS) complexes, mRNA transcripts related to mitochondrial biogenesis and ATP production, and mitochondrial density were quantified using molecular techniques. Cerebral morphology was assessed by immunohistochemistry and stereology. In the cortex, hypothyroidism reduced CI-linked respiration and CI abundance at 128 dGA and 142 dGA, respectively, and caused upregulation of PGC1α (regulator of mitochondrial biogenesis) and thyroid hormone receptor β at 128 dGA and 142 dGA, respectively. In contrast, in the cerebellum, hypothyroidism reduced CI&II- and CII-linked respiration at 128 dGA, with no significant effect on the ETS complexes. In addition, cerebellar glucocorticoid hormone receptor and adenine nucleotide translocase (ANT1) were downregulated at 128 dGA and 142 dGA, respectively. These alterations in mitochondrial function were accompanied by reduced myelination. The findings demonstrate the importance of thyroid hormones in the prepartum maturation of cerebral mitochondria and have implications for the etiology and treatment of the neurodevelopmental abnormalities associated with human prematurity and congenital hypothyroidism.
Collapse
Affiliation(s)
- Katie L Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Danielle J Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tatiana El-Bacha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Max E Stewart
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Akshay Easwaran
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peter F P Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Villanueva I, Alva-Sánchez C, Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:218145. [PMID: 24386502 PMCID: PMC3872098 DOI: 10.1155/2013/218145] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- I. Villanueva
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - C. Alva-Sánchez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| | - J. Pacheco-Rosado
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, IPN. Prol. Carpio y Plan de Ayala, s/n, 11340 México City, DF, Mexico
| |
Collapse
|
3
|
Martinez B, Rodrigues TB, Gine E, Kaninda JP, Perez-Castillo A, Santos A. Hypothyroidism decreases the biogenesis in free mitochondria and neuronal oxygen consumption in the cerebral cortex of developing rats. Endocrinology 2009; 150:3953-9. [PMID: 19389834 DOI: 10.1210/en.2008-1755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Thyroid hormone plays a critical role in mitochondrial biogenesis in two areas of the developing brain, the cerebral cortex and the striatum. Here we analyzed, in the cerebral cortex of neonatal rats, the effect of hypothyroidism on the biogenesis in free and synaptosomal mitochondria by analyzing, in isolated mitochondria, the activity of respiratory complex I, oxidative phosphorylation, oxygen consumption, and the expression of mitochondrial genome. In addition, we studied the effect of thyroid hormone in oxygen consumption in vivo by determining metabolic flow through (13)C nuclear magnetic resonance spectroscopy. Our results clearly show that in vivo, hypothyroidism markedly reduces oxygen consumption in the neural population of the cerebral cortex. This effect correlates with decreased free mitochondria biogenesis. In contrast, no effect was observed in the biogenesis in synaptosomal mitochondria. The parameters analyzed were markedly improved after T(3) administration. These results suggest that a reduced biogenesis and the subsequent reduction of respiratory capacity in free mitochondria could be the underlying cause of decreased oxygen consumption in the neurons of the cerebral cortex of hypothyroid neonates.
Collapse
Affiliation(s)
- Bienvenida Martinez
- Departamentos de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Katyare SS, Rajan RR. Influence of thyroid hormone treatment on the respiratory activity of cerebral mitochondria from hypothyroid rats. A critical re-assessment. Exp Neurol 2005; 195:416-22. [PMID: 16005873 DOI: 10.1016/j.expneurol.2005.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/15/2005] [Accepted: 06/06/2005] [Indexed: 11/28/2022]
Abstract
Effects of treatment with thyroid hormones L-3,5,3'-tri-iodothyronine (T3) and L-thyroxine (T4) on oxidative energy metabolism in cerebral mitochondria from hypothyroid adult rats were examined. It was observed that T3 and T4 stimulated respiratory activity in a substrate-specific and dose-dependent manner. The results also suggest that the synthesis of cytochrome aa3 and of cytochrome c may be dependent on both T3 as well as T4 whereas higher concentrations than normal of T3 and T4 may have a catabolic influence on cytochrome b content.
Collapse
Affiliation(s)
- Surendra S Katyare
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390 002, India.
| | | |
Collapse
|
5
|
Martinez B, del Hoyo P, Martin MA, Arenas J, Perez-Castillo A, Santos A. Thyroid hormone regulates oxidative phosphorylation in the cerebral cortex and striatum of neonatal rats. J Neurochem 2001; 78:1054-63. [PMID: 11553679 DOI: 10.1046/j.1471-4159.2001.00487.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that thyroid hormone (T(3)) regulates mitochondrial gene expression, morphology and transmembrane potential in the developing brain. Here, we have analysed the effect of thyroid hormone on mitochondrial function in different brain regions. For this purpose we have determined, in control, hypothyroid and T(3)-treated hypothyroid neonatal rats, the rate of oxidative phosphorylation in isolated mitochondria and the activity of the respiratory complexes in tissue homogenates. Our results showed a decrease in oxidative phosphorylation rate (only in the presence of NADH-generating substrates) and mitochondrial complexes I and III activity in the cerebral cortex and striatum of hypothyroid neonates, but not in the other areas analysed (hippocampus, cerebellum, thalamus, mid brain and brain stem). In parallel with mitochondrial activity, the levels of mitochondrially encoded transcripts were decreased only in the cerebral cortex and striatum of hypothyroid rats. The administration of T(3) corrected all these parameters. In summary, this study showed a down-regulation of mitochondrial gene expression accompanied by a decrease in mitochondrial activity in the cerebral cortex and striatum of developing hypothyroid neonatal rats.
Collapse
Affiliation(s)
- B Martinez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Sundari SB, Raghunath M. Severe Gestational Hypothyroidism Increases BBB Nutrient Transport in the Offspring. Nutr Neurosci 1999; 2:75-83. [PMID: 27414966 DOI: 10.1080/1028415x.1999.11747265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Brain growth spurt and development is highly influenced by thyroid hormones. We reported earlier that chronic maternal potassium thiocyanate feeding (induced moderate hypothyroidism) resulted in reversible decrease in Blood-Brain Barrier (BBB) glucose transport in the offspring. To assess whether severe hypothyroidism as often seen in endemic areas would have greater effect, we have now determined the thyroid status and BBB nutrient transport in the pups born to dams made severely hypothyroid by feeding 6-n-propyl thiouracil (PTU), the potent antithyroid compound. The pups of PTU fed dams had lower birth weights (P < 0.001) than controls. Their weanling body weight and brain weight were also significantly lower. They were very severely hypothyroid (serum T4 < 0.7 μg/d1 and T3 < 0.5 ng/ml) and surprisingly there was a significant increase in the BBB transport of all three nutrients tested (leucine, tyrosine and 2-deoxy-D-glucose). The increased BBB nutrient transport however does not appear to be due to opening/breakdown of BBB as evident from the lack of extravasation of Evans blue injected into the carotid artery. Interestingly, T3 supplementation to the dams and offspring, could mitigate the changes not only in BBB nutrient transport but also their body and brain weights at weanling.
Collapse
Affiliation(s)
- S B Sundari
- a National Institute of Nutrition , Jamai Osmania, Hyderabad 500 007 , India
| | - M Raghunath
- a National Institute of Nutrition , Jamai Osmania, Hyderabad 500 007 , India
| |
Collapse
|
7
|
Raghunath M, Bala TS. Diverse effects of mild and potent goitrogens on blood-brain barrier nutrient transport. Neurochem Int 1998; 33:173-7. [PMID: 9761461 DOI: 10.1016/s0197-0186(98)00012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Populations living in goitre endemic areas consume foods rich in a variety of goitrogens of different potencies and some are severely hypothyroid. Recently we observed in Wistar/NIN rats that chronic feeding of KSCN to dams produced only a moderate hypothyroidism and decreased the transport of 2-deoxy-D-glucose (2-DG) across the blood-brain barrier (BBB) in the offspring. The present studies were conducted to assess whether severe hypothyroidism would have greater effect on BBB nutrient transport. It has now been observed that weaning the pups of KSCN fed dams on to KSCN diet for four weeks had no further effect either on their thyroid status or the BBB 2-DG transport. However, feeding KSCN to rats through two generations produced somewhat severe hypothyroidism in F2 pups than that in F1 pups. Interestingly, unlike in F1 pups, the BBB transport of all the three nutrients tested (2-DG, Leu and Tyr) was significantly decreased in F2 pups, albeit to a small extent (10-15%). On the other hand the potent goitrogen: methyl mercaptoimidazole (MMI) even on short term feeding to pregnant dams produced very severe hypothyroidism in the offspring [Serum T4:0.55+/-0.09 microg/dl vs 4.96+/-0.85 in controls]. Surprisingly, the BBB transport of 2-DG, Leu, Tyr and also sucrose, the background marker, was significantly increased in these pups (20-30%). The diverse effects of goitrogen-induced moderate and severe hypothyroidism observed here on the BBB nutrient transport probably suggest different mechanisms for iodine deficiency disorders of different aetiologies and hence the need for discrete approaches for their management.
Collapse
Affiliation(s)
- M Raghunath
- Division of Endocrinology and Metabolism, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania, Hyderabad.
| | | |
Collapse
|
8
|
Katyare SS, Bangur CS, Howland JL. Is respiratory activity in the brain mitochondria responsive to thyroid hormone action?: a critical re-evaluation. Biochem J 1994; 302 ( Pt 3):857-60. [PMID: 7945213 PMCID: PMC1137309 DOI: 10.1042/bj3020857] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of in vivo treatment with graded doses (0.5-1.5 micrograms/g body weight) of thyroid hormones, tri-iodothyronine (T3) and thyroxine (T4), for 4 consecutive days to euthyroid rats on the respiratory activity of isolated brain mitochondria were examined. T4 stimulated coupled State-3 respiration with glutamate, pyruvate + malate, ascorbate + tetramethyl-p-phenylenediamine and succinate, in a dose-dependent manner; T3 was effective only at the highest (1.5 micrograms) dose employed. T4 was more effective than T3 in stimulating respiratory activity. State-4 respiratory rates were in general not influenced except in the case of the ascorbate + tetramethyl-p-phenylenediamine system. Primary dehydrogenase activities, i.e. glutamate dehydrogenase, malate dehydrogenase and succinate dehydrogenase, were stimulated about 2-fold; interestingly mitochondrial but not cytosolic malate dehydrogenase activity was influenced under these conditions. The hormone treatments did not greatly influence the mitochondrial cytochrome content. The results therefore suggest that thyroid hormone treatment not only stimulates primary dehydrogenase activities but may also directly influence the process of mitochondrial electron transfer.
Collapse
Affiliation(s)
- S S Katyare
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, India
| | | | | |
Collapse
|